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Abstract

We present a new three-dimensional tracer transport scheme for spectral atmo-

spheric general circulation models including advection and diffusion. In order to

achieve strong stability and high consistency, it is argued for a spectral transport

scheme in a spectral circulation model. A new function of representation that assures

positive definite tracer mass mixing ratios and a new effective mass correction at

low computational cost are proposed. The mass correction guarantees global tracer

mass conservation. It is designed in a manner that it is minimally invasive by intro-

ducing a mighty parameter adjustable to the problem. The scheme is benchmarked

with two deformational flow test cases challenging the horizontal and vertical nu-

merical advection with respect to the conservation laws. For this reason the concept

of the entropy of mixing is adopted to the tracer transport. This makes it possible

to evaluate quantitatively the impact on the results by artificial diffusion and other

numerical uncertainties. In particular, it is found that the control parameter of

the proposed mass correction governs the balance between the conservation of total

mass and total entropy of mixing.
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1 Introduction

1.1 Motivation

Transport plays a crucial role in understanding the leading processes and dynamics

in modern atmospheric science. The evolution of trace gases such as carbon dioxide

(CO2) or ozone as well as water vapor and other species has a significant influence

on the entire climate and therefore on human life.

For example, the water vapor cycle has an essential impact on the greenhouse effect

and hence on global warming as it controls the global radiation budget significantly.

On the one hand, clouds are reflective for incoming solar radiation, especially in

the visible spectrum, which cools the earth’s surface. On the other hand, they

absorb outgoing long-wave radiation heating the surface. The result is an uncertain

balance that is hard to mimic in circulation models. Only the physically correct

interpretation of the transport processes makes it possible to predict certain results.

Furthermore, stratospheric water vapor is of high interest in current research as

it is an effective long-wave cooling agent. The challenging aspect is that transport

in the troposphere regarding clouds takes place on short time scales, mainly days,

whereas water vapor takes years to enter particular regions in the stratosphere.

In addition to water, CO2 represents one anthropogenic part in the intensification

of the greenhouse effect. Its man-made sources at the surface affect this complicated

radiation balance. While CO2 is rapidly mixed in the troposphere, it takes years

again to be transported into the extratropical stratosphere by the Brewer-Dobson

circulation.

Ozone depletion provides another example. As the chemical sources and sinks of

ozone vary substantially between tropical and polar latitudes in the stratosphere,

the transport between these regions plays an important role.

The examples above demonstrate the need of precise transport algorithms in

global climate models obeying the physical laws as good as possible. These laws
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1 Introduction

are energy, momentum, angular momentum, and of course mass conservation gov-

erned by the primitive equations. But actually, we must also take account of the

entropy budget which is as important as the internal energy budget since both to-

gether correspond to the second and first law of thermodynamics. The achievement

of energy conservation in a global climate model causes a violation of the entropy

budget because of numerical errors. Therefore, the estimation of the global entropy

budget could provide a crucial measure for the obedience of the physical laws.

Jöckel (2001), Rood (1987), Nair and Lauritzen (2010), and Williamson and Rasch

(1994) demand the following requirements for numerical transport schemes: Mass

conservation, monotonicity preservation or rather shape preservation, sign-preservation,

and prevention of artificial diffusivity. Besides mass all the other properties are more

of a technical or mathematical nature. This work proposes the use of the total en-

tropy as a diagnostic variable for evaluating transport schemes since the entropy

is more physically based. And we presume that consistency of a transport scheme

has to be measured by answering the question: Is the result physically maintain-

able? Especially, for long-term simulations covering several model years the “physi-

cal consistency” of the transport algorithm is crucial. Pauluis and Held (2002) give

an extended overview about the entropy budget in the atmosphere but without any

particular numerical implications. In contrast, Minoshima et al. (2011) treated the

entropy solely mathematically without referencing to its physical equivalent. This

work suggests that entropy and mass conservation are equally important for the

“physical consistency” of transport schemes.

In order to specify the transport processes we will consider transport only of tracer.

Tracer are particles or fluid properties following the flow trajectories. As we assume

that air is an ideal gas, any tracer particle must have the same properties as the air.

In contrast, heavier particles have higher inertial mass so that accelerating forces act

differently on them, which results in different trajectories. Tracer are used to make

transport mechanisms observable. In the atmosphere CO2 or sulfur hexafluoride

(SF6) (Engel et al., 2009) can be used as tracer, because they are hardly chemically

reactive and their sources are well known. For short-term observations dye tracer are

appropriate. But temperature can also be a tracer in a suitable experiment. Even

abstract dimensions like “idealized age tracer” for the computation of the “mean
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1.2 Aim

age of air” (Thiele and Sarmiento, 1990).

