Diplomarbeit

Optimierung der Phased-Array Antenne des ST-Radars in Kühlungsborn für senkrechte und schräge Abstrahlung

eingereicht von:
cand. ing. Jörn Rubach

eingereicht am:
30.11.1998

Betreuer:
Prof. Dr.-Ing. R. Rockmann (Universität Rostock),
Dr.-Ing. R. Latteck (Institut für Atmosphärenphysik an der Universität Rostock e.V., Kühlungsborn)

5. Wichtungsfunktionen aus der Signaltheorie zur Reduzierung der Seitenzipfel eines Spektrums können in der Antennentechnik zur Erhöhung der Nebenzipfeldämpfung durch Anwendung auf die Aperturbelegung (Leistungswichtung) der Gruppenantenne verwendet werden.

7. Die symmetrische Erweiterung des Phased-Arrays Kühlungsborn ist die effektivste Variante zur Optimierung der Strahlungseigenschaften der Antenne.

Inhaltsverzeichnis

Inhaltsverzeichnis .. 5
Liste der Abbildungen .. 7
Liste der Tabellen ... 8
Formelzeichen und Abkürzungen .. 9
0 Kurzreferat .. 11
1 Einführung .. 12
2 VHF-Radarexperimente zur Erforschung der Atmosphäre 15
 2.1 Gepulste Hochfrequenzsignale – Das Pulsradar .. 16
 2.2 Methoden zur Bestimmung des dreidimensionalen Windvektors 19
 2.2.1 DBS - Doppler-Beam-Swinging ... 19
 2.2.2 SA - Spaced Antenna .. 22
3 Die Phased-Array-Antenne des VHF-ST-Radars Kühlungsborn 25
 3.1 Das Antennenspeisesystem ... 26
 3.2 Das Antennensteuerungsnetzwerk ... 26
 3.3 DBS-Ansteuerung ... 27
 3.4 SA-Ansteuerung ... 28
4 Arraytheorie .. 28
 4.1 Richtcharakteristik, Richtdiagramm und Leistungsdiagramm 28
 4.2 Definition des Fernfeldes ... 32
 4.3 Analogien zwischen Antennen- und Signaltheorie .. 33
 4.4 Phasensteuerung des Arrays .. 36
 4.5 Nulleinzüge und Nebenzipfel .. 39
 4.6 Nebenzipfelabstand .. 44
 4.7 Schwenkwinkel ... 47
 4.8 Halbwertsbreite ... 49
 4.9 Raumwinkel und Hauptstrahlwirkungsgrad ... 51
4.10 Richtfaktor und Gewinn.. 53
4.11 Geometrische und effektive Fläche einer Antenne............................... 55
4.12 Wirksame Antennenfläche und Richtfaktor.. 56

5 Optimierung .. 60

5.1 Parameterauswahl zur Optimierung der Richtcharakteristik...................... 60
5.2 Möglichkeiten zur Verringerung der Halbwertsbreite............................. 61
 5.2.1 Variation des Elementabstandes.. 62
 5.2.2 Erhöhung der Anzahl der Elemente.. 64
 5.2.3 Realisierungsmöglichkeiten... 66
5.3 Erhöhung der Nebenzipfeldämpfung... 67
5.4 Einfluß des Erdbodens auf die Richtcharakteristik des Arrays............... 69
5.5 Speisung der Einzelelemente... 71
 5.5.1 Möglichkeiten zur technischen Realisierung.. 73
5.6 Optimierung der SA-Empfangsarrays... 75

6 Resümee .. 77

7 Literaturverzeichnis .. 78

Anhang

Erklärung
Liste der Abbildungen

Bild 1.1: Die unteren Atmosphärenschichten ...12
Bild 1.2: Komponenten des VHF-ST-Radar Kühlungsborn ..14
Bild 2.1: Leistungs- und Windprofile ..15
Bild 2.2: „Range-time“-Diagramm eines Pulsradars ...16
Bild 2.3: Pulscodes des VHF-ST-Radars Kühlungsborn ..18
Bild 2.4: VHF-Radar-Experimente ..19
Bild 2.5: Bestimmung der Koeffizienten U, V, und W ..20
Bild 2.6: Schwenkrichtungen der Hauptkeule der Radarantenne21
Bild 2.7: Spaced-Antenna-Methode ..22
Bild 2.8: geometrische Konstruktionen zur SA-Methode ...23
Bild 3.1: Feed-Subarray ..25
Bild 3.2: DBS-Antsteuerung des Phased-Arrays Kühlungsborn ..27
Bild 3.3: SA-Empfangsantennen ..28
Bild 4.1: Phased-Array-Antenne des VHF-ST-Radar Kühlungsborn und 3D-Plot31
Bild 4.2: Normiertes Richtdiagramm für Einzelelementspeisung32
Bild 4.3: Fourier-Analyse eines uniform erregten linearen Arrays mit N Elementen36
Bild 4.4: Wirkprinzip der Phasensteuerung eines linearen Arrays37
Bild 4.5: Zähler-, Nennerfunktion und resultierender Arrayfaktor41
Bild 4.6: Arrayfaktorfunktion für verschiedene relative Abstände d ..45
Bild 4.7: Arrayfaktorfunktion für verschiedene N ..46
Bild 4.8: Richtdiagramm als Produkt aus Arrayfaktor und Elementfaktor48
Bild 4.9: Faktoren und Gesamtcharakteristik für verschiedene Schwenkwinkel49
Bild 4.10: Beziehung zwischen Kugelkoordinaten und Flächenelement dA52
Bild 4.11: Abmessungen der Phased-Array-Antenne Kühlungsborn56
Bild 5.1: Halbwertsbreite in Abhängigkeit vom Elementabstand62
Bild 5.2: Erweiterung des Phased-Arrays Kühlungsborn auf 256 Yagi-Antennen65
Bild 5.3: Aperturverteilungen und resultierende Richtdiagramme67
Bild 5.4: Direkter und reflektierter Strahl für eine Antenne über einer leitenden Ebene69
Bild 5.5: Vergleich der Richtdiagramme für verschiedene Untergrundparameter70
Bild 5.6: Arrayfaktor, Elementfaktor und resultierende Gesamtcharakteristik für Speisung der Einzelstrahler und Speisung der Feed-Subarrays ..72
Bild 5.7: Ansteuerungsvariante für Einzelelementspeisung ..74
Bild 5.8: SA-Empfangsarrays ..75
Liste der Tabellen

Tabelle 1.1: Technische Parameter des VHF-ST-Radar Kühlungsborn.. 13
Tabelle 4.1: Nulleinzüge des Phased-Arrays Kühlungsborn ohne Phasensteuerung...................... 42
Tabelle 4.2: Nebenmaxima des Phased-Arrays Kühlungsborn ohne Phasensteuerung.............. 43
Tabelle 4.3: Pegel der Nebenmaxima des Arrayfaktors für das Phased-Array Kühlungsborn ohne Phasensteuerung ... 47
Tabelle 4.4: Halbwertsbreiten des Phased-Arrays Kühlungsborn... 51
Tabelle 5.1: Arrayparameter für verschiedene Abstände der Elementarstrahler...................... 64
Tabelle 5.2: Technische Daten verschiedener Antennenkonfigurationen 65
Tabelle 5.3: Lineare Wichtungsfunktionen.. 68
Tabelle 5.4: Antennengewinn des Phased-Arrays Kühlungsborn... 71
Tabelle 5.5: Schwenkverlust und resultierender Schwenkwinkel für Elementar- und Subarrayspeisung.. 73
Tabelle 5.6: Schwenkwinkel und Phasenansteuerung der Zeilen bzw. Spalten für Einzelspeisung .. 73
Tabelle 5.7: Technische Daten der SA-Empfangsantennen... 76
Formelzeichen und Abkürzungen

<table>
<thead>
<tr>
<th>Zeichen</th>
<th>Definition</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_{\text{eff}})</td>
<td>wirksame Antennenfläche</td>
<td></td>
</tr>
<tr>
<td>(A_{\text{geom}})</td>
<td>geometrische Antennenfläche</td>
<td></td>
</tr>
<tr>
<td>(A_K)</td>
<td>Kugeloberfläche</td>
<td></td>
</tr>
<tr>
<td>(A_{NK})</td>
<td>Nebenkeulenamplitude</td>
<td></td>
</tr>
<tr>
<td>(A_n)</td>
<td>Fourierkoeffizient, komplexes Speisesignal der Elementarstrahler</td>
<td></td>
</tr>
<tr>
<td>(\text{ALWIN})</td>
<td>ALOMAR Wind Radar</td>
<td></td>
</tr>
<tr>
<td>(\text{AOA})</td>
<td>Mean Angle of Arrival</td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>Abstand der Elementarstrahler</td>
<td></td>
</tr>
<tr>
<td>(a_{x,y})</td>
<td>Abstand in x- bzw. y-Richtung</td>
<td></td>
</tr>
<tr>
<td>(C)</td>
<td>Richtcharakteristik</td>
<td></td>
</tr>
<tr>
<td>(C_A)</td>
<td>Richtcharakteristik eines Arrays</td>
<td></td>
</tr>
<tr>
<td>(C_E)</td>
<td>Richtcharakteristik der Elementarstrahler</td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>Lichtgeschwindigkeit</td>
<td></td>
</tr>
<tr>
<td>(D)</td>
<td>Richtfaktor</td>
<td></td>
</tr>
<tr>
<td>(\text{DBS})</td>
<td>Doppler Beam Swinging</td>
<td></td>
</tr>
<tr>
<td>(\text{dA})</td>
<td>differentielles Flächenteil</td>
<td></td>
</tr>
<tr>
<td>(\text{dB})</td>
<td>Dezibel (10\log(P_2/P_1))</td>
<td></td>
</tr>
<tr>
<td>(\text{dBi})</td>
<td>relativ zur Isotropie</td>
<td></td>
</tr>
<tr>
<td>(\text{dΩ})</td>
<td>differentieller Raumwinkel</td>
<td></td>
</tr>
<tr>
<td>(\text{dc})</td>
<td>Tastverhältnis des Sendesignals</td>
<td></td>
</tr>
<tr>
<td>(d_s)</td>
<td>auf die Wellenlänge bezogener (relativer) Elementabstand</td>
<td></td>
</tr>
<tr>
<td>(E)</td>
<td>elektrische Feldstärke</td>
<td></td>
</tr>
<tr>
<td>(F_{x,y})</td>
<td>Arrayfaktoren in x- bzw. y-Richtung</td>
<td></td>
</tr>
<tr>
<td>(\text{FCA})</td>
<td>Full Correlation Analysis</td>
<td></td>
</tr>
<tr>
<td>(f_A)</td>
<td>Abtastrate</td>
<td></td>
</tr>
<tr>
<td>(G)</td>
<td>Antennengewinn</td>
<td></td>
</tr>
<tr>
<td>(G_A)</td>
<td>Antennengewinn einer Gruppenantenne</td>
<td></td>
</tr>
<tr>
<td>(G_E)</td>
<td>Antennengewinn des Einzelstrahlers</td>
<td></td>
</tr>
<tr>
<td>(g)</td>
<td>Antennengewinn in logarithmischem Maß</td>
<td></td>
</tr>
<tr>
<td>(\text{H})</td>
<td>magnetische Feldstärke</td>
<td></td>
</tr>
<tr>
<td>(h)</td>
<td>Höhe der Elementarstrahler über einer leitenden Ebene</td>
<td></td>
</tr>
<tr>
<td>(h_{\text{opt}})</td>
<td>optimale Höhe der Elementarstrahler</td>
<td></td>
</tr>
<tr>
<td>(\text{IAP})</td>
<td>Institut für Atmosphärenphysik</td>
<td></td>
</tr>
<tr>
<td>(L_{x,y})</td>
<td>geometrische Abmessung des Arrays in x- bzw. y-Richtung</td>
<td></td>
</tr>
<tr>
<td>(L_{\text{ges}})</td>
<td>Gesamtverlust</td>
<td></td>
</tr>
<tr>
<td>(M)</td>
<td>Anzahl der Arrayelemente in y-Richtung</td>
<td></td>
</tr>
<tr>
<td>(\text{MSE})</td>
<td>Mesosphären Sommer Echo</td>
<td></td>
</tr>
<tr>
<td>(\text{N})</td>
<td>Anzahl der Subpulse</td>
<td></td>
</tr>
<tr>
<td>(\text{NEC})</td>
<td>Numerical Electromagnetics Code</td>
<td></td>
</tr>
<tr>
<td>(\text{P})</td>
<td>Leistung</td>
<td></td>
</tr>
<tr>
<td>(P_{AV})</td>
<td>mittlere Leistung</td>
<td></td>
</tr>
<tr>
<td>(P_S)</td>
<td>Strahlungsleistung</td>
<td></td>
</tr>
<tr>
<td>(P_V)</td>
<td>Verlustleistung</td>
<td></td>
</tr>
<tr>
<td>(\Delta P_{256})</td>
<td>Leistungsgewinn</td>
<td></td>
</tr>
<tr>
<td>(\text{PRF})</td>
<td>Pulsofolgefrequenz</td>
<td></td>
</tr>
<tr>
<td>(\Delta t)</td>
<td>Impulslaufzeit</td>
<td></td>
</tr>
<tr>
<td>(R)</td>
<td>Zielentfernung</td>
<td></td>
</tr>
<tr>
<td>(R_{\text{Rx}})</td>
<td>Receiver (Empfänger)</td>
<td></td>
</tr>
<tr>
<td>(R_{\text{max}})</td>
<td>maximale Reichweite</td>
<td></td>
</tr>
<tr>
<td>(R_{\text{min}})</td>
<td>untere Observationsgrenze</td>
<td></td>
</tr>
<tr>
<td>(\Delta R)</td>
<td>Entfernungsauflösung</td>
<td></td>
</tr>
<tr>
<td>(S)</td>
<td>Leistungsichte oder Strahlungsdichte</td>
<td></td>
</tr>
<tr>
<td>(\text{SA})</td>
<td>Spaced Antenna</td>
<td></td>
</tr>
<tr>
<td>(\text{ST})</td>
<td>Stratosphäre/ Troposphäre</td>
<td></td>
</tr>
<tr>
<td>(\text{Tx})</td>
<td>Transmitter (Sender)</td>
<td></td>
</tr>
</tbody>
</table>
U zonale Komponente des Windvektors
UTC Universal Time (Weltzeit)
V meridionale Komponente des Windvektors
VHF Very High Frequency
v Windgeschwindigkeit
v_{x,y} horizontale Windgeschwindigkeit in x-bzw. y-Richtung
v_r radiale Windgeschwindigkeit
v_{rE,S,W,N} radiale Windgeschwindigkeit in Richtung Ost, Süd, West, bzw. Nord
v_{rv} vertikale radiale Windgeschwindigkeit
W vertikale Komponente des Windvektors
Z_0 Feldwellenwiderstand des freien Raumes
Ω Raumwinkel
Ω_K Raumwinkel der Kugel
Ω_H Raumwinkel der Hauptkeule
Ω_A Raumwinkel der Gesamtcharakteristik
ϑ Elevation, Zenitwinkel
ϑ_{NK} Elevation der Nebenkeulen
ϑ_{NK,approx} approximierte Elevation der Nebenkeulen
ϑ_G Elevation der zusätzlichen Hauptkeulen (grating lobes)
ϑ_S Schwenkwinkel
ϑ_{SA} Auslenkwinkel; resultierender Schwenkwinkel der Gesamtcharakteristik
ϑ_{SP} Schwenkwinkel bei Speisung in Feed-Subarrays
ϑ_{SV} Schwenkwinkel bei Elementarspeisung
ϑ_{3dB_{x,y}} Halbwertsbreite der Hauptkeule in x-bzw. y-Richtung
κ Leitfähigkeit
ε Dielektrizitätskonstante
η Antennenwirkungsgrad
η_H Hauptstrahlwirkungsgrad
φ Azimut
λ Wellenlänge
π 3,141...
σ Rückstreuquerschnitt
τ_N Subpulsdauer
τ_P Pulsdauer
τ_{IPP} Interpulsperiode
τ_{tot} Radartotzeit
Δτ Laufzeitunterschied
Δψ Phasenversatz der speisenden Ströme
ψ_n Phase des n-ten Elements
0 Kurzreferat

Hilfsmittel zur Bestimmung der Antennenparameter und der graphischen Darstellung der Antenneneigenschaften sind das Antennenanalyseprogramm NEC-Win Pro und MATLAB 5.0.

Interessent der Ausarbeitung ist die Radarabteilung des IAP unter der Leitung von Dr. J. Bremer, persönlicher Betreuer war Dr.-Ing. R. Latteck, Verantwortlicher am Institut für Nachrichtentechnik und Informationselektronik der Universität Rostock ist Prof. Dr.-Ing. R. Rockmann.
1 Einführung

Die Atmosphäre reicht von der Erdoberfläche bis zu den höchsten, sich mit der Erde mitbewegenden Regionen in 20.000 - 40.000 km Höhe. In dem beobachteten Gebiet bis max. 1.000 km Höhe sind bereits bemerkenswerte Variationen über die Höhe entdeckt worden. Bei etwa 60 km ist ein Übergang von neutralen zu ionisierten Schichten zu verzeichnen. Ursache für die Ionisation der Luftmoleküle in den höheren Schichten ist die Wellen- und Partikelstrahlung der Sonne, deren Intensität die Konzentration der Ladungsträger und damit die elektromagnetischen Eigenschaften dieser Schichten beeinflußt.

Forschungsschwerpunkt am IAP ist die Untersuchung der Struktur und Dynamik der mittleren Atmosphäre, speziell die Wechselwirkung der uns unmittelbar umgebenden Troposphäre mit den darüberliegenden Regionen bis in Höhen von etwa 100 km.