1.2 Aim

The aim of this work is to develop a numerical scheme for tracer transport in spectral

general circulation models. We are especially interested in long-term simulations. It

is planned in advance to simulate the “mean age of air” as one of the first applications

of this scheme in a more realistic climate model. Therefore, the conservation laws are

supposed to play an essential role as only purely physical transport can represent

a realistic behavior with high “physical consistency” of tracer even after several

model years. Since every numerical scheme is associated with numerical errors,

compromises must be made that fit best to the constraints of the issue. Here, the

primary demands on the scheme are that it provides positive definite results, i.e.

sign-preservation, and that the total mass of a tracer is conserved. Furthermore,

the transport scheme is supposed to be computationally fast and at low cost since

global climate models must handle diverse species that even interact with the flow at

the same time. As this work is additionally meant as a feasibility study, benchmark

test cases and diagnostic methods are needed in order to evaluate the proposed

scheme with respect to its constraints.

1.3 Framework

In section 2 we will derive the transport equation and the entropy of mixing from the

fundamental laws of thermodynamics. We will see that it is possible to obtain two

different versions of the transport equation: One from mass conservation and the

other from entropy observation. Furthermore, the relation between the entropy of

mixing and properties demanded for numerical transport schemes, e.g. monotonicity

preservation, will be analyzed.

The model used for implementing the scheme and its properties is introduced in

section 3. We will give a brief review of the aliasing effect which is associated with

the spectral method.

These considerations will motivate the need of a new function of representation

(section 3.3) that ensures sign-preserving results. This function is the new prognostic
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1 Introduction

variable in the transport equation.

Section 3.4 will introduce a mass correction that has become necessary since the

numerics with the new function of representation are no longer mass conserving.

Two different challenging benchmark deformational flow test cases for the hori-

zontal and vertical transport will be applied in section 4 in order to validate the

proposed scheme. The results will be analyzed with special attention to mass and

entropy conservation evaluating the stability and “physical consistency”.

The last section gives a summary and shows some perspectives for further appli-

cations of the concept of the entropy of mixing.
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2 Theory of Tracer Transport

2.1 From Mass Conservation to the Transport Equation

In the following section we develop the theory governing the tracer transport in a

model. And furthermore, we discuss qualities, in particular the entropy of mixing,

making it possible to evaluate a numerical transport scheme regarding whether the

numerical errors behave physical or not. In general, a tracer is an arbitrary fluid

property used to track transport processes in the flow. It is possible to use special

chemical species, e.g. trace gases, but also potential temperature or artificial dye

tracer are appropriate.

For the purpose of characterizing tracer a few terms are defined. We distinguish

between active, passive, conservative, and reactive tracer. Active tracer alter flow

properties such as density or viscosity whereas passive tracer do not interact with

the flow. Conservative tracer are only advected so that the mixing ratio of the

tracer remains constant in time in a fluid parcel following the flow. In addition to

advection, reactive tracer are diffusive and have sources or sinks so that the mixing

ratio in a parcel varies in time.

In this work we treat only passive, diffusive tracer whereas neither sources nor

sinks are involved, i.e. the global mass is conserved. This concept is governed by

the advection-diffusion equation, hereafter referred as the transport equation.

In order to illustrate the theory behind tracer transport mechanisms we use the

picture of fluid parcels that consist of fluid particles namely air particles and tracer

particles. Obviously, a single air particle does not exist as air is a composition of

several gases. But since we describe air as an ideal gas, the image of an air particle

is reasonable. Tracer particles must have the same thermodynamic properties like

mass and temperature as air particles. However, they are made distinguishable from

each other by a marker. This marker could be any color. We suggest to paint air

particles white and tracer particles blue.
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2 Theory of Tracer Transport

Figure 2.1: Sketch of a fluid control volume Σ with the boundary ∂Σ attached to a wind
field v. The control volume contains fluid parcels (circles) which contain
tracer and air particles. Their mass mixing ratios are indicated by different
tones of blue.

We consider an arbitrary finite control volume Σ(t) exposed to the fluid flow.

This volume contains a definite number of fluid parcels which are associated with

the thermodynamic properties. In the absence of sources and sinks, mass conserva-

tion states that, no matter how this parcel is deformed or displaced, its total mass

(number of fluid parcels) must not vary:

dt

∫

Σ(t)

dm = dt

∫

Σ(t)

dV ρ(t) = 0 (2.1)

In (2.1) the differential mass dm is substituted by the differential volume dV and the

total density ρ. Applying the Leibniz integral rule results in the Reynolds’ transport

theorem.

dt

∫

Σ(t)

dV ρ(t) =

∫

Σ(t)

dV ∂tρ(t) +

∮

∂Σ(t)

dA · v(t)ρ(t) (2.2)

Here, v = dtr is the flow velocity and dA a vector perpendicular to the surface of

Σ with the differential surface area in length. Employing Gauss’ theorem on the

right hand side of (2.2), using condition (2.1), and considering the limiting case of

an infinitesimally small control volume (i.e. the control volume approaches to the

size of a fluid parcel) we obtain the continuity equation.

∂tρ + ∇ · (ρv) = 0 (2.3)
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2.2 From Fundamental Thermodynamic Laws to the Entropy of Mixing

We now assume that the fluid consists of two species: air (A) and a tracer (T), i.e.

ρ = ρA + ρT . (2.4)

In order to express both species in terms of the total density the mass mixing ratio

c is introduced with

ρT = cρ and ρA = (1 − c)ρ . (2.5)

Similar to (2.3) it is possible to derive a continuity equation for the tracer. But

with the difference that some net transport exists through the boundaries of the

control volume due to diffusion in such a manner that tracer material escaping the

control volume needs to be compensated by an air current into it. This process is

accomplished by the tracer diffusion flux F = ρK∇c and by a corresponding air

diffusion flux balancing it. Here, the diffusion coefficient K is composed of eddy and

molecular diffusion.

∂t(cρ) + ∇ · (cρv) = ∇ · (ρK∇c) (2.6)

Combining equation (2.3) and (2.6) results in the transport equation for the tracer.

∂tc + v · ∇c = ρ−1∇ · (ρK∇c) (2.7)

In addition to the separation of air and tracer in the fluid parcel it is necessary

to pay attention to the primitive equations (PE) governing the dynamic processes

in the atmosphere. There is no difference between tracer and air in the PE, only

the total density occurs as a diagnostic variable. For the purpose of simplicity it is

approximated that the tracer does not contribute to the total air mass significantly.

Thus, we assume that the total density is equal to the air density approximately

and further the mass mixing ratio is small.

2.2 From Fundamental Thermodynamic Laws to the Entropy of

Mixing

Numerical schemes solving equation (2.7) should satisfy several constraints: In ad-

dition to the global mass conservation, schemes should fulfill qualities like sign- and
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2 Theory of Tracer Transport

monotonicity-preservation, diminishment of the total variation (Durran, 2010), pre-

vention of aliasing etc.. These qualities are more of a mathematical nature as their

physical relevance is not obvious. But maybe, they actually mimic the behavior of

the entropy which is probably not a very intuitive dimension but in return a very

physical. Another argument for the importance of the entropy lies within the funda-

mental laws of thermodynamics. When considering the internal energy of a system,

it is crucial to take the entropy into account regarding the first and second law of

thermodynamics. In comparison to the internal energy, in fluid motions the mass is

the conserved quality due to transport, and consequently the additional quality is

the so called entropy of mixing. The entropy of mixing is mathematically very close

to Shannon’s information entropy (see Minoshima et al. (2011)), but as mentioned

above we are more interested in its physical equivalence.

2.2.1 Deriving the Entropy of Mixing

In the following, a derivation of the entropy produced by mixing a tracer into the air

is presented. The mixing process is meant to be driven by the transport equation

(2.7) and further as the tracer is passive, the entropy is supposed to depend only on

the mixing ratio of the tracer since it is the prognostic variable. In order to derive

the total entropy due to mixing, the fluid parcels are divided into mass fractions

∆m = ∆mA + ∆mT consisting of the two gases, air and the tracer. First of all,

we compute the entropy s for each ∆m by combining the first and second law of

thermodynamics:

du = T ds + dw (2.8)

And finally, all s will be summed up to obtain the global budget of the entropy of

mixing, hereafter referred as the total entropy of mixing S. Mixing changes neither

the internal energy u nor the temperature T as long as the tracer is passive. So

that no kind of heat, e.g. latent heat or heat of mixing, is produced irreversibly and

hence no change of the entropy occurs in equation (2.8). Therefore, a reversible,

equivalent thermodynamic process is necessary. We propose to separate air and

tracer particles in each fluid parcel. This process is described by the compression

of each constituent into its own available volume as shown in figure 2.2. Thus,

every fluid parcel is no longer in the state of local equilibrium corresponding to the
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2.2 From Fundamental Thermodynamic Laws to the Entropy of Mixing

maximum entropy. The separation results in a state of minimal entropy instead.