Bild 1.1: Die unteren Atmosphärenschichten [Rot95]
Atmosphäre beruhen auf der Streuung und Reflexion der ausgesendeten elektromagnetischen Wellen an isotropen bzw. anisotropen Brechungsindexstrukturen mit Skalen, die gleich der halben Radarwellenlänge sind.

Im VHF- und UHF-Bereich (30-300 MHz bzw. 300-3000 MHz) hängt der Brechungsindex von der Temperatur, dem Feuchte, dem Luftdruck sowie der Elektronendichte in Höhen oberhalb 60 km ab. Weil sich die Brechungsindexstrukturen mit dem Hintergrundwind bewegen, kann aus der Dopplerverschiebung der Echos die Windgeschwindigkeit in Richtung der abgestrahlten Pulse abgeleitet werden. Durch Schwenken der Antennenkeule in mindestens drei Richtungen läßt sich damit der vollständige Geschwindigkeitsvektor bestimmen. Aus der Echointensität selbst kann auf die vorhandene Turbulenzintensität geschlossen werden. Aufgrund des Höhenverlaufs der Kolmogoroffschen Mikroskala sind VHF-Radars, die auf Frequenzen von etwa 50 MHz (6 m Wellenlänge) arbeiten, besonders geeignet, Messungen in der Troposphäre, Stratosphäre und Mesosphäre durchzuführen. Optimale Entfernungs- und Zeitauflösungen von VHF-Radarmessungen betragen 150 m bzw. 30 s. Vergleiche zwischen Radar- und Ballonexperimenten zeigen gute Übereinstimmung in den gemessenen Windgeschwindigkeiten. [Rüs91]

<table>
<thead>
<tr>
<th>Tabelle 1.1: Technische Parameter des VHF-ST-Radar Kühlungsborn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequenz</td>
</tr>
<tr>
<td>Spitzenleistung</td>
</tr>
<tr>
<td>Mittlere Leistung</td>
</tr>
<tr>
<td>Impulslänge</td>
</tr>
<tr>
<td>Pulswiederholfrequenz (PRF)</td>
</tr>
<tr>
<td>Höhenbereiche</td>
</tr>
<tr>
<td>Höhenauflösung</td>
</tr>
<tr>
<td>Zeitauflösung</td>
</tr>
<tr>
<td>Sendesignal</td>
</tr>
<tr>
<td>Impulsformen</td>
</tr>
</tbody>
</table>

Das Empfangssystem enthält sechs Kanäle, in denen die Signale in ihren Quadraturkomponenten vorverarbeitet werden. Die anschließende Analyse der Rohdaten kann in Echtzeit oder als Postprozeß auf dem integrierten Host-PC oder auf jedem mit dem Internet verbundenen Rechner durchgeführt werden. Eine umfangreiche Software zur Konfiguration und Ablaufsteuerung der Messexperimente sowie zur Diagnose der Hardware ermöglicht einen komfortablen lokalen als auch Fernzugriff auf das System.

Durch den Einsatz von Einzelimpuls- und kodierten Mehrimpulssignalen im kombinierten Betrieb können durchgehende Windprofile im Bereich von 1 bis 18 km bestimmt werden. Die auf 6 Sendemodule verteilte Sendeleistung gestattet in Kombination mit schnellen Sende-Empfangs-Schaltern auch Messungen im Grenzschichtbereich ab 400 m. [IAP97]
2 VHF-Radarexperimente zur Erforschung der Atmosphäre

VHF-Atmosphärenrads dienen zur Untersuchung der Troposphäre und Stratosphäre hinsichtlich Struktur und Dynamik.

Aussagen über die Struktur und deren temporäre Variation liefern die Leistungsprofile (power profiles), in denen die rückgestreute Leistung über die Höhe und die Zeit aufgetragen wird. Bild 2.1a zeigt das Leistungshöhenprofil, gemessen über einen Tag mit dem VHF-ST-Radar Kühlungsborn zur Zeit der mesosphärischen Sommerechos (MSE).

Mit Hilfe der beiden Methoden zur Bestimmung des dreidimensionalen Windvektors (DBS - Doppler Beam Swinging und SA - Spaced Antenna) werden die Windhöhenprofile ermittelt, aus denen die Variation des Windes in Abhängigkeit von der Höhe hervorgeht. Bild 2.1b zeigt die mit dem SA-Experiment bestimmten Windprofile der Komponenten des dreidimensionalen Windvektors gemittelt über eine Stunde (11:00-12:00 UTC). Beim Auftragen über die Zeit erhält man zusätzlich die temporäre Änderung des Windfeldes.

In den folgenden Abschnitten sollen die Methoden (Meßexperimente) zur Bestimmung der o.a. Profile zur Charakterisierung der Dynamik in der Atmosphäre mittels VHF-Radars kurz erläutert werden.
2.1 Gepulste Hochfrequenzsignale – Das Pulsradar

Beim Pulsradar wird der HF-Träger mit Impulsen der Länge τ_p amplitudenmoduliert. Innerhalb der Interpulsperiode τ_{IPP} empfängt das Radar rückgestreute oder reflektierte Echos (vgl. Bild 2.2). Die Entfernung der rückstreuenden Medien wird aus der Impulslaufzeit Δt ermittelt:

\[
R = \frac{c\Delta t}{2}; \quad c = 299792 \text{ km/s.} \tag{2.1}
\]

Die Pulsdauer τ_p bestimmt die theoretische untere Observationsgrenze R_{min} sowie die Entfernungsauflösung (range resolution) ΔR. Das bedeutet, Echoimpulse, deren zeitlicher Abstand ihres Eintreffens kürzer ist als die Pulsdauer können nicht selektiert werden und demzufolge nicht unterschiedlichen Höhenbereichen zugeordnet werden. Wählt man für das Empfangssignal eine Abtastrate $f_A = 1/\tau_p$, so wird jedem Höhenkanal genau ein Abtastwert zugeordnet. Zur Verbesserung des Signal-Rausch-Verhältnisses werden in jedem Höhenkanal eine bestimmte Anzahl Abtastwerte kohärent integriert und als ein Signalwert der Weiterverarbeitung bereitgestellt.

Bild 2.2: „Range-time“-Diagramm eines Pulsradars
Die Wahl der Pulsfolgefrequenz PRF=1/τ_{IPP} bestimmt die maximale Reichweite R_{max}, in der den Echolaufzeiten eindeutig eine Entfernung zugeordnet werden kann. Ist die Zeit zwischen zwei Sendeimpulsen τ_{IPP} zu kurz gewählt, können Echos des Vorgängerimpulses im Empfangszeitraum des darauffolgenden eintreffen. Diesen Echos wird eine kürzere Entfernung zugeordnet, als der tatsächlichen entspricht (engl.: Range Aliasing). Für Radarobserivationen bis 100 km wird folglich eine Interpulsperiode von bis zu 1ms verwendet. Echos aus der Ionosphäre (>100km) beeinflussen die Qualität der Messungen nicht, da sie schwächer und breiter in ihrer spektralen Verteilung sind als die zu untersuchenden „clear air echoes“.

Aus der Interpulsperiode τ_{IPP} und der Pulsdauer ergibt sich das Tastverhältnis dc (duty cycle), dem in der Praxis technische Grenzen durch die Senderarchitektur gesetzt sind. Die Sendeendstufe des VHF-ST-Radar Kühlungsborn arbeitet mit einem maximalen Tastverhältnis dc = 0,05. Das ergibt bei einer Pulspitzenleistung von P = 36kW eine maximale mittlere Sendeleistung (average power oder CW power) von P_{av} = 1,8kW.

Eine erste Beispielrechnung mit praxisorientierten Werten soll die Problematik darstellen:

1. geg.: τ_p=1µs
ges.: ΔR, R_{min}, τ_{IPP}, PRF, R_{max}

\[dc = \frac{τ_p}{τ_{IPP}} = 0.05 \]

\[R_{min} = ΔR = \frac{ct_p}{2} = 150m \]
\[τ_{IPP} = \frac{τ_p}{dc} = 20µs \]
\[PRF = \frac{1}{τ_{IPP}} = 50kHz \]
\[R_{max} = \frac{ct_{IPP}}{2} = 3km \]

In der Praxis geht in die Berechnung für die untere Observationsgrenze zusätzlich die Radartotzeit ein, in der sich das Radar initialisiert und zwischen Senden und Empfang umgeschaltet wird. Sie kann in der Größenordnung einiger Mikrosekunden liegen.

Durch eine pulsinterne Modulation wird bei diesem Verfahren die Entfernungsauflösung sichergestellt. In der Atmosphärenradartechnik beschränkt man sich auf die Biphasenmodulation (BPSK).

Das Pulskompressionsverfahren erhöht die Signalleistung um N^2 und die Rauschleistung um N, d.h. der Signal-Rausch-Abstand verbessert sich um N. Als Binärcodes werden komplementäre Codes und vereinzelt auch Barker-Codes angewendet (vgl. Bild 2.3).

Ein zweites Rechenbeispiel verdeutlicht die Notwendigkeit des Einsatzes von Pulskompressionsverfahren zur Verbesserung der Höhenauflösung bei Messungen in der oberen Stratosphäre bzw. Mesosphäre:

2. geg.: $R_{\text{max}} = 96$ km
 ges.: τ_{IPP}, PRF, τ_p, R_{min}, ΔR
 $dc = 0.05$

\[
\tau_{\text{IPP}} = \frac{2R_{\text{max}}}{c} = 640\mu s
\]

\[
PRF = \frac{1}{\tau_{\text{IPP}}} = 1562,5\text{Hz}
\]

\[
\tau_p = dc \tau_{\text{IPP}} = 32\mu s
\]

\[
R_{\text{min}} = \Delta R = \frac{c\tau_p}{2} = 4,8\text{km}
\]
Der Einsatz eines 32bit-Komplementär-Codes mit einer Subpulsdauer $\tau_N = 1\mu s$ für die im Beispiel angenommene Höhe ergebe eine Entfernungsauflösung $\Delta R = 150m$, die Blindentfernung R_{min} bliebe aufgrund der äquivalenten Sendedauer natürlich erhalten.

2.2 Methoden zur Bestimmung des dreidimensionalen Windvektors

Bild 2.4: VHF-Radar-Experimente zur Bestimmung des dreidimensionalen Windvektors [Atl90]

2.2.1 DBS - Doppler-Beam-Swinging

Beim DBS-Experiment wird die Antennenkeule zeitlich nacheinander in verschiedene Richtungen geschwenkt und aus der Dopplerverschiebung des jeweiligen Empfangssignals die radiale Windgeschwindigkeit in diese Richtungen bestimmt.
Die gemessene radiale Windgeschwindigkeit ist nach Gleichung (2.2) die Summe von Anteilen, die über die Winkel \(\vartheta \) und \(\varphi \) und die orthogonalen Komponenten \(U \), \(V \) und \(W \) ausgedrückt sind.

\[
v_{r} = U \sin \vartheta \sin \varphi + V \sin \vartheta \cos \varphi + W \cos \vartheta
\]
(2.2)

Zur Bestimmung der Koeffizienten \(U \), \(V \) und \(W \) ist ein Gleichungssystem mit mindestens 3 Gleichungen vom Typ (2.2) notwendig, d.h. zur eindeutigen Bestimmung des dreidimensionalen Windvektors muß der radiale Wind in mindestens 3 Richtungen gemessen werden.

Zur Vereinfachung des Gleichungssystems ermittelt man die radialen Winde aus dem Zenit und aus zwei Zenitwinkel \(\vartheta_S \neq 0^\circ \), deren Azimutwinkel orthogonal zueinander sind. Wählt man die Azimutwinkel der Schwenkung übereinstimmend mit den Himmelsrichtungen N oder S, bzw. W oder E vereinfacht sich das Gleichungssystem weiter und man erhält direkt den meridionalen Wind \(V \) bzw. zonalen Wind \(U \) (vgl. Bild 2.5).

\[
\begin{align*}
v_{rS} &= U \sin \vartheta_S + W \cos \vartheta_S \\
v_{rE} &= V \sin \vartheta_S + W \cos \vartheta_S \\
v_{rv} &= W \cos \vartheta_S.
\end{align*}
\]
(2.3)
Der dreidimensionale Windvektor berechnet sich:

\[
\vec{v} = \begin{pmatrix}
U \\
V \\
W
\end{pmatrix} = \begin{pmatrix}
\sin \vartheta_S & 0 & \cos \vartheta_S \\
0 & \sin \vartheta_S & \cos \vartheta_S \\
0 & 0 & \cos \vartheta_S
\end{pmatrix}^{-1} \begin{pmatrix}
v_{rE} \\
v_{rS} \\
v_{rW}
\end{pmatrix}
\]

(2.4)

In der Praxis setzen sich die gemessenen radialen Geschwindigkeiten in (2.3) aufgrund der endlichen Halbwertsbreite der Antennenkeule aus allen drei Komponenten U, V, und W zusammen. Zur Verbesserung der Güte wird in alle vier Himmelsrichtungen und in den Zenit gemessen und der Windvektor über die Methode der kleinsten Quadrate (least square method) ermittelt. [ISA88]

Das Bild 2.6 zeigt die Ausrichtung der Radarantenne Kühlungsborn mit den Schwenkrichtungen der Hauptkeule zur Durchführung des DBS-Experiments.

Die Qualität der Meßergebnisse wird beim DBS-Experiment entscheidend von der Halbwertsbreite der Antennenkeule beeinflußt. Mit einer schmalen Keule wird das „ausgeleuchtete“ Volumen geringer und damit die Wahrscheinlichkeit der Konstanz des Windfeldes innerhalb des Volumens größer.
Weitere Gründe für die Wahl einer schmalen Antennenkeule sind:

- Die Höhenauflösung der Messung verschlechtert sich mit steigendem Zenitwinkel (Antennenschwenkwinkel).
- Die effektive Antennenfläche sinkt mit steigendem Schwenkwinkel bei einer horizontal montierten Antenne und daraus resultierend eine Abnahme des Richtfaktors.
- Die Aspekttempfindlichkeit (Variation der rückgestreuten Signalleistung in Abhängigkeit vom Zenitwinkel) sinkt mit steigendem Zenitwinkel.

2.2.2 SA - Spaced Antenna

Im Bild 2.7a bewegt sich eine in sich konstante isometrische Irregularität mit der konstanten horizontalen Geschwindigkeit v unter einem Winkel φ zur y-Achse über die drei räumlich verteilten Antennen X, Y und 0 hinweg. Ist die Dimension des irregulären Profils groß im Vergleich zum „Spacing“ der Antennen, kann die Linie durch die Maxima 0_m, X_m, Y_m als Gerade angenähert werden. Aus den Leistungsprofilen der Empfangssignale (Bild 2.7b) werden mittels Kreuzkorrelation die Zeitdifferenzen t_x und t_y ermittelt.

Bild 2.7: Spaced-Antenna-Methode
Aus Bild 2.8a ergeben sich für die Zeitdifferenzen \(t_x \) und \(t_y \) die Terme

\[
t_x = \frac{a_x \sin \varphi}{v}; \quad t_y = \frac{a_y \cos \varphi}{v}
\]

(2.5)

und die Geschwindigkeiten in x- bzw. y-Richtung ergeben sich zu

\[
v_x = \frac{a_x}{t_x} = \frac{v}{\sin \varphi} \quad \text{und} \quad v_y = \frac{a_y}{t_y} = \frac{v}{\cos \varphi}.
\]

(2.6)

Man erkennt, daß \(v_x \) und \(v_y \) nicht die Komponenten von \(v \) sind. Der horizontale Windvektor \(v \) ergibt sich aus der geometrischen Konstruktion im Bild 2.8b als Senkrechte vom Ursprung auf die Verbindungsgerade der Beträge von \(v_x \) und \(v_y \).

\[\text{Bild 2.8: geometrische Konstruktionen zur SA-Methode}\]

Die vertikale Komponente des dreidimensionalen Windvektors wird beim SA-Experiment über die Interferometrie, der Auswertung der Phasen des empfangenen Echos bestimmt. Aus der Nullphasenlage der drei Kreuzkorrelationen und dem räumlichen Abstand zwischen den Antennen kann der mittlere Einfallswinkel (mean angle of arrival - AOA) mit Elevation \(\vartheta \) und Azimut \(\varphi \) bestimmt werden. Die mittlere radiale Windgeschwindigkeit in
Richtung des mittleren Einfallswinkel erhält man aus dem Anstieg der Phase im Nulldurchgang der Autokorrelationsfunktionen der drei Empfangssignale. Die radiale Geschwindigkeit und die Winkel ϕ und ϑ zusammen mit den in der FCA ermittelten Komponenten U und V eingesetzt in Gleichung (2.2) ergibt die vertikale Komponente W und der dreidimensionale Windvektor ist vollständig determiniert. [Ber97]
3 Die Phased-Array-Antenne des VHF-ST-Radars Kühlungsborn

Antennenarrays (Gruppenantennen) sind Antennenstrukturen, die aus mehreren Einzelantennen linear, orthogonal-planar, zirkular-planar oder nichtplanar (3-dimensional) aufgebaut sein können. Beim Phased-Array Kühlungsborn handelt es sich um ein orthogonal-planares Array.

Phasengesteuerte Gruppenantennen werden vorrangig in Radaranlagen eingesetzt, bei denen es darauf ankommt, das Antennenrichtdiagramm zur Überwachung und Zielverfolgung sehr schnell zu schwenken oder die Dimension der Antennenstruktur ein mechanisches Verfahren zur Schwenkung ausschließt. Die Schwenkung erfolgt durch eine Speisung der Einzelstrahler mit jeweils um den gleichen Winkel phasenverschobenen Strömen.