The reverse process mimics the production of entropy due to mixing. This can be

expressed by the volume-pressure work dw = pAdv + pTdv. Using the equation of

Figure 2.2: Sketch of separating air (white dots) and tracer (blue dots) particles by
compressing each into its own available volume in a fluid parcel (circle).

state for ideal gases for the tracer as well as for air

pjv = ∆mjRT (2.9)

with j = A, T combined with (2.8) provides the entropy of mixing in a fluid parcel

by integration from the state of demixing to the current state.

s = R

(

∆mA ln
v

vA

+ ∆mT ln
v

vT

)

(2.10)

Note that a similar approach can be found in literature, e.g. Nolting (2005). The

volumes vA and vT can be derived by assuming that the pressure in both volumes

must be equal as well as using v = vA + vT. Furthermore, vA and vT can be

represented by the densities and finally by the mass mixing ratio ρT = cρ (see (2.5)).

If we presume that c ≪ 1, then we can set ρA ≈ ρ. With this assumption the first

summand on the right hand side of equation (2.10) vanishes as the work done on the

air particles is negligible. By applying the infinitesimal limit ∆mT → dmT = dV ρc

it is possible to substitute the summation over all ∆m by an integral over the entire

atmosphere in order to derive the total entropy of mixing.

S = −R

∫

dV ρc ln c (2.11)
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2 Theory of Tracer Transport

Note that equation (2.11) describes the change in entropy from a state of total

demixing, which we assume to refer to the minimum entropy, to the current distri-

bution represented by c. The maximum total entropy of mixing should be obtained

by reaching the state of equal distribution.

2.2.2 Verifying the Entropy of Mixing

Possibly, the latest approximations are physically unreasonable. In order to prove

that equation (2.11) indeed refers to the correct entropy of the system, one can

compute the change of the total entropy of mixing in time during the advection and

diffusion of the tracer by applying the time derivative on S and taking advantage of

the continuity equation of both the air (2.3) and the tracer (2.6).

By applying the time derivative on (2.11) and taking advantage of the product

rule we obtain:

dtS = −R

∫

dV ∂t(ρc ln c) = −R

∫

dV (∂t(cρ) ln c + ρ∂tc) (2.12)

We further insert the continuity equations (2.6) and (2.7)

dtS = −R

∫

dV ((∇ · (ρK∇c) − ∇ · (cρv)) ln c

+ρ (ρ−1∇ · (ρK∇c) − v · ∇c))

(2.13)

And by the use of the product rule for a scalar Φ multiplied by a vector U,

∇ · (ΦU) = U · ∇Φ + Φ∇ · U ,

10



2.2 From Fundamental Thermodynamic Laws to the Entropy of Mixing

we find:

dtS = −R

∫

dV (∇ · (ρK ln c ∇c)

− ρKc−1(∇c)2

+ ∇ · (cρ ln c v)

+ ρv · ∇c

+ ∇ · (ρK∇c)

− ρv · ∇c)

(2.14)

Finally the Gauss’ theorem is applied and it is presumed that all fluxes through the

boundaries of the atmosphere must vanish.

dtS = R

∫

dV ρKc−1(∇c)2 (2.15)

Pauluis and Held (2002) describe the irreversible entropy production due to diffusion

of water vapor. By expressing (2.15) in terms of the diffusion flux we gain the same

result.

dtS = R

∫

dV F∇ ln c (2.16)

To put it in a nutshell, we verified that (2.11) is a reasonable expression for the total

entropy of mixing. Furthermore, (2.15) has several qualities that will be discussed

briefly. First, the tendency of the total entropy of mixing depends on K, but not on

v. Only diffusion can change the total entropy of mixing, advection is a reversible

process, as it should be. Second, only if K, ρ and c are positive, which is the

natural, physical case, then the total entropy of mixing is monotonically increasing

as expected. Note, the monotonicity does not depend on the gradient of c as it is

squared and hence the affected term is positive anyway. If c approaches zero, then

equation (2.15) can only converge if the term (∇c)2 is also vanishing. Additionally,

previous considerations give strong arguments in order to require the positivity of

mixing ratios of tracer in numerical models. Third, the tendency becomes zero and

hence the total entropy of mixing reaches an extremum if ∇c is vanishing which

11



2 Theory of Tracer Transport

occurs in case of c approaching to its global mean value c̄ defined by:

c̄ =

∫

dV ρc
∫

dV ρ
(2.17)

It is obvious that this extremum is a global maximum as the total entropy of mixing is

monotonically increasing and further the vanishing gradient stops the mass transfer

due to diffusion. Inserting c = c̄ in equation (2.11) and taking advantage of the

definition (2.17) yield the maximum entropy:

Smax = −R

∫

dV ρc ln c̄ (2.18)

2.2.3 Negentropy of Mixing and Further Implications

A more convenient quantity than the entropy is the so called negentropy or rather

negative free entropy:

J = Smax − S = R

∫

dV ρc ln
c

c̄
(2.19)

It denotes the difference between the actual, current entropy and the maximum

entropy. It is positive definite and decreases in time during irreversible mixing.

While reaching the equilibrium, the total negentropy of mixing converges to zero.

Equation (2.19) will be applied for numerical analysis in section 4.5.

In comparison to section 2.1, where we derived the transport equation from

mass conservation, it is also possible to obtain an equivalent transport equation

from entropy conservation. Since the entropy of mixing per unit mass is given by

s = −Rc ln c, its material time rate of change is:

∂ts + v · ∇s = ρ−1∇ · (ρK∇s) + RK
(∇c)2

c
(2.20)

Here, c is a functional depending on s. As this functional is not bijective, it is

not possible to compute c or rather the production term in (2.20) definitely and

hence this version of the transport equation is a little bit inconvenient. But nev-

ertheless, it must be acknowledged that (2.20) and (2.7) are equivalent transport
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2.2 From Fundamental Thermodynamic Laws to the Entropy of Mixing

equations. Solving these equations with a conservative numerical scheme one can

choose between mass or entropy of mixing conservation with respect to advection

and diffusion of c or s, respectively.

How is the monotonicity associated with the entropy of mixing? A method is

monotonicity preserving if it conserves monotone-increasing or monotone-decreasing

initial data (Durran, 2010). This means, in particular, that no new local extrema are

generated which is similar to shape and sign-preservation. Considering the entropy

of mixing as a measure of disorder: If monotonicity preservation is violated because

new local extrema occur during the time evolution, then the entropy of the system

is reduced. This seems rational since every new local extremum is an indication of

a higher state of order, and hence less disorder, which is equivalent to a decreasing

entropy.

Another commonly used diagnostic measure is the total variance σ2. It can be used

as an additional conserved quantity in advection schemes (Prather, 1986). Here, it

is defined as:

σ2 =

∫

dV ρc′2

∫

dV ρ
(2.21)

The term c′ is obtained by the decomposition of c in c = c̄ + c′. The total variance

is conserved by advection and reduced due to diffusion. All in all, it seems to

display the same behavior as the total negentropy of mixing. In fact, negentropy

and variance are related closely since the second order Taylor series expansion of

(2.19) in c centered at c̄ is proportional to the total variance:

J
Taylor≈ R

2c̄

∫

dV ρc′2 ∝ σ2 (2.22)

Higher moments of c appear for higher order expansions. The second moment

of the distribution is identical with the variance. The third moment denotes the

skewness, the fourth is called kurtosis, and so on. In summary, the Taylor series

of the total negentropy of mixing includes all moments of the distribution, and

hence the alternation of all its properties due to the time evolution is captured by

the time derivative of J which is simply the negative time derivative of S regard-

ing (2.15). Note that higher moments are also used in “multi-moment advection

schemes” (Minoshima et al., 2011).
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3 Numerical Treatment of the Transport Equation

3.1 The Kühlungsborn Mechanistic General Circulation Model

For the purpose of the present study a simple general circulation model (GCM) is em-

ployed, namely the Kühlungsborn Mechanistic General Circulation Model (KMCM).

The prognostic variables are vorticity and divergence describing the horizontal wind

field, temperature, and surface pressure. In addition, mass mixing ratios for an

arbitrary number of passive tracer can be included. The KMCM’s dynamical core

is based on the spectral transform method for the horizontal directions combined

with the finite-difference scheme introduced by Simmons and Burridge (1981) for

the vertical discretization. For the time integration a semi-implicit leapfrog scheme

is applied. It is completed by a time filter in order to damp the so called “com-

putational modes” (Asselin, 1972). Additional model descriptions are provided by

Becker and Schmitz (2001), Körnich et al. (2003), and Becker (2003). Within the

framework of this study, the PE were enhanced by the transport equation (2.7).