Die Sende-Empfangsantenne des VHF-ST-Radars in Kühlungsborn besteht aus 144 Vier-Elemente-Yagi-Antennen, die in quadratischen Subsystemen (Feed-Subarrays) aus jeweils 4 Antennen in einer 6 x 6 Matrix angeordnet sind. Die Antennen sind im Winkel von 45° zur Nord-Süd-Achse ausgerichtet, damit im DBS-Modus in zonaler (Ost-West) und meridionaler (Nord-Süd) Richtung eine identische Antennencharakteristik genutzt werden kann (vgl.[Rub97]).

Im SA-Mode ist das Antennenfeld im Empfangsfall in sechs Einzelfelder zu je 6 Subsystemen aufgeteilt, die maximal sechs Empfangskanälen zugeordnet werden können.
Die Phased-Array-Antenne des VHF-ST-Radars Kühlungsborn 26

Im DBS-Mode ist es möglich, die Antennenkeule in jeweils drei Zenitwinkeln (6,6°; 13,3; 20°) in die vier Himmelsrichtungen Nord, Süd, Ost und West zu schwenken. Dieses wird im Sendebetrieb durch phasenverzögerte Einspeisung der sechs Antennenzeilen oder -spalten und im Empfangsbetrieb durch softwaregestütztes Postbeam-Steering (PBS) realisiert. [IAP97]

Zur Bestimmung des dreidimensionalen Windvektors wird beim DBS-Experiment die Antennenkeule in den ersten Zenitwinkel $\vartheta_{S1} = 6,6^\circ$ geschwenkt. Der zweite Schwenkwinkel $\vartheta_{S2} = 13,3^\circ$ dient zusammen mit dem ersten und dem dritten zur eingeschränkten Untersuchung der Aspektempfindlichkeit. Bei der Ansteuerung des Arrays zur Schwenkung in den dritten Zenitwinkel $\vartheta_{S3} = 20^\circ$ wird das Richtdiagramm symmetrisch, es weist zwei Hauptkeulen ($\pm \vartheta_{S3}$) auf. Mit dieser Charakteristik soll beim geplanten Experiment zur Erkennung von Meteorechos aus dem Höhenbereich 80-100km gesendet werden.

3.1 Das Antennenspeisesystem

Die Speisung des Arrays in Gruppen zu vier Yagi-Antennen ist eine Kompromißlösung zur Reduzierung der Kosten für das Radarsystem. Der Aufwand sinkt gegenüber einer Einzelspeisung für das Zuleitungsnetzwerk um 75%, für die Antennensteuereinheit, die Empfänger und die Signalverarbeitungseinheiten um 50%.

3.2 Das Antennensteuerungsnetzwerk (beam steering network)

Die Umschaltung erfolgt mit Hilfe von Transfer-Relais, die sich durch hohe Schaltzeiten (ca. 20 ms) und sehr geringen Phasenfehler auszeichnen.

In der Delay-Unit (vgl. Bild 1.2) werden mit diesen Relais die Umwegleitungen für das DBS-Experiment in die einzelnen Sendesignalpfade geschaltet.
3.3 DBS-Ansteuerung

Beim DBS-Experiment werden die 36 Subsysteme durch das Beamsteering-Netzwerk zu 6 Zeilen bzw. Spalten mit je 6 Subsystemen kombiniert und jeder Zeile bzw. Spalte ein Sende-Empfangsumschalter (T/R-Switch) zugeordnet.

Im Sendebetrieb werden die Zeilen bzw. Spalten des Phased-Arrays mit Strömen linear fortschreitender Phase gespeist, um die erforderliche Schwenkung des Richtdiagramms in verschiedene Zenitablagen der 4 Richtungen (Nord, Süd, West, Ost) zu erzielen.

Eine ausführliche Betrachtung der Phasensteuerung folgt im Abschnitt 4 Arraytheorie.

Das Bild 3.2 zeigt die Ansteuerung des Phased-Arrays Kühlungsborn in Spalten zur zonalen Schwenkung der Charakteristik beim DBS-Experiment.

Bild 3.2: DBS-Antsteuerung des Phased-Arrays Kühlungsborn zur zonalen Schwenkung (West-Ost) mit ψ = Phasenversatz der speisenden Ströme
3.4 SA-Ansteuerung

Die Antennenschwerpunkte der SA-Empfangsarrays sind geometrisch über das im Bild 3.2 angedeutete Dreieck verbunden.

Ein Nachteil dieser Empfangskonfiguration ist die Unsymmetrie der Richtcharakteristik der SA-Empfangsarrays, die eine mögliche systematische Fehlerquelle bei der Ermittlung des Windfeldes nach der SA-Methode darstellt. Im Abschnitt 5 Optimierung wird eine Möglichkeit zur Unterdrückung dieses Effekts aufgezeigt.
4 Arraytheorie

Eine Übersicht über die charakteristischen Eigenschaften und aktuellen Richtdiagramme der Phased-Array-Antenne Kühlungsborn sind im Anhang A dargelegt.

Berechnungsgrundlage für die Eigenschaften des Phased-Array Kühlungsborn sind die mit NEC-Win Pro ermittelten Richtcharakteristika für die 4-Elemente-Yagi und das Feed-Subarray als Elementarstrahler. Das Antennenanalyseprogramm NEC-Win Pro ist in [Rub97] vorgestellt, die Datenweiterverarbeitung und grafische Ausgabe erfolgte mit MATLAB Version 5.0.

4.1 Richtcharakteristik, Richtdiagramm und Leistungsdiagramm
(radiation pattern, field pattern and power pattern)

Die Richtcharakteristik ist die Richtungsabhängigkeit (Azimut, Elevation), der von einer Antenne erzeugten Feldstärke (field intensity) nach Amplitude, Phase und Polarisation in einem konstanten Abstand von der Antenne. Diese Abhängigkeit beschränkt sich in der Praxis auf das Fernfeld und die Amplitude der elektrischen Feldstärke E einer bestimmten Polarisation. Im Fernfeld sind die Vektoren der elektrischen und der magnetischen Feldstärke in Phase, stehen senkrecht aufeinander und quer zur Ausbreitungsrichtung der Wellen.

Im allgemeinen bevorzugt man die auf den Maximalwert bezogene Richtcharakteristik:

\[
C(\varphi, \vartheta) = \frac{E(\varphi, \vartheta)}{E_{\text{max}}} = \frac{H(\varphi, \vartheta)}{H_{\text{max}}} \quad (4.1)
\]
Das Richtdiagramm ist die zeichnerische Darstellung eines Schnittes durch die Richtcharakteristik. Man unterscheidet dabei zwischen zwei Arten, gemäß den beiden Variablen ϕ und ϑ: spricht man vom Horizontal- bzw. Vertikaldiagramm oder eindeutiger, in Bezug auf die im Diagramm projizierten Feldlinien vom H- bzw. E-Diagramm.

Die normierte Richtcharakteristik für ein uniform erregtes, orthogonales ebenes Array aus $N \times M$ identischen Einzelstrahlern ergibt sich nach dem Prinzip der Superposition (vgl. [Rub97]):

\[
C_A(\phi, \vartheta) = C_E(\phi, \vartheta) \left(\frac{\sin \left[N \left(\frac{\psi_x + \frac{\pi a_x}{\lambda} \cos \phi \sin \vartheta}{2} \right) \right]}{N \sin \left(\frac{\psi_x + \frac{\pi a_x}{\lambda} \cos \phi \sin \vartheta}{2} \right)} \right) \left(\frac{\sin \left[M \left(\frac{\psi_y + \frac{\pi a_y}{\lambda} \sin \phi \sin \vartheta}{2} \right) \right]}{M \sin \left(\frac{\psi_y + \frac{\pi a_y}{\lambda} \sin \phi \sin \vartheta}{2} \right)} \right)
\] \hspace{1cm} (4.2)

mit $a_{x,y}$ = Abstand der Einzelstrahler;
\[\lambda\] = Wellenlänge;
$\psi_{x,y}$ = Phasenversatz der speisenden Ströme;
$C_E(\phi, \vartheta)$ = Richtcharakteristik der Elementarstrahler (Elementfaktor);
$F_{x,y}$ = Arrayfaktoren.

Bei konstanter Wellenlänge wird in der Praxis das Verhältnis $a/\lambda = d_\lambda$ angegeben, wobei d_λ als der auf die Wellenlänge bezogene Abstand oder einfach als relativer Abstand bezeichnet wird.

Die Charakteristik der Arrayfaktoren $F_x(\phi, \vartheta)$ und $F_y(\phi, \vartheta)$ ist adäquat der Richtcharakteristik einer Reihe isotoper Strahler in x- bzw. y-Richtung. Die Gesamtcharakteristik eines Arrays ergibt sich aus dem durch die Arrayfaktoren aufgespannten Feld (Array) $F_x \times F_y$, gewichtet mit der Charakteristik der Elementarstrahler $C_E(\phi, \vartheta)$.

Aus Gleichung (4.2) ist zu entnehmen, daß die Richtdiagramme des Arrays in x- und y-Richtung nur durch den Elementfaktor und den jeweiligen Arrayfaktor $F_x(0^\circ, \vartheta)$ bzw. $F_y(90^\circ, \vartheta)$ bestimmt werden. Diese Richtdiagramme weisen folglich die stärksten Nebenzipfel und werden deshalb zur Charakterisierung von orthogonalen Arrays herangezogen (vgl. Bild 4.1). Für ein quadratisches Array sind die Arrayfaktoren $F_x(0^\circ, \vartheta)$ und $F_y(90^\circ, \vartheta)$ identisch.

Bei zeilen- bzw. spaltenweiser Speisung der Einzelelemente mit Strömen linear steigender oder fallender Phase schwenkt das Diagramm entsprechend in $\pm x$- bzw. $\pm y$-Richtung.
Unter der Voraussetzung, daß die Richtdiagramme der Elementarstrahler $C_E(0,\vartheta)$ und $C_E(90,\vartheta)$ übereinstimmen, ist auch die Gesamtcharakteristik des Arrays C_A in diese Richtungen identisch. Letzteres ist in Kühlungsborn durch eine Azimutdrehung der Einzelstrahler um 45° realisiert (vgl.[Rub97]). Das Bild 4.1 zeigt das Phased-Array Kühlungsborn in dem für diese Arbeit gültigen Koordinatensystem und das dreidimensionale Richtdiagramm.

Bild 4.1 Phased-Array-Antenne des VHF-ST-Radar Kühlungsborn und das dreidimensionale Richtdiagramm (3D-Plot)

In Bezug auf das quadratische Array Kühlungsborn mit identischer Charakteristik in x- und y-Richtung entfallen im folgenden die richtungsweisenden Indizes.
Im Bild 4.2 sind die Faktoren und die resultierende Gesamtcharakteristik mit den Parametern des Phased-Arrays Kühlungsborn unter der Annahme dargestellt, daß die Elemente einzeln gespeist werden. Auf die Speisung in Feed-Subarrays wird später näher eingegangen.

Das Prinzip der Superposition ist mathematisch überschaubar und im allgemeinen von ausreichender Genauigkeit. In der Realität wird die Richtcharakteristik zusätzlich durch die Strahlungskopplung (mutual coupling oder interaction) zwischen benachbarten Array-Elementen beeinflußt und bei Strahlern über einer leitenden Ebene, durch deren elektromagnetischen Eigenschaften (Leitfähigkeit κ, Dielektrizitätskonstante ε).

Der Effekt der Strahlungskopplung kommt besonders bei Antennenarrays durch die räumlich dicht angeordneten Elemente zum Tragen. Die Stärke der gegenseitigen Strahlungseinstreuung, durch die die Stromverteilung auf der Antenne beeinflußt wird, ist abhängig von der Lage und dem Abstand der Elementarstrahler in einem Array. Aus der Kopplung resultiert einerseits ein verändertes Richtdiagramm und andererseits eine Impedanzveränderung, die eine Fehlanpassung zwischen Generator (Sender) und Antenne hervorruft. Der Einfluß der Strahlungskopplung kann sich positiv oder negativ auf die Gesamtcharakteristik auswirken. [Mai94]

Aus dem Quadrat der Richtcharakteristik erhält man das normierte Leistungsdiagramm, das zur Ermittlung der Strahlungsleistung und des Gewinns einer Antenne verwendet werden kann:

\[
P_n(\phi, \vartheta) = C^2(\phi, \vartheta) = \frac{E^2(\phi, \vartheta)}{E_{\text{max}}^2} = \frac{S(\phi, \vartheta)}{S_{\text{max}}} \quad (4.3)
\]

Die Strahlungsdichte \(S \) (radiation intensity), auch Leistungsdichte der Strahlung genannt, ist der Betrag des Poyntingschen Vektors \(\mathbf{S} = \frac{1}{2} (\mathbf{E} \times \mathbf{H}) \):

\[
S = \frac{1}{2} \mathbf{E} \mathbf{H} = \frac{E^2}{2Z_0} \quad (4.4)
\]

mit \(Z_0 = 120\pi \Omega \) (Feldwellenwiderstand des freien Raumes).

4.2 Definition des Fernfeldes (far field region)

Die Gültigkeit der Richtcharakteristik einer Antenne beschränkt sich auf den Raum außerhalb eines bestimmten Abstandes \(R \) von der Antenne, von dem aus die Antenne als Punktquelle angesehen werden kann und demzufolge die abgestrahlten Wellen nicht mehr als eben sondern als sphärisch bezeichnet werden können.

Das Fernfeld – auch Fraunhoferregion genannt – beginnt in der Praxis bei Quer- und Aperturstrahlern mit der größten geometrischen Abmessung \(L_{x,y} \) näherungsweise bei einem Abstand:

\[
R \geq \frac{2L_{x,y}^2}{\lambda}, \quad (4.5)
\]

wobei \(L_{x,y} > \lambda \) vorausgesetzt ist. Die Gleichung (4.5) wird aus der Bedingung erhalten, daß der Weglängenunterschied \(\Delta r \) zwischen zwei am Empfangsort eintreffenden Strahlen, von denen der eine vom Antennenmittelpunkt und der andere vom Antennenrand ausgeht, der Bedingung \(\Delta r \leq \lambda/8 \) genügt. [Mei92]
Zur Berechnung der unteren Fernfeldgrenze einer orthogonalen Array-Architektur wird die maximale effektive Länge $L_{x,y} = N \cdot a_{x,y}$ herangezogen.\cite{Sko90} \cite{Mai94}

Das Fernfeld für das Phased-Array Kühlungsborn, das mit einer Radiowellenlänge $\lambda = 5,6 \text{ m}$ arbeitet, beginnt nach Gleichung (4.5) ab einer Höhe

$$R \geq \frac{2(12 \times 3,96 \text{ m})^2}{5,6 \text{ m}} = 800 \text{ m}.$$

4.3 Analogien zwischen Antennen- und Signaltheorie

In der Antennentechnik kann zur Bestimmung der Richtcharakteristik einer Antennenkonfiguration die Fourier-Analyse angewendet werden. Das Richtdiagramm einer Antenne ist die inverse Fouriertransformierte der Aperturbelegung (aperture distribution oder aperture illumination) ähnlich wie die Zeitfunktion eines Signals aus der inversen Fouriertransformation des Signalspektrums oder die Impulsantwort aus der inversen Fouriertransformation der Übertragungsfunktion eines Filters hervorgehen.

Die Anwendung der Fourier-Analyse erlaubt es, Erkenntnisse der Signalverarbeitung auf das Gebiet der Antennentechnik anzuwenden. Analog der Optimierung der Impulsantwort von Filtern wird hier das Richtdiagramm hinsichtlich Nebenzipfeldämpfung und Halbwertsbreite durch Variation der Aperturbelegung optimiert.

Die Aperturbelegung eines Antennenarrays ist eine komplexe Funktion, die die ortsabhängige Amplitude und Phase der Elementarstrahler beschreibt. Das resultierende Richtdiagramm ist periodisch, so daß in bestimmten Winkelabständen Hauptkeulen (grating lobes) periodisch auftreten. Diese lassen sich durch eine geeignete Wahl der Elementabstände aus dem durch die Antenne abzudeckenden Winkelbereich „hinausschieben“ und damit unwirksam machen.\cite{Kra88} \cite{Lud93} \cite{Mai94} \cite{Sko90}

Zur Bestimmung der Richtcharakteristik einer diskret aufgebauten Gruppenantenne kann die harmonische Synthese mit Fourier-Reihen angewendet werden. Harmonische Synthese bedeutet die Bestimmung einer periodischen Funktion aus den Koeffizienten ihrer Fourier-Reihe.\cite{Beo95}

Auf der Basis des Huygensschen Prinzips ergibt sich die Fernfeldcharakteristik einer Reihe äquidistant separierter Strahlungsquellen, aus der kohärenten Superposition der Elementarcharakteristika.
Das Richtdiagramm einer Reihe isotroper Strahler kann aus der komplexen Summenformel

\[F(\vartheta) = \sum_{n=-\frac{(N-1)}{2}}^{\frac{(N-1)}{2}} A_n e^{i2\pi \lambda n \sin \vartheta} \]

mit

\[n = \pm 1/2, \pm 3/2, \pm 5/2, ... \text{ für gerade } N; \]

\[n = 0, \pm 1, \pm 2, \pm 3, ... \text{ für ungerade } N. \]

bei zentralem Phasenbezugspunkt bestimmt werden. Die Reihe (4.6) stellt eine finite komplexe Fourier-Reihe dar, die im Winkelbereich \(\vartheta \text{periodisch mit dem Winkelabstand } \arcsin(\lambda/a) \text{ ist. Die Fourier-Koeffizienten } A_n \text{ sind zunächst reell und entsprechen den Amplituden der Einspeisungen. Für ungerade } N \text{ hat die Fourier-Reihe (4.6) alle Terme, einen Gleichanteil bei } n=0, \text{ einen Grundanteil und harmonische Anteile, für gerade } N \text{ nur den Grundanteil und ungerade Harmonische.} \]

Die Einspeisungskoeffizienten berechnen sich invers:

\[A_n = \frac{a}{\lambda} \int_{\frac{\lambda}{2a}}^{\frac{-\lambda}{2a}} F(\vartheta) e^{-i(2\pi \lambda n \sin \vartheta)} d \vartheta. \]

(4.7)

Gleichung (4.7) ergibt das Amplitudenspektrum des Richtdiagramms \(F(\vartheta) \) für \(a \geq 0,5\lambda \). Für kürzere Strahlerabstände \(a \) überschreiten die Integrationsgrenzen den „sichtbaren“ Bereich, die Periode \(\lambda/a \) und die Definition des Richtdiagramms ist nicht mehr eindeutig.

In der Praxis finden überwiegend symmetrische Aperturbelegungen Anwendung, deren Richtdiagramm \(F(\vartheta) \) eine gerade, d.h. ebenfalls symmetrische und damit reelle Funktion ist. Durch die Symmetrie entfällt in (4.6) der Imaginärteil und die Reihe vereinfacht sich zu:

\[F(\vartheta) = 2 \sum_{n=0}^{\frac{(N-1)}{2}} A_n \cos \left(\frac{2\pi \tan \lambda}{\lambda} \sin \vartheta \right) = 2 \sum_{n=0}^{\frac{(N-1)}{2}} A_n \cos \left(\frac{2\pi \tan \lambda}{\lambda} \sin \vartheta \right) \]

(4.8)

mit

\[n = \pm 1/2, \pm 3/2, \pm 5/2, ... \text{ für gerade } N \]

\[n = 0, \pm 1, \pm 2, \pm 3, ... \text{ für ungerade } N \]
Setzt man für eine gerade Anzahl Strahler \(N = 2(k+1) \) mit \(k = 0, 1, 2, \ldots \) so daß

\[
n = \frac{N - 1}{2} = \frac{2k + 1}{2}
\]

dann wird (4.8) zu

\[
F(\phi) = 2 \sum_{k=0}^{N/2-1} A_k \cos \left((2k+1) \frac{\pi a}{\lambda} \sin \phi \right) \quad \text{mit } k = 0, 1, 2, \ldots
\]

(4.9)

Das Richtdiagramm eines linearen Arrays mit einer geraden Anzahl Elemente und symmetrischer Aperturbelegung berechnet sich nach Gleichung (4.9).

Bei einer ungeraden Anzahl Elemente ist \(N = 2k + 1 \) mit \(k = 0, 1, 2, \ldots \)

\[
n = \frac{N - 1}{2} = \frac{2k}{2}
\]

und das Richtdiagramm bei symmetrischer Aperturbelegung ergibt sich aus:

\[
F(\phi) = 2 \sum_{k=0}^{(N-1)/2} A_k \cos \left(2k \frac{\pi a}{\lambda} \sin \phi \right) \quad \text{für ungerade } N.
\]

(4.10)

Das Amplitudenspektrum und das Richtdiagramm einer Reihe aus \(N \) Strahlern, amplituden- und phasengleich gespeist (uniform-inphase distribution) ist in Bild 4.3 dargestellt. Die Betragsbildung des Richtdiagramms \(F(e^{j\beta}) \) ist zur Verdeutlichung der Analogie zur Fourier-Analyse weggelassen.

\[
A[n] = \begin{cases} |A_n| & \text{für } |n| \leq \frac{N}{2} \\ 0 & \text{für } |n| > \frac{N}{2} \end{cases}
\]

\[
F(\beta) = \frac{\sin \left(\frac{N \beta}{2} \right)}{\sin(\frac{\beta}{2})}
\]

\[
\beta = 2 \pi \frac{a}{\lambda} \sin \phi
\]

Bild 4.3: Fourier-Analyse eines uniform erregten linearen Arrays mit \(N \) Elementen
Mit Hilfe der Fourier-Analyse ist es also möglich, das Richtdiagramm eines Arrays aus der Amplitudenverteilung der Elemente zu determinieren und analytisch zu optimieren. Zur Bestimmung der Richtcharakteristik $C_A(\phi, \theta)$ eines zweidimensionalen Arrays wird entsprechend die zweidimensionale Fouriertransformation angewendet. Im Abschnitt Optimierung wird mit Hilfe der Fourier-Analyse die Richtcharakteristik für eine nicht uniforme Aperturbelegung bestimmt.

4.4 Phasensteuerung des Arrays

Unter Phasensteuerung versteht man die kontrollierte Beeinflussung der Phasenlage bei der Speisung der Elemente eines Arrays zur Verschiebung des Strahlungsumaximum in bestimmte Winkel.

In Arrays mit konstantem Elementabstand a und von Element zu Element linear steigender bzw. fallender Phase verschiebt sich das Strahlungsumaximum gegenüber einem Array, dessen Elemente mit gleicher Phase erregt werden um den absoluten Winkel $\pm \theta_S$.

Bild 4.4: Wirkprinzip der Phasensteuerung eines linearen Arrays
Aus Bild 4.4 ergibt sich der absolute Phasenversatz der speisenden Ströme zu:

\[\varphi_{\text{rad}} = \Delta \varphi = \frac{2\pi}{\lambda} \sin \vartheta_s \]
(4.11)

und die Phase des n-ten Elements zu:

\[\varphi_n[\text{rad}] = \frac{2\pi}{\lambda} \sin \vartheta_s \quad \text{mit} \ n = 0, 1, 2, ..., N - 1 \]
(4.12)

oder einfach:

\[\varphi_n = n \Delta \varphi. \]
(4.13)

Zur Definition der Richtung des Strahlungsmaximums im Kugelraum mit dem Zenit \(\vartheta = 0^\circ \) setzen wir in Gleichung (4.6) komplexe Koeffizienten ein.

Mit

\[A_n = |A_n| e^{i\varphi_n} = |A_n| e^{i(2\pi/\lambda) \sin \vartheta_s}, \]
(4.14)

Betrag und Phase der speisenden Ströme folgt:

\[
\begin{align*}
F(\vartheta) &= \sum_{n=-(N-1)/2}^{(N-1)/2} |A_n| e^{i\varphi} e^{i(2\pi/\lambda) \sin \vartheta} \\
F(\vartheta) &= \sum_{n=-(N-1)/2}^{(N-1)/2} |A_n| e^{i(\varphi + (2\pi/\lambda) \sin \vartheta)} \\
F(\vartheta) &= \sum_{n=-(N-1)/2}^{(N-1)/2} |A_n| e^{i(2\pi/\lambda) \sin (\vartheta + \vartheta_s)} \\
F(\vartheta) &= \sum_{n=-(N-1)/2}^{(N-1)/2} |A_n| e^{i\beta}.
\end{align*}
\]
(4.15)
Die Arrayfaktorfunktion $F(\vartheta)$ wird maximal für $\beta = 0$. Der Elevationswinkel ϑ_{max} des Strahlungsmaximums ergibt sich daher aus:

$$
\beta = \frac{2\pi}{\lambda} \cdot \text{na}(\sin \vartheta_{\text{max}} + \sin \vartheta_s) = 0
$$

$$
(\sin \vartheta_{\text{max}} + \sin \vartheta_s) = 0
$$

$$
\vartheta_{\text{max}} = -\vartheta_s.
$$

(4.16)

Mit Einbeziehung der linearen Phasensteuerung wird der Arrayfaktor bei symmetrischer Amplitudenverteilung in Bezug auf Gleichung (4.9) bzw. (4.10):

$$
F(\vartheta) = 2 \sum_{k=0}^{N/2-1} A_n \cos \left[(2k+1) \left(\frac{\psi}{2} + \frac{\pi a}{\lambda} \sin \vartheta \right) \right] \text{ für gerade } N;
$$

(4.17)

$$
F(\vartheta) = 2 \sum_{k=0}^{(N-1)/2} A_n \cos \left[2k \left(\frac{\psi}{2} + \frac{\pi a}{\lambda} \sin \vartheta \right) \right] \text{ für ungerade } N.
$$

(4.18)

Bei nichtlinearer symmetrischer Phasensteuerung wird die Summenphase in (4.17) und (4.18) unter Anwendung des Additionstheorems

$$
\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y
$$

(4.19)

zerlegt. Die Arrayfaktorfunktion ergibt sich für gerade N zu:

$$
F(\vartheta) = 2 \sum_{k=0}^{N/2-1} A_k \cos \psi_k \cos \frac{2k+1}{2} \beta - \sin \psi_k \sin \frac{2k+1}{2} \beta \quad \text{mit } \beta = \frac{2\pi a}{\lambda} \sin \vartheta ,
$$

(4.20)
und für ungerade N:

\[
F(\phi) = 2 \sum_{k=0}^{(N-1)/2} A_k \cos\psi_k \cos \frac{2k}{N} \beta - \sin\psi_k \sin \frac{2k}{N} \beta \quad \text{mit} \quad \beta = \frac{2\pi a}{\lambda} \sin \phi. \tag{4.21}
\]

Mit der Gleichung (4.20) bzw. (4.21) kann die Richtcharakteristik eines nicht uniform gespeisten und nicht linear phasengesteuerten Arrays bestimmt werden.

4.5 Nulleinzüge und Nebenzipfel (nulls and sidelobes)

Das Richtdiagramm eines Arrays ist gekennzeichnet durch eine Hauptkeule (mainlobe) und in der Regel mehreren in der Amplitude abgeschwächten Nebenkeulen (sidelobes), abgeteilt durch Nulleinzüge (nulls).

Die Lage der Maxima und Nullstellen im Richtdiagramm eines Arrays wird, sofern der Elementfaktor $C_E(\phi)$ keine Nullstellen aufweist, durch den Arrayfaktor

\[
F(\phi) = \left| \frac{\sin \left(N \frac{\pi a}{\lambda} \sin \phi \right)}{N \sin \left(\frac{\pi a}{\lambda} \sin \phi \right)} \right| = \left| \frac{\sin \left(N \frac{\beta}{2} \right)}{N \sin \left(\frac{\beta}{2} \right)} \right|
\tag{4.22}
\]

bestimmt. Die Arrayfaktorfunktion ist gerade und periodisch mit π bzw. 180°.

Die Funktion (4.22) wird maximal für die unbestimmten Ausdrücke

\[
F(\phi) = \begin{cases}
0 & \text{bei } \sin \phi = 0 \text{ und innerhalb einer Periode unter der Voraussetzung } a \geq \lambda \text{ zusätzlich bei } \\
0 & \sin \phi = k\lambda/a \text{ mit } k=0, 1, 2,\ldots.
\end{cases}
\]
Im Bild 4.5 sind die Komponenten der Arrayfaktorfunktion für das Phased-Array Kühlungsborn dargestellt.

Bild 4.5: Zähler-, Nennerfunktion und resultierender Arrayfaktor für das Phased-Array Kühlungsborn ($\beta = 2\pi \sin \theta / \lambda$)

Die Nullstellen des Arrayfaktors sind die Nullstellen der Zählerfunktion von (4.22) bei:

$$\frac{\pi \alpha}{\lambda} \sin \vartheta = \pm \frac{k\pi}{N} \quad \text{mit } k = 1, 2, 3,...(\text{Ordnung}).$$

(4.23)

Damit gilt für die Elevationswinkel ϑ_{ns} der Nullstellen:

$$\vartheta_{\text{ns}} = \arcsin \frac{\pm k\lambda}{Na}.$$

(4.24)

Mit Einbeziehung der linearen Phasensteuerung lautet Gleichung (4.24):

$$\vartheta_{\text{ns}} = \arcsin \left[\frac{\pm 2k \pi}{N} - \psi[\text{rad}] \right] \frac{\lambda}{\pi \alpha}.$$

(4.25)

Tabelle 4.1: Nulleinzüge \([0 \leq \varphi \leq 90^\circ]\) des Phased-Arrays Kühlungsborn ohne Phasensteuerung

<table>
<thead>
<tr>
<th>Nulleinzüge k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varphi_{NS}[^\circ])</td>
<td>6,77</td>
<td>13,6</td>
<td>20,7</td>
<td>28,1</td>
<td>36,1</td>
<td>45,0</td>
<td>55,6</td>
<td>70,5</td>
<td>90,0</td>
</tr>
</tbody>
</table>

In die Bestimmung der Lage der Nebenzipfel der Arrayfaktorfunktion (4.22) gehen Zähler- und Nennerfunktion ein. Da die Zählerfunktion durch den Faktor \(N\) im Argument stärker variiert als die Nennerfunktion - vergleiche Bild 4.5 - entsprechen die Positionen der Nebenmaxima des Arrayfaktors annähernd der Lage der Maxima der Zählerfunktion.

Die Zählerfunktion in (4.22) wird außerhalb des durch die Hauptkeule abgedeckten Winkelbereich maximal wenn:

\[
\frac{\pi a}{\lambda} \sin \varphi = \pm \frac{(2k+1)\pi}{2N} \quad \text{mit } k = 1, 2, 3, \ldots .
\] (4.26)

Damit liegen die Nebenzipfel der Arrayfaktorfunktion annähernd bei:

\[
\varphi_{KN,\text{approx}} \approx \arcsin \frac{\pm (2k+1)\lambda}{2Na} .
\] (4.27)

Für das linear phasengesteuerte Array ergeben sich die Elevationswinkel der Nebenmaxima approximativ zu:

\[
\varphi_{KN,\text{approx}} \approx \arcsin \left[\left(\pm \frac{(2k+1)\pi}{N} - \psi[\text{rad}] \right) \frac{\lambda}{2\pi a} \right] .
\] (4.28)
Die genaue Lage \(\vartheta_{nk}\) der Nebenzipfel ist gleich den Nullstellen der 1. Ableitung der Arrayfaktorfunktion.

Zur Bildung der 1. Ableitung wird (4.22) vereinfacht zu:

\[
F(x) = \frac{\sin N x}{\sin x} \quad \text{mit} \quad x = \frac{\pi a}{\lambda} \sin \vartheta
\]

\[
F'(x) = \frac{\sin x N \cos N x - \sin N x \cos x}{\sin^2 x} = 0
\]

\[
\sin x N \cos N x = \sin N x \cos x
\]

\[
\tan x = \frac{1}{N} \tan N x
\]

\[
\tan x - \frac{1}{N} \tan N x = 0
\]

Gleichung (4.30) wird mit dem Newtonschen Näherungsverfahren gelöst. Die Lösungen für das Phased-Array Kühlungsborn sind Tabelle 4.2 zu entnehmen.

Tabelle 4.2: Nebenmaxima \([0 \leq \vartheta \leq 90°]\) des Phased-Arrays Kühlungsborn ohne Phasensteuerung

<table>
<thead>
<tr>
<th>Nebenzipfel k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\vartheta_{nk,\text{approx}}) [°]</td>
<td>10,2</td>
<td>17,1</td>
<td>24,4</td>
<td>32,0</td>
<td>40,4</td>
<td>50,0</td>
<td>62,1</td>
</tr>
<tr>
<td>(\vartheta_{nk}) [°]</td>
<td>9,7</td>
<td>16,9</td>
<td>24,2</td>
<td>31,9</td>
<td>40,4</td>
<td>50,0</td>
<td>62,3</td>
</tr>
</tbody>
</table>

Aus den bisherigen Aussagen und Formeln geht hervor, daß der Abstand der Elemente in Bezug auf die Wellenlänge die Richtcharakteristik eines Arrays entscheidend beeinflußt.

Der optimale relative Abstand für ein Array, das als Querstrahler fungiert, beträgt \(d_r = 0,5\) (vgl.[Rub97]). Bei diesem Abstand weist die Richtcharakteristik eines Arrays aus isotropen Strahlern im freien Raum \((-180° \leq \vartheta \leq 180°)\) entspricht zwei Perioden der Arrayfaktorfunktion - Nulleinzüge in Längsrichtung \((\vartheta = \pm90°)\) und jeweils eine Hauptkeule in Querrichtung \((\vartheta = 0°/180°)\) auf.

Für Arrays, die als Querstrahler über einer leitenden Ebene montiert sind, werden die in Richtung der Ebene ausgestrahlten Wellen reflektiert und überlagern sich den entgegengesetzt, in Hauptrichtung abgestrahlten Wellen Bei richtigem Abstand zwischen Array und Ebene erhöht sich die Richtwirkung der Antenne.

Hauptkeulen erscheinen periodisch für die unbestimmten Ausdrücke
\[F(\phi) = \frac{\sin\left(N \frac{\pi a}{\lambda} \sin \phi \right)}{N \sin \left(\frac{\pi a}{\lambda} \sin \phi \right)} = 0, \quad (4.31) \]

wenn das Argument im Nenner und im Zähler

\[\frac{\pi a}{\lambda} \sin \phi = \pm k\pi \quad \text{mit } k = 1, 2, 3, \ldots \quad (4.32) \]

wird.

Mit dem Wertebereich \((-1 \leq \sin \phi \leq 1)\) der Sinusfunktion in (4.32) erscheint innerhalb einer Periode der Arrayfaktorfunktion \((-90^\circ \leq \phi \leq 90^\circ)\) die zweite Hauptkeule (grating lobe) bei \(\phi_G = \pm 90^\circ\) bei einem relativen Abstand \(d_\lambda = 1\). Weitere Hauptkeulen entstehen jeweils bei ganzzahligen relativen Abständen \(d_\lambda = k\).

Die Anzahl und Position der Hauptkeulen innerhalb des von der Antenne abdeckenden Winkelbereichs ist also direkt abhängig vom Verhältnis \(d_\lambda = a/\lambda\) in einem Array.

Mit (4.32) ergibt sich die Position der Hauptkeulen für \(d_\lambda \geq 1\) aus:

\[\phi_{kG} = \arcsin \frac{\pm k\lambda}{a}. \quad (4.33) \]

Bei linearer Phasensteuerung verschiebt sich die Position der Hauptkeulen in die Winkel:

\[\phi_{kG} = \arcsin \left[\left(\frac{k\pi \pm \psi [\text{rad}]}{2} \right) \frac{\lambda}{\pi a} \right]. \quad (4.34) \]

Im Bild 4.6 ist die Arrayfaktorfunktion mit \(N = 6\) für verschiedene relative Abstände im Bereich \(0 \leq \phi \leq 180^\circ\) dargestellt. Mit zunehmendem Abstand \(0.5 < d_\lambda < 1\) entsteht eine zweite Hauptkeule in Richtung \(\phi = 90^\circ\), deren Pegel bei \(d_{\lambda} = 1\) adäquat dem der Hauptkeule ist. Mit zunehmendem Abstand \(d_\lambda > 1\) verringert sich der Winkelabstand zwischen der Hauptkeule und der "grating lobe".
Das unterste Diagramm im Bild 4.6 zeigt den Arrayfaktor für das Phased-Array Kühlungborn mit einem relativen Elementabstand \(d_0 = \sqrt{2} \) und der daraus resultierenden „grating lobe“ bei \(\phi = +45° \) im Bereich \(0 \leq \phi \leq 90° \). Diese zweite Hauptkeule wird im ungeschwenkten Betrieb durch den Nulleinzug der Einzelcharakteristik kompensiert (vgl. Bild 4.7).

\[
\begin{align*}
\text{Bild 4.6: Entstehung von „grating lobes“, Arrayfaktorfunktion für verschiedene relative Abstände } d. \\
\end{align*}
\]

4.6 Nebenzipfelabstand (side lobe level)

Das Verhältnis aus den Amplituden der Hauptkeule und der stärksten Nebenkeule, ist der Nebenzipfelabstand oder Nebenzipfeldämpfung und wird im allgemeinen in logarithmischem Maßstab angegeben. Die Nebenzipfeldämpfung gibt an, um wieviel die Abstrahlung bzw. der Empfang für Winkel außerhalb der Hauptkeule einer Antenne abgeschwächt wird.

Zur Bestimmung der Nebenzipfeldämpfung betrachten wir die Amplituden der Nebenmaxima der normierten Arrayfaktorfunktion bei Variation von \(N \):

\[
F = \frac{\sin \left(N \frac{\beta}{2} \right)}{N \sin \left(\frac{\beta}{2} \right)} \quad \text{mit} \quad \frac{\beta}{2} = \frac{2\pi a}{\lambda} \sin \phi . \tag{4.35}
\]
Aus dem Diagramm im Bild 4.7 sind drei grundlegende Eigenschaften der Funktion (4.35) zu entnehmen:

1. die Anzahl der Nebenmaxima steigt linear mit \(N \),
2. die Amplituden der Nebenmaxima für ein konstantes \(N > 5 \) nehmen in der Reihenfolge ihrer Ordnung innerhalb \(0 \leq \beta/2 \leq \pi \) ab,
3. die Amplituden der Nebenmaxima einer bestimmten Ordnung konvergieren mit zunehmendem \(N \).

Die Funktion (4.35) wird nach (4.26) maximal wenn

\[
\frac{\beta}{2} = \frac{(2k+1)\pi}{2N}. \tag{4.36}
\]

Eingesetzt in (4.35) folgt für die Pegel der Nebenzipfel:

\[
A_{nk} = F\left(\frac{(2k+1)\pi}{2N}\right) = \frac{\sin\left(\frac{(2k+1)\pi}{2N}\right)}{N \sin\left(\frac{(2k+1)\pi}{2N}\right)} = \frac{1}{N \sin\left(\frac{(2k+1)\pi}{2N}\right)}. \tag{4.37}
\]
Eine Grenzwertbetrachtung liefert den maximal möglichen Nebenzipfelabstand des k-ten Nebenmaximums zur Hauptkeule für $N \to \infty$:

$$A_{\text{NK max}} = \lim_{N \to \infty} \frac{1}{N \sin \left(\frac{(2k+1)\pi}{2N} \right)} = \left| \frac{1}{(2k+1)\pi} \right| = \left| \frac{2}{(2k+1)\pi} \right|. \quad (4.38)$$

Der maximale erreichbare Nebenzipfelabstand eines uniform erregten Arrays aus isotropen Strahlern beträgt:

$$A_{\text{NK max}} = \frac{2}{3\pi} = 0,2122 \equiv -13,5 \text{dB}. \quad (4.39)$$

Für ein Array aus anisotropen Elementarstrahlern ergeben sich die Amplituden der Gesamtcharakteristik $C_A(\vartheta)$ aus dem Produkt der Amplituden der Arrayfaktorfunktion $F(\vartheta)$ und der Einzelcharakteristik $C_E(\vartheta)$ (vgl. Bild 4.7). Eine schmale Elementarcharakteristik erhöht die Nebenzipfeldämpfung.

In Tabelle 4.3 sind die Pegel der Nebenzipfel der Arrayfaktorfunktion für das Phased-Array Kühlungsborn im Vergleich zu den maximal möglichen Amplituden dargestellt. Für kleine $k \leq 5$ konvergieren die Amplituden rasch, für $k > 5$ ist ein Vergleich aufgrund der Periodizität der Arrayfaktorfunktion irrelevant.

<table>
<thead>
<tr>
<th>Nebenmaxima k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{NK} [dB]</td>
<td>-13,2</td>
<td>-17,3</td>
<td>-19,6</td>
<td>-20,9</td>
<td>-21,5</td>
<td>-21,5</td>
<td>-20,9</td>
</tr>
<tr>
<td>$A_{\text{NK max}}$ [dB]</td>
<td>-13,5</td>
<td>-17,9</td>
<td>-20,8</td>
<td>-23,0</td>
<td>-24,8</td>
<td>-26,2</td>
<td>-27,4</td>
</tr>
</tbody>
</table>

Das Bild 4.7 zeigt das Richtdiagramm des Phased-Arrays Kühlungsborn als Produkt aus der Arrayfaktorfunktion mit $N=6$; $d_\lambda=\sqrt{2}$ und der Elementarcharakteristik eines Feed-Subarrays.
4.7 Schwenkwinkel (scan angle)

Zur Durchführung des DBS-Experiments ist es erforderlich, die Richtcharakteristik des Phased-Arrays Kühlungsborn in bestimmte Winkel zu schwenken. Das Array ist so ausgerichtet, daß sich bei zeilen- bzw. spaltenweiser Einspeisung mit Strömen linear steigender Phase eine identische Richtcharakteristik in die vier Himmelsrichtungen Nord, Süd, West, und Ost ergibt.

In der Radartechnik lassen sich zwei Ziele eindeutig voneinander winkelmäßig unterscheiden, wenn deren Winkelabstand mindestens in der Größenordnung der Halbwertsbreite der Antenne liegt. Bei Rundschirtradargeräten und kontinuierlich schwenkenden Phased-Arrays zur Zielerfassung und Zielverfolgung bestimmt die Halbwertsbreite folglich die Winkelauflösung.

Beim DBS-Experiment werden in der Atmosphärenradartechnik bestimmte Volumen „ausgeleuchtet“, deren Inhalte sich genau dann nicht überschneiden, wenn die Hauptkeule um den Winkel der Halbwertsbreite geschwenkt wird.

In der Praxis schwenkt man die Hauptkeule in die Nulleinzüge des Richtdiagramms, d.h. das Richtdiagramm des Arrayfaktors verschiebt sich jeweils um eine Nullstelle in die gewünschte Richtung. Da das Elementdiagramm in seiner Form konstant bleibt, nimmt in der Gesamtcharakteristik mit zunehmender Auslenkung die Amplitude der Hauptkeule entsprechend ab (Schwenkverlust). Der Auslenkwinkel θ_{SA} der resultierenden Amplitude verschiebt sich in Abhängigkeit von der Elementarcharakteristik gegenüber dem Schwenkwinkel der Arrayfaktorfunktion θ_S. Der Vorteil einer schmalen Elementarcharakteristik hinsichtlich der Nebenzipfeldämpfung wirkt sich im Schwenkbetrieb aufgrund der höheren Schwenkverluste nachteilig auf die Gesamtcharakteristik des Arrays aus.
Beim Phased-Array Kühlungsborn verschieben sich zum Nachteil der Gesamtcharakteristik die „grating lobes“ des Arrayfaktors gegenüber der kompensierenden Nullstelle der Einzelcharakteristik und werden zu störenden Nebenkeulen. Über diese Nebenkeulen können Echos eingefangen werden, die sich dem Signal aus der eigentlich gewünschten Richtung überlagern und dieses verfälschen.

Bild 4.9 zeigt die einzelnen Faktoren und die resultierende Gesamtcharakteristik des Phased-Array Kühlungsborn ohne und mit Schwenkung in die ersten drei Nullstellen.

Bild 4.9: Faktoren und Gesamtcharakteristik des Phased-Arrays Kühlungsborn für verschiedene Schwenkwinkel

- (a) ohne Schwenkung: $\psi_{S1} = \varphi_{1NK} = -6,77^\circ$; $\psi_{S1} = 60^\circ$; $\varphi_{SA1} = -6,6^\circ$
- (b) Schwenkung in die 1. Nullstelle: $\psi_{S2} = \varphi_{2NK} = -13,6^\circ$; $\psi_{S2} = 120^\circ$; $\varphi_{SA2} = -13,3^\circ$
- (c) Schwenkung in die 2. Nullstelle: $\psi_{S3} = \varphi_{3NK} = -20,7^\circ$; $\psi_{S3} = 180^\circ$; $\varphi_{SA3} = -20^\circ$
4.8 Halbwertsbreite (half-power-beamwidth; HPBW)

Die Halbwertsbreite beschreibt den Bereich der Hauptkeule, innerhalb dessen die Strahlungsdichte nicht unter die Hälfte ihres Maximalwerts absinkt, die Feldstärke entsprechend nicht unter das \(\sqrt{2} \)-fache des Maximalwertes oder logarithmisch nicht unter –3dB. Die Halbwertsbreite wird daher auch als 3-dB-Öffnungswinkel bezeichnet, ähnlich der 3dB-Bandbreite von Filtern.

Die normierte Richtcharakteristik eines Arrays wird bei der Halbwertsbreite \(\vartheta_{3dB} \):

\[
C_A(\vartheta_{3dB}) = C_L(\vartheta_{3dB}) \left| \sin \left(\frac{N \frac{\pi a}{\lambda} \sin \vartheta_{3dB}}{N \frac{\pi a}{\lambda} \sin \vartheta_{3dB}} \right) \right| = \frac{1}{\sqrt{2}}. \tag{4.40}
\]

Für kleine Winkel \(\vartheta \) und \(N \cdot a \approx \lambda \), d.h. für Arrays mit vielen Einzelelementen ist (4.40) nahezu identisch mit der Charakteristik einer sogenannten Linienquelle (line source) bestehend aus infinitesimalen Dipolen [Mai94]:

\[
C_A(\vartheta) = C_L(\vartheta) = \left| \sin \left(\frac{N \frac{\pi a}{\lambda} \sin \vartheta}{N \frac{\pi a}{\lambda} \sin \vartheta} \right) \right| = \left| \frac{\sin x}{x} \right| = |\text{Spaltfunktion}|. \tag{4.41}
\]

Der Einfluß des Elementfaktors ist für kleine Winkel \(\vartheta \) vernachlässigbar (vgl Bild 4.7). Rechteckfunktion und Spaltfunktion sind reziproke Fouriertransformierte. Wendet man in Analogie zur Fouriertransformation von Zeitsignalen die Näherungsformel zur Bestimmung der Halbwertsfrequenzbreite \(f_{3dB} \) eines Rechteckimpulses der Länge \(T \)

\[
f_{3dB} = \frac{0.886}{T} \tag{4.42}
\]

in der Antennentechnik an, so wird die Halbwertsbreite der Hauptkeule approximativ:

\[
\vartheta_{3dB,x,y} [\text{rad}] = \frac{0.886 \lambda}{L_{x,y}} \text{ mit } L_{x,y} = N \cdot a_{x,y} \tag{4.43}
\]

\(L_{x,y} \) ist die effektive Länge des Arrays in x- bzw. y-Richtung.
Nach [Sko90] S.7.13ff berechnet sich die Halbwertsbreite der geschwenkten Hauptkeule für Schwenkwinkel $\vartheta_s < 60^\circ$ approximativ:

$$\vartheta_{3dB_{x,y}}[\text{rad}] = \frac{0.886\lambda}{L_{x,y} \cos \vartheta_{3dB_{x,y}}} \quad (4.44)$$

Die Halbwertsbreiten werden bei orthogonalen ebenen Arrays in x- und y-Richtung angegeben, weil das Horizontaldiagramm $C(\phi, \vartheta_{3dB})$ der Hauptkeule entsprechend dem Grundriß des Arrays verläuft. Bei quadratischen Arrays verläuft das Horizontaldiagramm $C(\phi, \vartheta_{3dB})$ nahezu kreisförmig und die richtungsweisenden Indizes können entfallen.

Mit den Parametern des Phased-Arrays Kühlungborn ergeben sich mit (4.43) und (4.44) die in der Tabelle 4.4 dargestellten Halbwertsbreiten.

<table>
<thead>
<tr>
<th>Schwenkwinkel ϑ_s [°]</th>
<th>Halbwertsbreite ϑ_{3dB} [°]</th>
<th>grafisch ermittelte Halbwertsbreite ϑ_{3dB} [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6,00</td>
<td>6,00</td>
</tr>
<tr>
<td>6,6</td>
<td>6,03</td>
<td>6,03</td>
</tr>
<tr>
<td>13,3</td>
<td>6,15</td>
<td>6,14</td>
</tr>
<tr>
<td>20</td>
<td>6,39</td>
<td>6,29</td>
</tr>
</tbody>
</table>

Die grafische Ermittlung aus den berechneten Richtdiagrammen mit dem NEC-Win Pro-Datensatz für das Feed-Subarray bestätigt die Approximation (4.43) bzw. (4.44).
4.9 Raumwinkel und Hauptstrahlwirkungsgrad
(beam solid angle and beam efficiency)

Für Aussagen über die Effizienz einer Antenne in Bezug auf den Anteil, der in
Hauptstrahlungsrichtung abgestrahlten Leistung oder zur Bestimmung der Richtwirkung
einer Antenne gegenüber dem isotropen Kugelstrahler ist es notwendig deren Raumwinkel
zur ermitteln.

Ein Raumwinkel Ω ist gegeben durch das Verhältnis des über ihm aufgespannten
Kugelflächenteils A zum Quadrat des Radius r der Kugel. Die Einheit ist Steradiant
($sr = \text{rad}^2$).

\[
\Omega = \phi \vartheta \varphi = \int \int d\Omega = \int d\varphi \int d\vartheta = r^2 d\Omega
\]

mit:
- $dA = \text{differenzielles Flächenteil}$
- $d\Omega = \text{differenzieller Raumwinkel}$

Bild 4.10: Beziehung zwischen Kugelkoordinaten und Flächenelement dA

Die Oberfläche einer Kugel errechnet sich:

\[
A_K = \int_0^{2\pi} \int_0^\pi r^2 \sin\vartheta \, d\vartheta \, d\varphi = 2\pi r^2 \int_0^\pi \sin\vartheta \, d\vartheta = 2\pi^2 [-\cos\vartheta]_0^\pi = 4\pi r^2.
\]

Damit folgt für den Raumwinkel der Kugel:

\[
\Omega_K = \frac{A_K}{r^2} = 4\pi.
\]

Der Raumwinkel kann auch als relative Oberfläche eines Objektes im Kugelraum
verstanden werden.
Der Raumwinkel einer Antennenrichtcharakteristik Ω_A oder anders formuliert die relative Oberfläche der Antennenstrahlung (beam area) wird aus dem Integral des normierten Leistungsdiagramm P_n im Kugelraum berechnet:

$$\Omega_A = \int_0^{2\pi} \int_0^\pi P_n(\varphi, \theta) \, d\Omega$$
mit $d\Omega = \sin \theta \, d\theta \, d\varphi$. \hspace{1cm} (4.47)

Bei Strahlungsreflexion, -beugung und -absorption verursacht durch einen Reflektor mit spezifischen elektromagnetischen Eigenschaften (z.B. Erdkörper), dessen Dimension viel größer ist als die der Antennenstruktur, halbiert sich der durch die Antenne abgedeckte Winkelbereich und das resultierende Leistungsdiagramm wird über die Halbkugel integriert:

$$\Omega_A = \int_0^{2\pi} \int_0^{\pi/2} P_n(\varphi, \theta) \, d\Omega.$$ \hspace{1cm} (4.48)

Bei Radaranlagen mit hochbündelnden Richtantennen ist es sinnvoll den Wirkungsgrad der Hauptkeule anzugeben und in der Signalverarbeitung zu berücksichtigen. Der Hauptstrahlwirkungsgrad ist das Verhältnis aus dem Raumwinkel der Hauptkeule zum Raumwinkel der Gesamtcharakteristik einer Antenne:

$$\eta_H = \frac{\Omega_H}{\Omega_A} = \frac{\iiint P_n(\varphi, \theta) \, d\Omega}{4\pi \frac{\iiint P_n(\varphi, \theta) \, d\Omega}{4\pi}}.$$ \hspace{1cm} (4.49)

Voraussetzung zur Bestimmung des Wirkungsgrades ist das Vorhandensein von Nuleinzügen (nulls) in der Richtcharakteristik zur eindeutigen Trennung von Haupt- und Nebenkeulen.

Für die im Anhang A-1 angegebenen Hauptstrahlwirkungsgrade wurden die Integrale mit der in MATLAB eingebauten Sehnen-Trapez-Formel (trapz) zur näherungsweisen Berechnung von bestimmten Integralen gelöst.
4.10 Richtfaktor und Gewinn (Directivity and Gain)

Der Richtfaktor D ist definiert als das Verhältnis aus maximaler Strahlungsdichte S_{max} in Richtung des Maximums der Hauptkeule und der mittleren Strahlungsdichte S_K unter der Voraussetzung identischer Strahlungsleistung P_S und gleichem Abstand im Fernfeld der Antenne.

Die mittlere Strahlungsdichte S_K ist die Strahlungsdichte, die entstehen würde, wenn die gesamte Strahlungsleistung P_S nicht gerichtet, sondern gleichmäßig in den Kugelraumwinkel 4π abgestrahlt würde. Die damit entstehende Richtcharakteristik entspricht der eines isotropen Kugelstrahlers, der mit der Leistung P_S betrieben würde.

Die mittlere Strahlungsdichte berechnet sich:

\[
S_K(\varphi, \vartheta) = \frac{1}{4\pi} \int_0^{2\pi} \int_0^\pi S(\varphi, \vartheta) \, d\varOmega.
\] (4.50)

Damit folgt für den Richtfaktor:

\[
D = \frac{S(\varphi, \vartheta)_{\text{max}}}{S_K(\varphi, \vartheta)} = \frac{S(\varphi, \vartheta)_{\text{max}}}{\frac{1}{4\pi} \int_0^{2\pi} \int_0^\pi S(\varphi, \vartheta) \, d\varOmega} = \frac{1}{\frac{1}{4\pi} \int_0^{2\pi} \int_0^\pi P_n(\varphi, \vartheta) \, d\varOmega}.
\] (4.51)

Mit (4.47) bzw. (4.48) kann man den Richtfaktor

\[
D = \frac{4\pi}{\Omega_A}
\] (4.52)

schreiben und damit definieren als das Verhältnis aus dem Raumwinkel der Kugel und dem Raumwinkel der Antennencharakteristik.
Der Gewinn G einer Antenne bezogen auf den isotropen Kugelstrahler ist mit dem Richtfaktor durch die Beziehung

$$ G = \eta D $$ \hspace{1cm} (4.53)

verbunden. Dabei ist η der Antennenwirkungsgrad, d.h. das Verhältnis der abgestrahlten Leistung P_S zur gesamten zugeführten Leistung $P_S + P_V$. Die Verlustleistung P_V setzt sich dabei überwiegend aus der in der Antenne in Wärme umgesetzte Leistung und aus Erdverlusten zusammen. Der Gewinn in logarithmischem Maß ist:

$$ g = 10 \log G \,. $$ \hspace{1cm} (4.54)

Bei Bezug auf den isotropen Kugelstrahler wird der Gewinn in dBi angegeben. Der Gewinn G_A einer Antennenstruktur bestehend aus N Einzelstrahlern mit dem Gewinn G_E ergibt sich aus

$$ G_A = NG_E \,;$$ \hspace{1cm} (4.55)

oder in logarithmischem Maß

$$ g_A = 10 \log N + g_E \,.$$

(4.56)

Der mit NEC Win Pro ermittelte Gewinn für eine 4-Element-Yagi des Phased-Array Kühlungborn beträgt:

$$ G_E = 7,24 \text{ dBi}.$$

Damit folgt für den Gewinn des Arrays aufgebaut aus 144 Einzelstrahlern:

$$ G_A = 10 \log 144 + 7,24 \text{ dBi} = 28,8 \text{ dBi}.$$
Die Berechnung des Gewinns einer 4-Element-Yagi erfolgte mit folgenden Parametern:

1. Höhe des gespeisten Elements über dem Boden: $h = 2,0\,\text{m}$

2. Untergrundkonstanten für sandigen Boden:

 \begin{itemize}
 \item Leitfähigkeit $\kappa = 0,002\,\text{S/m}$
 \item Dielektrizitätskonstante $\varepsilon = 10$
 \end{itemize}

Berechnungen mit veränderten Parametern folgen im Abschnitt 5 Optimierung.

4.11 Geometrische und effektive Fläche einer Antenne (physical and effective aperture)

Die Gültigkeit des Reziprozitätsgesetzes erlaubt es, die Antenne zur Erläuterung der geometrischen und effektiven Antennenfläche im Empfangsbetrieb zu betrachten.

Die geometrische Fläche A_{geom} ist ein Maß für die physikalische Größe einer Antenne. Eine allgemeine Definition gibt es nicht, man könnte sie allerdings nach [Kra88] als physikalischen Querschnitt, der auf maximalen Empfang ausgerichteten Antenne, senkrecht zur Ausbreitungsrichtung der einfallenden Welle beschreiben.

Die Angabe der geometrische Fläche differiert stark zwischen den verschiedenen Antennenstrukturen, z.B. ist sie beim Hornstrahler gleich der Fläche der Hornöffnung und bei planaren Antennarrays gleich der Fläche, die von der maximalen Ausdehnung der Einzelstrahler in x- und y-Richtung eingeschlossen ist.

Nach [Sko90] erstreckt sich die geometrische Antennenfläche um $a/2$ über die Mittelpunkte der beiden äußeren Elemente des Arrays in x- bzw. y-Richtung hinaus und wird als effektive geometrische Fläche bezeichnet. Für das Phased Array Kühlungsborn gilt:

\[
\begin{align*}
 a_x &= a_y = \lambda / \sqrt{2} = 3,96\,\text{m} \\
 L_x &= N \cdot a_x = 47.54\,\text{m} \\
 L_y &= M \cdot a_y = 47.54\,\text{m} \\
 A_{\text{geom}} &= L_x \cdot L_y = (47.54\,\text{m})^2 = 2260\,\text{m}^2
\end{align*}
\]

![Bild 4.11: Abmessungen der Phased-Array-Antenne Kühlungsborn](image.png)
Im Gegensatz zur geometrischen Antennenfläche A_{geom} ist die wirksame Antennenfläche A_{eff} eindeutig definiert:

$$ A_{\text{eff}} = \frac{P}{S} \quad (4.57) $$

mit

$$ S = \frac{E_{\text{eff}}^2}{Z_0} \quad (4.58) $$

und

\begin{align*}
P & = \text{Leistung am Empfängereingang bei Leistungsanpassung und verlustlos angenommener Antenne} \\
S & = \text{Strahlungsichte der einfallenden Wellen (Betrag des Poyntingschen Vektors)} \\
E_{\text{eff}} & = \text{Effektivwert der Feldstärke der einfallenden Wellen} \\
Z_0 & = \text{Feldwellenwiderstand des freien Raumes } Z_0 = 120\pi \Omega.
\end{align*}

4.12 Wirksame Antennenfläche und Richtfaktor

Im folgenden wird die in der Antennentechnik wichtige Beziehung zwischen wirksamer Antennenfläche A_{eff} und Richtfaktor D nach kurz hergeleitet.

Die Strahlungsleistung P_S einer Antenne ergibt sich bei homogen über die Antennenfläche A verteilter Feldstärke E_A aus

$$ P_S = \frac{E_A^2}{Z_0} A \quad . \quad (4.59) $$

Die Strahlungsleistung im Abstand r von einer Antenne kann ausgedrückt werden als:

$$ P_S = \frac{E^2}{Z_0} r^2 \Omega_A \quad (4.60) $$

mit $\Omega_A = \text{Raumwinkel der Antenne}$.
Zwischen \(E_A \) und \(E_r \) gilt nach [Kra88] S.46f. folgende Beziehung:

\[
E_r = \frac{E_A A}{r \lambda} . \tag{4.61}
\]

(4.61) eingesetzt in (4.60) und (4.60) gleichgesetzt (4.59) ergibt:

\[
\lambda^2 = A \Omega_A . \tag{4.62}
\]

In (4.62) ist \(A \) die geometrische Fläche \(A_{\text{geom}} \) für den Fall, daß die Feldstärke \(E_A \) über \(A \) homogen verteilt ist, folglich die im Empfangsfalle wirksame Antennenfläche \(A_{\text{eff}} \) (ohne Verluste). Damit wird (4.62) zu:

\[
\lambda^2 = A_{\text{eff}} \Omega_A . \tag{4.63}
\]

Aus (4.63) erkennt man, daß \(A_{\text{eff}} \) vollständig durch den Antennenraumwinkel \(\Omega_A \) bestimmt wird. Mit der Beziehung

\[
\Omega_A = \frac{4 \pi}{D} \tag{4.64}
\]

läßt sich die theoretisch maximale effektive Antennenfläche berechnen:

\[
A_{\text{eff \, max}} = \frac{\lambda^2}{4 \pi} D . \tag{4.65}
\]

Für eine Antenne mit dem Gewinn \(G = \eta D \) wird die wirksame Antennenfläche

\[
A_{\text{eff}} = \frac{\lambda^2}{4 \pi} G . \tag{4.66}
\]
Für die Phased-Array-Antenne Kühlungsborn mit einem Gewinn $G \approx 760$ (28,8dBi) und der Wellenlänge $\lambda = 5,6036\,\text{m}$ wird A_{eff} zu

$$A_{\text{eff}} = \frac{(5,6036\,\text{m})^2}{4\pi} \cdot 760 \approx 1900\,\text{m}^2.$$

Die effektive Fläche von Gruppenantennen setzt sich additiv aus den wirksamen Flächen der Einzelstrahler zusammen.

Das Verhältnis von wirksamer Antennenfläche A_{eff} zu geometrischer Antennenfläche A_{geom} wird Flächenwirkungsgrad η_A (aperture efficiency) genannt und ist für das Phased-Array Kühlungsborn:

$$\eta_A = \frac{A_{\text{eff}}}{A_{\text{geom}}} \approx 0,84.$$

Der Flächenwirkungsgrad ist ein Maß für die Flächenausnutzung der Antenne, er gibt das Verhältnis von der mit der Antenne erreichten Bündelung (Gewinn) zu der maximal erreichbaren Bündelung bei homogener Belegung der strahlenden Antennenfläche an.
5 Optimierung

Einige der in diesem Abschnitt verwendeten Formeln sind auf das Phased-Array Kühlungsborn zugeschnitten und haben keine allgemeine Gültigkeit.

5.1 Parameterauswahl zur Optimierung der Richtcharakteristik

Zur Verbesserung der Richtcharakteristik eines Antennenarrays sind Überlegungen über mögliche Parameter, die Charakteristik beeinflussende und im Sinne der Optimierung veränderbare Größen notwendig. Hierzu betrachten wir die komplexe Summenformel für das Strahlungsmaß im Fernfeld eines Arrays aus \(N \times M \) identischen Elementarstrahlern:

\[
C(\varphi, \theta) = C_E(\varphi, \theta) \sum_{n=1}^{N} A_n e^{j(2\pi/\lambda)na_n \cos \varphi \sin \theta} \sum_{m=1}^{M} A_m e^{j(2\pi/\lambda)ma_m \sin \varphi \sin \theta} \tag{5.1}
\]

mit \(A_n = |A_n|e^{j\psi_n} \) und \(A_m = |A_m|e^{j\psi_m} \).

Aus Gleichung (5.1) können die Parameter entnommen werden:

1. \(C_E \) = Charakteristik der Elemente
2. \(N = M \) = Anzahl der Elemente
3. \(A_n = A_m \) = komplexes Speisesignal
4. \(a/\lambda \) = relativer Abstand der Arrayelemente (spacing).
Hinzu kommen ergänzende Überlegungen in Bezug auf:

5. \(h = \) Höhe der Einspeisung über Grund (Erdboden)

In den folgenden Ausführungen entfällt eine Analyse der Elementarstrahlercharakteristik \(C_E \), die 4-Element-Yagi-Antennen des Arrays sind in ihrem Aufbau auf die Radiowellenlänge optimal abgestimmt und stellen daher in Gleichung (5.1) einen invariablen Antennenparameter dar.

Die quadratische Struktur des Phased-Arrays Kühlungsborn erlaubt in Anlehnung an die Arraytheorie die Optimierung eindimensional durchzuführen und schließlich auf das gesamte Array anzuwenden.

5.2 Möglichkeiten zur Verringerung der Halbwertsbreite

Die Formel zur Berechnung der Halbwertsbreite des Arrays

\[
\phi_{3dB}[\text{rad}] = \frac{0.886\lambda}{L} \quad \text{mit} \quad L = N \cdot a
\]

(5.2)

beinhaltet als Antennenparameter den Elementabstand \(a \) sowie die Anzahl der Elemente \(N \). Beide Größen sind umgekehrt proportional zur Halbwertsbreite. Eine Verringerung der Halbwertsbreite führt in jedem Fall zu einer Erweiterung der geometrischen Antennenfläche, der durch die örtlichen Gegebenheiten Grenzen gesetzt sind.

Während eine Erhöhung der Anzahl der Elemente nur mit hohem technischen Aufwand realisierbar ist, stellt die Vergrößerung des „Spacings“ eine kostengünstige Alternative dar.

Im folgenden werden beide Möglichkeiten getrennt voneinander untersucht. Detaillierte Richtdiagramme sind im Anhang A-6 und A-7 dargestellt.
5.2.1 Variation des Elementabstandes

Betrachtet man die normierte Arrayfaktorfunktion für gleichphasig gespeiste Elemente

\[F(\phi) = \frac{\sin \left(N \frac{\pi a \sin \phi}{\lambda} \right)}{N \sin \left(\frac{\pi a}{\lambda} \sin \phi \right)}, \]

so findet man den Elementabstand \(a \) als konstanten Faktor vor der Laufvariable \(\sin \phi \) im Argument einer Kreisfunktion. Die Vergrößerung des Elementabstandes \(a \) führt zu einer Erhöhung der Periodenanzahl im gegebenen Definitionsreich z.B. \(-90^\circ \leq \phi \leq 90^\circ\). Für das Richtdiagramm eines Antennennarrays bedeutet das eine Zunahme der Anzahl an Nebenkeulen und daraus resultierend eine Verschmälerung der Nebenzipfel, der Hauptkeule und damit verbunden eine Absenkung des Hauptstrahlwirkungsgrades. Die Abstandserweiterung hat keinen Einfluß auf die Amplituden der Funktion (5.3) und damit auf die Nebenzipfeldämpfung oder auf den Richtfaktor. Zur Unterdrückung der Entstehung von zusätzlichen Hauptkeulen (grating lobes) in dem von der Antenne abzudeckenden Winkelbereich ist eine Abstandsvergrößerung nur in bestimmten Grenzen sinnvoll: \(0.5 \leq a/\lambda \leq 1 \).

Im Bild 5.1a ist die Halbwertsbreite in Abhängigkeit vom Elementabstand \(\lambda/2 \leq a \leq \lambda \) (bzw. \(0.5 \leq d \leq 1 \)) für das Phased-Array Kühlungsborn dargestellt. Bild 5.1b zeigt das Richtdiagramm des Arrays für verschiedene Strahlerabstände \(a \).

Bild 5.1: (a) Halbwertsbreite in Abhängigkeit vom Elementabstand für das Phased-Array Kühlungsborn (b) normiertes Richtdiagramm für verschiedene Elementabstände \(a \), (HPBW = Halbwertsbreite; \(\eta_{HK} \) = Hauptstrahlwirkungsgrad)

Im phasengesteuerten Betrieb muß die in Kühlungsborn gewählte Art der Speisung in Subsystemen beachtet werden. Mit der Auflösung des Phased-Arrays in \(6 \times 6 = 36 \)
Subarrays verdoppelt sich der Abstand der Elementarstrahler. Die Einzelcharakteristik resultiert aus der Überlagerung der Charakteristika, der in einem Subarray quadratisch angeordneten 4-Element-Yagi-Antennen. Für die eindimensionale Betrachtung ergibt sich die Anzahl der Arrayelemente $N=6$ und der Elementabstand $a = 2\lambda / \sqrt{2} = 7,92$ m bzw. der relative Abstand $d_\lambda = \sqrt{2} = 1,41$.

Aus der Arraytheorie ist bekannt, daß die erste „grating lobe“ für $d_\lambda = 1$ erscheint und deren Winkelabstand zur Hauptkeule mit wachsendem d_λ sinkt.

Der Definitionsbereich der Formel

$$\vartheta_{kG} = \arcsin \left(\frac{k}{d_\lambda} \right) \quad \text{mit } k = 1, 2, 3...$$ (5.4)

zur Berechnung der Lage der zusätzlichen Hauptkeulen im ungesteuerten Betrieb lautet: $-1 \leq k/d_\lambda \leq 1$. Bei einem relativen Abstand $d_\lambda = 1,41$ ist Gleichung (5.4) nur für $k=1$ definiert, d.h. die Arrayfaktorfunktion besitzt nur eine zweite Hauptkeule, die im ungesteuerten Betrieb exakt bei $\vartheta = \pm \arcsin (1/ \sqrt{2}) = \pm 45\degree$ liegt.

Eine Vergrößerung der Elementabstände führt zu einer Abnahme des Winkelabstandes zwischen der Hauptkeule und den „grating lobes“. Zur Unterdrückung der Entstehung weiterer Hauptkeulen ist eine Abstandserweiterung beim Phased-Array Kühlungsborn mit der Speisung in Feed-Subarrays nur im Bereich $1 \leq d_\lambda < 2$ sinnvoll. Der Abstand der 4-Element-Yagi innerhalb der Subarrays muß zur Kompensation der zusätzlichen Hauptkeulen der Arrayfaktorfunktion im ungeschwenkten Betrieb $a = d_\lambda / 2$ betragen.

Bei einer Phasensteuerung des Arrays verschiebt sich die Charakteristik entsprechend dem Vorzeichen des Phasenversatzes ψ in Richtung negative Winkel ϑ für positive Phasendifferenzen ψ und umgekehrt. Das Vorzeichen des Phasenversatzes bezieht sich auf das in dieser Arbeit definierte Koordinatensystem im Bild (4.1). Die zusätzlichen Hauptkeulen der Arrayfaktorfunktion verschieben sich bei Phasensteuerung in die Winkel:

$$\vartheta_G = \arcsin \left(\frac{\pi \pm \frac{\psi[rad]}{2}}{\pi d_\lambda} \right) \quad \text{für } 1 \leq d_\lambda < 2. \quad (5.5)$$

Die Gleichung (5.5) kann auch als Näherung für die Lage der Hauptkeulen in der Gesamtcharakteristik $C_A(\vartheta)$ im Schwenkbetrieb angewendet werden (vgl. Richtdiagramme im Anhang A-4 und A-6). Resultierende Schwenkwinkel und Schwenkverluste sind in der Tabelle 5.1 für verschiedene Strahlerabstände gegenübergestellt.

Im Anhang A-6 sind die Richtdiagramme für den bereits in Bild 5.1b angewendeten Einzelementabstand $a = 4.8$ m dargestellt. In der Tabelle 5.1 sind die Arrayparameter für verschiedene Elementarstrahlerabstände gegenübergestellt.

| Tabelle 5.1: Arrayparameter für verschiedene Abstände der Elementarstrahler |
|-----------------|---------|---------|---------|-----------------|
| | $a = 4$m | $a = 4,4$m | $a = 4,8$m | $a = 5,2$m |
| HPBW $\theta _{3dB}$ [$^\circ$] | 6,0 | 5,4 | 5,0 | 4,5 |
| Schwenkwinkel $\theta _{SA1}$ [$^\circ$] / Schwenkverlust [dB] / HPBW [$^\circ$] | 6,6/-0,35/6 | 6,1/-0,3/5,5 | 5,4/-0,25/5 | 5/-0,2/4,6 |
| Schwenkwinkel $\theta _{SA2}$ [$^\circ$] / Schwenkverlust [dB] / HPBW [$^\circ$] | 13,3/-1,44/6,1 | 12,1/-1,2/5,5 | 11,2/-1/5 | 10,2/-0,8/4,6 |
| Schwenkwinkel $\theta _{SA3}$ [$^\circ$] / Schwenkverlust [dB] / HPBW [$^\circ$] | 20/-3,5/6,4 | 18/-2,8/5,7 | 16,6/-2,3/5,1 | 15,4/-1,9/4,7 |
| Hauptstrahlwirkungsgrad $\eta _H$ | 0,816 | 0,803 | 0,788 | 0,756 |
| Winkelabstand zwischen Hauptkeule und „grating lobes“ [$^\circ$] | 45,0 | 40,0 | 35,0 | 32,6 |
| effektive Länge $L=N\cdot a$ [m] | 47,5 | 52,8 | 57,6 | 62,4 |
| geom. Fläche $A_{geom} = L^2$ [m2] | 2256 | 2788 | 3318 | 3894 |

5.2.2 Erhöhung der Anzahl der Elemente

In der Arrayfaktorfunktion (5.3) findet man die Anzahl der Arrayelemente N als konstanten Faktor im Argument des Zählers. Das N im Nenner weist lediglich daraufhin, daß es sich um den normierten Arrayfaktor handelt und hat auf den Verlauf der Funktion keinen Einfluß. Mit steigendem N erhöht sich analog zur Betrachtung des Elementabstandes im Abschnitt 5.2.1 die Anzahl der Perioden im gegebenen Definitions bereich $-90^\circ \leq \vartheta \leq 90^\circ$. Aufgrund der Absenz des Faktors im Nenner steigen die absoluten Amplituden linear mit der Anzahl der Elemente. Dies hat auf das normierte Richtdiagramm, bezüglich der Nebenzipfeldämpfung einen verschwindend geringen Einfluß (vgl. Abschnitt 4.6), führt jedoch in der Gesamtcharakteristik zu einer Steigerung des Antennengewinns nach Gl.(4.55) und damit zur Erhöhung der Empfangsleistung.
Im Bild 5.2 ist die Erweiterung des Phased-Arrays Kühlungsborn unter Beibehaltung der gegenwärtigen Sende- und Empfangseinheiten dargestellt.

Bild 5.2: Erweiterung des Phased-Arrays Kühlungsborn (a) Leistungswichtung der 256 Yagi-Antennen (8 x 8 Feed-Subarrays nonuniform); (b) DBS-Ansteuerung

In Tabelle 5.2 sind die Eigenschaften der verschiedenen Antennenkonfigurationen zusammenfassend gegenübergestellt.

Tabelle 5.2: Technische Daten verschiedener Antennenkonfigurationen

<table>
<thead>
<tr>
<th></th>
<th>Array-144 (uniform)</th>
<th>Array-256 uniform</th>
<th>Array-256 uniform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antennengewinn [dBi]</td>
<td>28,8</td>
<td>31,3</td>
<td>31,3</td>
</tr>
<tr>
<td>Halbwertsbreite ϑ_{3dB} [$^\circ$]</td>
<td>6</td>
<td>4,8</td>
<td>4,5</td>
</tr>
<tr>
<td>Nebenzipfelabstand A_{1NK} [dB]</td>
<td>13,2</td>
<td>18</td>
<td>13,2</td>
</tr>
</tbody>
</table>
Beim monostatischen Radar – eine Antenne zum Senden und Empfangen – geht der Antennengewinn G quadratisch in die Radargleichung (5.6) ein.

\[
P_E = \frac{P_S G^2 \lambda^2 \sigma}{(4\pi)^2 R^4 L_{ges}}
\]

Die Radargleichung liefert für ein Objekt im Abstand R mit dem Rückstreuquerschnitt σ in Hauptkeulenrichtung den Zusammenhang zwischen Sendeleistung P_S und Empfangsleistung P_E unter idealisierten Bedingungen. In L_{ges} sind alle auf dem Sende- und Empfangsweg auftretenden Verlustfaktoren zusammengefaßt.[Ger84]

Gleichung (5.6) gilt für sogenannte „harte Ziele“. In der Atmosphärenradartechnik verwendet man die Radargleichung für „verteilte Ziele“, die ebenfalls das Quadrat des Antennengewinns enthält und daher an dieser Stelle nicht weiter erläutert werden soll.

Setzt man den Antennengewinn der im Bild 5.2 dargestellten Variante in die Radargleichung ein und nimmt an, daß alle weiteren Größen konstant sind, so erhöht sich die Leistung am Empfängereingang gegenüber der gegenwärtig mit dem Array-144 erzielten um

\[
\Delta P_{256} = 2 \times 31,3\, \text{dBi} - 2 \times 28,8\, \text{dBi} = 5,0\, \text{dB}.
\]

5.2.3 Realisierungsmöglichkeiten

Die Speisung der zusätzlichen Gruppen kann über die Zuleitungen der gegenwärtigen Randgruppen mittels 3dB- bzw. 6dB-Teiler erfolgen. Die Länge der Verlängerungskabel muß ein ganzzahliges Vielfache der Wellenlänge unter Beachtung des Kabelverkürzungsfaktors sein. Der Laufzeitunterschied – im Dauerstrichbetrieb vernachlässigbar – für einen Puls der Länge $\tau_p = 1\, \mu s$ beträgt pro Wellenlängenverlängerung $\Delta \tau = 1,8\%$.

Technischer Aufwand zur Realisierung der Erweiterung des Phased-Arrays auf 256 Elementarstrahler:

- 112 zusätzliche 4-Element-Yagi-Antennen
- 28 zusätzliche Antennenzuleitungen (LMR600; ca. 13.000US$)
- Überarbeitung und Ergänzung der Antennensteueineinheit.
5.3 Erhöhung der Nebenzipfeldämpfung

Obwohl für das Phased-Array Kühlungsborn nicht relevant, sollen der Vollständigkeit halber Möglichkeiten zur Verbesserung der Nebenzipfeldämpfung aufgezeigt werden.

Analog der Impulsformung zur spektralen Verringerung der Impulsbandbreite im Frequenzbereich können die Amplituden der Nebenzipfel in der Richtcharakteristik einer Antenne durch Anwendung entsprechender Wichtungsfunktionen (tapering) reduziert werden. In der Antennentechnik entspricht dabei der Winkelbereich dem Zeitbereich und die Aperturverteilung dem Frequenzbereich, die Reversibilität der Fouriertransformation läßt den o.a. Vergleich zu.

Bild 5.3: Aperturverteilungen und resultierende Richtdiagramme [Kra88]

Bild 5.3 gibt einen Überblick über mögliche Aperturverteilungen und den daraus resultierenden Richtdiagrammen.
Bei Antennenarrays ist die Aperturverteilung diskret. Die Amplituden der „Spektrallinien“ entsprechen den Stromamplituden der elementaren Einspeisungen. Das Richtdiagramm ist in Analogie zur inversen Fouriertransformation vom Frequenzbereich in den Zeitbereich kontinuierlich.

Eine rechteckförmige Aperturverteilung besitzt aufgrund der Speisung aller Elemente mit der maximal möglichen Amplitude den höchsten Richtfaktor. Die Aperturverteilungen mit den nach außen abfallenden Stromamplituden (taper) besitzen dagegen eine höhere Nebenzipfelämpfung und eine größere Halbwertsbreite der Hauptkeule, bei den Verteilungen mit der Amplitudenabsenkung zum Zentrum (inverse taper) ist es entsprechend umgekehrt (vgl. Bild 5.3a - g). Der Forderung nach kleinen Halbwertsbreiten und hohem Richtfaktor wird folglich die uniforme Verteilung am meisten gerecht.

In der Tabelle 5.3 sind die Eigenschaften angewendeter Wichtungsfunktionen dargestellt ($L_{x,y} = N \cdot a_{x,y}$ = lineare Arraydimension).

Tabelle 5.3: Lineare Wichtungsfunktionen [Sko90]

<table>
<thead>
<tr>
<th>Wichtungsfunktion</th>
<th>Wirkungsgrad η</th>
<th>Nebenzipfelabstand ϑ_{3dB} [dB]</th>
<th>Halbwertsbreitenfaktor k $\vartheta_{3dB} = k\lambda/L_{x,y}$ [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform</td>
<td>1</td>
<td>13,5</td>
<td>50,8</td>
</tr>
<tr>
<td>Dreieck</td>
<td>0,75</td>
<td>26,4</td>
<td>73,4</td>
</tr>
<tr>
<td>Cosinus</td>
<td>0,81</td>
<td>23,0</td>
<td>68,2</td>
</tr>
<tr>
<td>Hanning</td>
<td>0,67</td>
<td>32,0</td>
<td>82,5</td>
</tr>
<tr>
<td>Hamming</td>
<td>0,73</td>
<td>43,0</td>
<td>74,2</td>
</tr>
<tr>
<td>Dolph-Tschebyscheff</td>
<td>0,72</td>
<td>50,0</td>
<td>76,2</td>
</tr>
<tr>
<td>Taylor $\pi = 3$</td>
<td>0,9</td>
<td>26,0</td>
<td>60,1</td>
</tr>
<tr>
<td>Taylor $\pi = 5$</td>
<td>0,8</td>
<td>36,0</td>
<td>67,5</td>
</tr>
<tr>
<td>Taylor $\pi = 8$</td>
<td>0,73</td>
<td>46</td>
<td>74,5</td>
</tr>
</tbody>
</table>
5.4 Einfluß des Erdbodens auf die Richtcharakteristik des Arrays

Der Einfluß des Erdbodens muß bei Antennen, die sich über der Erde befinden, berücksichtigt werden. Der Erdboden mit seinen elektromagnetischen Eigenschaften, im optimalen Fall als leitende Ebene gedacht, stellt für die Antenne eine „Spiegelfläche“ dar (vgl. Bild 5.4).

Bild 5.4: Direkter und reflektierter Strahl für eine Antenne über einer leitenden Ebene

Die Antenne strahlt entsprechend ihrer Struktur eine Welle aus, die von der leitenden Oberfläche reflektiert wird. Für die reflektierte Welle kann man sich vorstellen, sie gehe von einem Spiegelbild des Strahlers aus, das einem im Abstand 2h unter dem Boden liegenden Strahler entspricht, der mit einem Strom entgegengesetzter Richtung ($\psi = 180^\circ$) gespeist wird.

Die Kombination aus reelem und imaginären Strahler wirkt mit einem Phasenversatz von $\psi = 180^\circ$ bei einem Abstand der Elemente $a = 2h = \lambda/2$ optimal als vertikaler Längsstrahler (end-fire array). Damit ergibt sich die optimale Höhe des Strahlers über der leitenden Ebene $h_{opt} = \lambda/4$ (vgl. [Rub97]). Bei diesem Abstand überlagern sich die reflektierte und die direkte Welle phasenrichtig in Zenitrichtung und bewirken einen Anstieg des Richtfaktors.

Für Antennenaarchitekturen mit mehreren Elementen (Yagi-Antennen oder logarithmisch periodische Antennen) bezieht sich die Höhe h auf den Antennenschwerpunkt, der in der Regel in der Mitte der Anordnung liegt. [Sti84]

Bei vertikal ausgerichteten Richtantennen ist der Einfluß der Erde aufgrund der hohen Rückdämpfung (front to back ratio) nur sehr gering, sollte jedoch bei Untersuchungen zur Optimierung der Richtcharakteristik nicht außer Acht gelassen werden.
Die optimalen Höhen und der Einfluß der Erde sind für die 4-Elemente-Yagi und das Feed-Subarray als Einzelstrahler des Phased-Arrays Kühlungsborn mit Hilfe der Antennenanalyse-Software NEC Win Pro ermittelt worden.

Im Bild 5.5 sind die Richtdiagramme für die ermittelte optimale Höhe im Vergleich zur tatsächlichen Höhe sowohl für sandigen Boden (Leitfähigkeit $\kappa = 0,002 \, \text{S/m}$; Dielektrizitätskonstante $\varepsilon = 10$) als auch mit der gewählten Option „perfekter Untergrund“ dargestellt. Die Differenz zwischen optimaler Höhe und $\lambda/4$ resultiert daraus, daß sich die angegebenen Höhen auf das gespeiste Element beziehen und nicht auf den Antennenschwerpunkt der 4-Element-Yagi.
Aus den Diagrammen im Bild 5.5 ist eindeutig eine Zunahme der Richtwirkung bei optimaler Strahlerhöhe gegenüber der realisierten Höhe zu erkennen. Die Veränderung der Untergrundeigenschaften wirkt sich indes auf den Antennengewinn, die Antennenstrahlung insgesamt aus.

Mit den ermittelten Werten für die Einzelstrahler ergeben sich die in Tabelle 5.4 wiedergegebenen Antennengewinne für das Phased-Array Kühlungsborn.

<table>
<thead>
<tr>
<th>Höhe der Einspeisung</th>
<th>sandiger Boden</th>
<th>perfekter Untergrund</th>
</tr>
</thead>
<tbody>
<tr>
<td>h = 2,0m</td>
<td>g = 28,82 dBi</td>
<td>g = 29,24 dBi</td>
</tr>
<tr>
<td>h = 1,6m</td>
<td>g = 29,05 dBi</td>
<td>g = 29,53 dBi</td>
</tr>
</tbody>
</table>

Eine Möglichkeit den witterungsabhängigen Einfluß des Erdbodens größtenteils zu eliminieren und die Reflexion zu verbessern, besteht in der Auslegung eines Drahtgitters als Untergrund für das Antennenfeld. Für Maschen, die viel kleiner sind als die Wellenlänge λ (max. $\lambda/10$) stellt das Gitter eine witterungs- und bodenunabhängige leitende Ebene dar. [Mei92]

Auch im Hinblick auf den zukünftigen Vergleich der Meßergebnisse des VHF-ST Radars Kühlungsborn mit denen des baugleichen Radarsystems ALWIN (ALOMAR Wind-Radar) in Andenes, Norwegen, könnten durch Anwendung eines solchen Gitterwerks unterschiedliche Untergrundeigenschaften als eine Ursache für Differenzen ausgeschlossen werden.

5.5 Speisung der Einzelelemente

Im Abschnitt 4.5 wurde gezeigt, daß die zusätzlichen Hauptkeulen innerhalb einer Periode $(-\pi \leq \beta/2 \leq \pi)$ der Arrayfaktorfunktion (5.3) ihre Ursache in der Speisung des Phased-Arrays in Subsystemen haben. Betrachtet man die Feed-Subarrays als Einzelstrahler mit der Charakteristik C_E, so ergibt sich ein Array mit 6×6 Elementen und doppelten relativen Elementabstand $d_h = 2 \times 1/\sqrt{2} = \sqrt{2}$. Für $d_h \geq 1$ erscheinen innerhalb einer Periode der Arrayfaktorfunktion „grating lobes“ im Richtdiagramm $-90^\circ \leq \vartheta \leq 90^\circ$ (vgl. Bild 5.6a und c).

Ein weiterer Nachteil der gegenwärtigen Speisekonfiguration ist der gegenüber der Einzelspeisung höhere Schwenkverlust der Hauptkeule (vgl. Bild 5.6b und d). Die Tabelle 5.5 beinhaltet die Schwenkverluste und die resultierenden Schwenkwinkel der Gesamtcharakteristik bei Elementar- und Subarrayspeisung.
Tabelle 5.5: Schwenkverlust und resultierender Schwenkwinkel für Elementar- und Subarray-
speisung

<table>
<thead>
<tr>
<th>Schwenkverlust [dB]/resultierender Schwenkwinkel [°]</th>
<th>Schwenkverlust [dB]/resultierender Schwenkwinkel [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementarspeisung</td>
<td>Subarrayspeisung</td>
</tr>
<tr>
<td>ϑ₃₁ = 6,77°</td>
<td>0/6,7</td>
</tr>
<tr>
<td>ϑ₃₂ = 13,6°</td>
<td>-0,29/13,5</td>
</tr>
<tr>
<td>ϑ₃₃ = 20,7°</td>
<td>-0,70/20,6</td>
</tr>
</tbody>
</table>

Im Anhang A-8 sind die Richtdiagramme des Phased-Arrays Kühlungborn für die Speisung der Einzelstrahler dargestellt.

5.5.1 Möglichkeiten zur technischen Realisierung

Die Speisung der Einzelstrahler erfordert eine Aufteilung der sechs Sendekanäle auf zwölf Zeilen bzw. Spalten. In der Tabelle 5.6 sind die Phasenversätze ψ_{Zeile/Spalte} der speisenden Ströme für die möglichen Schwenkwinkel ϑₖₛₑ dargestellt.

Tabelle 5.6: Schwenkwinkel und Phasenansteuerung der Zeilen bzw. Spalten für Einzelspeisung

<table>
<thead>
<tr>
<th>ϑₙₑ°</th>
<th>ψ₁[°]</th>
<th>ψ₂[°]</th>
<th>ψ₃[°]</th>
<th>ψ₄[°]</th>
<th>ψ₅[°]</th>
<th>ψ₆[°]</th>
<th>ψ₇[°]</th>
<th>ψ₈[°]</th>
<th>ψ₉[°]</th>
<th>ψ₁₀[°]</th>
<th>ψ₁₁[°]</th>
<th>ψ₁₂[°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϑ₃₁ = 6,77°</td>
<td>0</td>
<td>30</td>
<td>60</td>
<td>90</td>
<td>120</td>
<td>150</td>
<td>180</td>
<td>210</td>
<td>240</td>
<td>270</td>
<td>300</td>
<td>330</td>
</tr>
<tr>
<td>ϑ₃₂ = 13,6°</td>
<td>0</td>
<td>60</td>
<td>120</td>
<td>180</td>
<td>240</td>
<td>300</td>
<td>0</td>
<td>60</td>
<td>120</td>
<td>180</td>
<td>240</td>
<td>300</td>
</tr>
<tr>
<td>ϑ₃₃ = 20,7°</td>
<td>0</td>
<td>90</td>
<td>180</td>
<td>270</td>
<td>0</td>
<td>90</td>
<td>180</td>
<td>270</td>
<td>0</td>
<td>90</td>
<td>180</td>
<td>270</td>
</tr>
<tr>
<td>ϑ₃₄ = 28,1°</td>
<td>0</td>
<td>120</td>
<td>240</td>
<td>0</td>
<td>120</td>
<td>240</td>
<td>0</td>
<td>120</td>
<td>240</td>
<td>0</td>
<td>120</td>
<td>240</td>
</tr>
<tr>
<td>ϑ₃₅ = 36,1°</td>
<td>0</td>
<td>150</td>
<td>300</td>
<td>90</td>
<td>240</td>
<td>30</td>
<td>180</td>
<td>330</td>
<td>120</td>
<td>270</td>
<td>60</td>
<td>210</td>
</tr>
<tr>
<td>ϑ₃₆ = 45°</td>
<td>0</td>
<td>180</td>
<td>0</td>
<td>180</td>
<td>0</td>
<td>180</td>
<td>0</td>
<td>180</td>
<td>0</td>
<td>180</td>
<td>0</td>
<td>180</td>
</tr>
</tbody>
</table>

Mit sechs zusätzlichen Send-/Empfangsschaltern können die Zeilen bzw. Spalten angesteuert werden. Zur Schwenkung in die erste Nullstelle können Leistungsschaltrelais eingesetzt werden, die 180°-Umwegleitungen in die Signalpfade der jeweils letzten sechs Zeilen bzw. Spalten schalten. Empfangsseitig ist zu überlegen, ob Zeilen bzw. Spalten, die

Überblick über den technischen Aufwand:

- 108 zusätzliche Antennenzuleitungen (LMR600; ca. 50.000 US$),
- Überarbeitung und Ergänzung der Antennensteuereinheit,
- 6 zusätzliche Sende-/Empfangsschalter,
- eventuell 6 zusätzliche Empfänger und Signalverarbeitungskanäle (RDAS), Überarbeitung der Steuer- und Analysesoftware
- oder Empfängerschaltnetzwerk

Im Bild 5.7 ist eine mögliche Schaltungsvariante zum Ansteuern der Einzelstrahler unter Beibehaltung der 6 Sende- und Empfangseinheiten dargestellt.
5.6 Optimierung der SA-Empfangsarrays

Aufgrund der örtlichen Gegebenheiten ist eine Erweiterung des Phased-Arrays Kühlungborn nur in die Richtungen Nord und Süd möglich, woraus eine Drehung der SA-Empfangskonfiguration um 90° resultiert. Bild 5.8b zeigt das Phased-Array Kühlungborn in der SA-36-Empfangskonfiguration mit drei zusätzlichen Feed-Subarrays an der Nordseite, die im Sendebetrieb und im DBS-Modus durch die überarbeitete Antennensteuereinheit abgeschaltet werden. In der Tabelle 5.7 sind die technischen Daten der beiden Empfangskonfigurationen gegenübergestellt.

Bild 5.8: SA-Empfangsarrays; (a) gegenwärtige SA-24-Konfiguration; (b) SA-36-Konfiguration
Tabelle 5.7: Technische Daten der SA-Empfangsantennen

<table>
<thead>
<tr>
<th></th>
<th>SA-24-Array</th>
<th>SA-36-Array</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 x 3 Feed-Subarrays</td>
<td>3 x 3 Feed-Subarrays</td>
</tr>
<tr>
<td>Richtfaktor d [dBi]</td>
<td>21,8</td>
<td>23,6</td>
</tr>
<tr>
<td>Antennengewinn g_{NEC} [dBi]</td>
<td>21,0</td>
<td>22,7</td>
</tr>
<tr>
<td>Hauptstrahlwirkungsgrad η_H</td>
<td>0,846</td>
<td>0,832</td>
</tr>
<tr>
<td>Halbwertsbreite θ_{3dB} [°]</td>
<td>$\theta_{3dB} = 12$ / $\theta_{y3dB} = 18$</td>
<td>12</td>
</tr>
</tbody>
</table>

Die in der Tabelle 5.7 angegebenen Halbwertsbreitenindizes der SA-24-Arrays beziehen sich auf das Bild 5.8a.
6 Resümee

Abschließend möchte ich all denen meinen Dank aussprechen, die zum Gelingen dieser Arbeit beigetragen haben.

Für die Vergabe der Aufgabe sowie für Anregungen und Hinweise zur Thematik danke ich Dr.-Ing. R. Latteck und Dr. W. Singer aus der Radarabteilung am IAP Kühlungsborn. Für die Übernahme der Betreuung am Institut für Nachrichtentechnik und Informationselektronik an der Universität Rostock gilt mein Dank Prof. Dr.-Ing. R. Rockmann.

Vor allem aber danke ich meinen Eltern, die mich während meines Studiums in jeglicher Hinsicht unterstützt haben.
7 Literaturverzeichnis

[IAP97] IAP an der Universität Rostock (e.V.): Institutsbericht 1996/1997

Anhang

Technische Daten des Phased-Arrays KühlungsbornA-1
NEC-Quellcode ..A-2
Richtdiagramme der Elementarstrahler des Phased-Arrays Kühlungsborn.....A-3
Richtdiagramme des Phased-Arrays KühlungsbornA-4
Richtdiagramme der SA-Empfangsarrays (SA-24 und SA-36)A-5
Richtdiagramme des Phased-Arrays für einen Elementabstand a = 4,8mA-6
Richtdiagramme des erweiterten Phased-Arrays (8 x 8 Feed-Subarrays)......A-7
Richtdiagramme des Phased-Arrays bei EinzelstrahlerspeisungA-8
A-1 Technische Daten der Phased-Array-Antenne Kühlungsborn

Physikalische Eigenschaften

Physikalische Eigenschaften:

Geographische Lage: 54,1° N; 11,8° E
Frequenz / Wellenlänge: f = 53,5 MHz / λ = 5,6036 m
Antennenstruktur: Planares Array aus N x M Einzelstrahler
Anzahl der Einzelstrahler: 12 x 12 = 144
Art der Einzelstrahler: 4-Element-Yagi
Strahlerhöhe (Einspeisung über Erdboden): h = 2m = 0,35λ
Strahlerabstand: aₓ = aᵧ = 3,96m = λ√2
Seitenlänge: Lₓ = Lᵧ = 47,54m = 8,5λ
Grundfläche: Aₓ = 2260m² = 72λ²

Theoretische Eigenschaften

Theoretische Eigenschaften:

Berechnungsgrundlage bilden die mit NEC-Win Pro ermittelten Datensätze für die jeweilige Antennenstruktur. Der NEC2-Code schließt, bei Angabe der Untergrundkonstanten (κ, ε), die Bodenverluste und die Strahlungskopplung zwischen benachbarten Strahlern in die Berechnung der Richtcharakteristik einer Antennenstruktur ein (verwendete Bodenkonstanten κ = 0,002 S/m, ε = 10). Der Quellcode zur Modellierung eines Feed-Subarrays mit Hilfe der Analysesoftware NEC-Win Pro ist im Anhang A-2 einzusehen.

Der Gewinn gₓ = NEC ist mit Ausnahme des Gewinns für das gesamte Array durch NEC-Win Pro ermittelt worden. Für das gesamte Array ist gₓ = NEC näherungsweise mit Gleichung (4.55) bestimmt worden. Zur Bestimmung der Daten für das gesamte Array wurde die Superpositionsgleichung (4.2) herangezogen. Die Winkelauflösung beträgt Δϑ = Δφ = 0,1°.
Tabelle A-1: Theoretische Strahlungseigenschaften des Phased-Arrays Kühlungsborn

<table>
<thead>
<tr>
<th>Antennenstruktur</th>
<th>(d) [dBi]</th>
<th>(g_{\text{NEC}}) [dBi]</th>
<th>(\eta = \frac{G_{\text{NEC}}}{D})</th>
<th>(\theta_{3\text{dB}}) [°]</th>
<th>(\eta_H)</th>
<th>(A_{\text{effmax}}) [m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einzelstrahler 4-Elemente-Yagi</td>
<td>7,96</td>
<td>7,24</td>
<td>0,84</td>
<td>84</td>
<td>1</td>
<td>15,6</td>
</tr>
<tr>
<td>Feed-Subarray 4 x 4-Element-Yagi</td>
<td>14,07</td>
<td>13,25</td>
<td>0,83</td>
<td>38</td>
<td>0,942</td>
<td>63,8</td>
</tr>
<tr>
<td>Array 6 x 6 Feed-Subarrays (\theta_0 = 0° / \Psi_0 = 0°)</td>
<td>29,6</td>
<td>28,82</td>
<td>0,84</td>
<td>6</td>
<td>0,810</td>
<td>2276</td>
</tr>
<tr>
<td>Array (DBS-Modus) 6 x 6 Feed-Subarrays (\theta_{S0} = 6,6° / \Psi_1 = 60°)</td>
<td>29,5</td>
<td>28,41</td>
<td>0,78</td>
<td>6</td>
<td>0,746</td>
<td>2232</td>
</tr>
<tr>
<td>Array (DBS-Modus) 6 x 6 Subarrays (\theta_{S1} = 13,3° / \Psi_2 = 120°)</td>
<td>29,8</td>
<td>25,37</td>
<td>0,36</td>
<td>6,3</td>
<td>0,820</td>
<td>2383</td>
</tr>
<tr>
<td>Array (DBS-Modus) 6 x 6 Feed-Subarrays (\theta_{S2} = 20° / \Psi_3 = 180°)</td>
<td>21,8</td>
<td>21,0</td>
<td>0,83</td>
<td>12</td>
<td>0,846</td>
<td>383,4</td>
</tr>
<tr>
<td>SA-24-Array 2 x 3 Feed-Subarrays (24 x 4-Elemente-Yagi)</td>
<td>23,6</td>
<td>22,7</td>
<td>0,81</td>
<td>12</td>
<td>0,832</td>
<td>573,2</td>
</tr>
</tbody>
</table>

Technische Daten des Phased-Arrays Kühlungsborn
A-2 NEC-Quellcode

NEC Win Pro Dateneingabefenster mit dem Quellcode zur Modellierung eines Feed-Subarrays in dem für diese Arbeit gültigen Koordinatensystem im Bild (4.1).
Richtdiagramme der Elementarstrahler des Phased-Arrays Kühlungsborn
Richtdiagramme des Phased-Arrays Kühlungsborn

6 x 6 Feed-Subarrays; \(a = 7.92\) m; Phase = 0 deg; \(G_{\text{max}} = 0\) dB @ \(\theta = 0\) deg; HPBW = 6 deg

Normalized Gain [dB]

\(\theta\) [deg]

\(\phi = 0/90\) deg
\(\phi = 45\) deg
\(\phi = 135\) deg

6 x 6 Feed-Subarrays; \(a = 7.92\) m; Phase = 60 deg; \(G_{\text{max}} = -0.35\) dB @ \(\theta = -6.6\) deg; HPBW = 6.02 deg

Normalized Gain [dB]

\(\theta\) [deg]
6 x 6 Feed-Subarrays; \(a = 7.92 \text{ m} \); Phase = 120 deg; \(G_{\text{max}} = -1.44 \text{ dB} \) @ \(\theta = -13.3 \text{ deg} \); \(\text{HPBW} = 6.15 \text{ deg} \)

\[\phi = 0/90 \text{ deg} \]

6 x 6 Feed-Subarrays; \(a = 7.92 \text{ m} \); Phase = 180 deg; \(G_{\text{max}} = -3.46 \text{ dB} \) @ \(\theta = -20 \text{ deg} \); \(\text{HPBW} = 6.37 \text{ deg} \)

\[\phi = 0/90 \text{ deg} \]
Richtdiagramme der SA-Empfangsarrays (SA-24 und SA-36)

3 x 2 Feed-Subarrays (SA-24) ; a = 7.92 m ; HPBWx/y = 11.97 / 17.95 deg

3 x 3 Feed-Subarrays (SA-Mode) ; a = 7.92 m ; HPBW = 11.97 deg
Richtdiagramme des Phased-Arrays für einen Elementabstand $a = 4.8\,\text{m}$
Richtdiagramme des Phased-Arrays für einen Elementabstand $a = 4.8 \text{m}$

6×6 Feed-Subarrays; $a = 9.6 \text{ m}$; Phase = 120 deg; $G_{\text{max}} = -1.35 \text{ dB}$ @ theta = -10.9 deg; HPBW = 5.03 deg

6×6 Feed-Subarrays; $a = 9.6 \text{ m}$; Phase = 180 deg; $G_{\text{max}} = -3.25 \text{ dB}$ @ theta = -16.4 deg; HPBW = 5.15 deg
Richtdiagramme des erweiterten Phased-Arrays (8 x 8 Feed-Subarrays)

Normalized Gain [dB] vs theta [deg] for different phi angles (phi = 0/90 deg, phi = 45 deg, phi = 135 deg).

8 x 8 Feed-Subarrays (nonuniform) ; a = 7.92 m ; Phase = 0 deg ; Gmax = 0 dB @ theta = 0 deg ; HPBW = 4.8 deg

8 x 8 Feed-Subarrays (nonuniform) ; a = 7.92 m ; Phase = 60 deg ; Gmax = -0.69 dB @ theta = -5.7 deg ; HPBW = 4.8 deg
Richtdiagramme des erweiterten Phased-Arrays (8 x 8 Feed-Subarrays)

8 x 8 Feed-Subarrays (nonuniform) ; a = 7.92 m ; Phase = 120 deg ; Gmax = -2.86 dB @ theta = -11.2 deg ; HPBW = 5 deg

phi = 0/90 deg

8 x 8 Feed-Subarrays (nonuniform) ; a = 7.92 m ; Phase = 180 deg ; Gmax = -6.88 dB @ theta = -17.1 deg ; HPBW = 10.2 deg

phi = 0/90 deg
Richtdiagramme des Phased-Arrays Kühlungsborn bei Einzelstrahlerspeisung
Richtdiagramme des Phased-Arrays Kühlungsborn bei Einzelstrahlerspeisung

12 x 12 4-Element-Yagis; \(a = 3.96\ m\); Phase = 60 deg; \(G_{\text{max}} = -0.3\ dB\) @ \(\theta = -13.5\ deg\); HPBW = 6.15 deg

\(\phi = 0/90\ deg\)

12 x 12 4-Element-Yagis; \(a = 3.96\ m\); Phase = 90 deg; \(G_{\text{max}} = -0.71\ dB\) @ \(\theta = -20.6\ deg\); HPBW = 6.39 deg

\(\phi = 0/90\ deg\)
Richtdiagramme des Phased-Arrays Kühlungsborn bei Einzelstrahlerspeisung
12 x 12 4-Element-Yagis; \(a = 3.96\, \text{m}\); Phase = 180 deg; \(\text{Gmax} = -3.55\, \text{dB}\) @ theta = 44.5 deg; HPBW = 8.39 deg

phi = 0/90 deg
Erklärung

Ich erkläre, diese Arbeit selbständig angefertigt und die benutzten Unterlagen vollständig angegeben zu haben.

Rostock, 30.11.98