3.2 On the Issue of Aliasing

This section considers the aliasing effect and its impact on spectral GCMs.

In spectral GCMs horizontal dependencies of the prognostic variables are repre-

sented in terms of spherical harmonics. This representation is exact if the number of

harmonics is infinite and the function is continuously differentiable, e.g. shock-like

discontinuities must not be involved (Dirichlet condition). As numerical models can

only deal with finite, discrete numbers, the transformation is always associated with

a truncation error causing aliasing.

If the function is only continuous, or even discontinuous, then the series of spheri-

cal harmonics only converges piecewise, but no longer uniformly. This behavior gives

rise to ringing and is called Gibbs phenomenon. Ringing has to be distinguished
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3 Numerical Treatment of the Transport Equation

0

0

Figure 3.1: A Gaussian curve (solid red line) represented by a Fourier series (dashed blue
line) truncated by wave number 4. Note the occurrence of negative values.

from aliasing. The aliasing effect due to the truncation error is shown in figure 3.1

schematically. It can be interpreted as a loss of information due to the spectral

transformation.

The major benefits of the spectral method solving the transport equation (2.7)

are: First the conservation of mass, and second the exact (according to the machine

accuracy) reproduction of the linear terms in the time tendency since the first and

second horizontal derivative provides the eigen values of the spherical harmonics.

The nonlinear terms must be inversely transformed and computed on the grid. This

can cause nonlinear numerical instabilities (see Randall (2004) section 10) called

aliasing errors. Although the transport equation is linear in c, aliasing errors can

still occur since the coefficients of the derivatives, namely the wind velocity and

the diffusion coefficient, are spatially and temporarily variable and hence associated

with aliasing errors themselves. Even with a proper spectral representation of the

initial distribution, aliasing errors can grow during the time integration. That does

not affect only the horizontal evolution, but the vertical as well, because aliasing

errors generally occur when formations of short wave-lengths sampled on a discrete

grid are misinterpreted due to strong gradients as longer wave-length oscillations.

In addition, aliasing also affects GCMs with finite-differencing schemes in all di-

mensions. In conclusion, the truncation of the spectral representation, as well as
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3.2 On the Issue of Aliasing

nonlinearities or dependent coefficients give rise to aliasing.

Monotonicity and sign preservation are very important qualities of numerical mod-

els. Therefore, it is worth to explore aliasing as it violates both these constraints.

The representation of a positive function by spherical harmonics can yield negative

values as illustrated in figure 3.1. This becomes an issue if the considered variable,

in our case the mass mixing ratio, is supposed to be positive. Negative mass mixing

ratios are obviously unphysical. Furthermore, the occurrence of ripples due to the

transformation provides new spurious extrema destroying the monotonicity. But

the strongest argument for the need of preventing aliasing lies within the total en-

tropy of mixing. Apparently, the spectral transformation causes a loss of entropy,

which seems to be counterintuitive as a loss of information due to the truncation

is supposed to produce entropy. That may be a logical conclusion from the point

of view of the Shannon entropy. But actually the spectral transformation gains a

higher state of order in the system, because the transformation reduces the degree

of freedom of the function and consequently entropy is lost. This is associated with

the destruction of monotonicity mentioned above. But the more convincing impact

of aliasing on the entropy is that it is no longer defined for negative mass mixing

ratios referencing to equation (2.11) since the logarithm does not exist for negative

values.

Common GCMs deal quite differently with the aliasing issue. Some accept nega-

tive concentrations as an uncertainty, e.g. GISS ModelE (Schmidt and Coauthors,

2006). Others use additional sign preserving transport schemes, like the semi-

Lagrangian, e.g. CAM3 (Collins et al., 2004) and ECHAM5 (Roeckner et al., 2006),

which are driven by the spectral velocity field, accepting that it is probably compu-

tational expensive. However, Shepherd (2007) argues for spectral tracer advection

if a spectral dynamical core is used, because numerical consistency of dynamics and

transport is most important. This approach is based on the work of Jöckel (2001)

who mentioned that a grid-to-grid transformation (as necessary in semi-Lagrangian

schemes) is in general associated with a loss of information due to averaging be-

tween the grid cells and therefore artificial diffusive. Especially for long-term tracer

transport in the stratosphere artificial diffusion can play a crucial role and can cause

a bias in the simulations (Shepherd, 2007).
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3 Numerical Treatment of the Transport Equation

Based on the considerations, we develop a numerical transport scheme that deals

with the aliasing issue in a sophisticated manner. Since aliasing is immanent in

spectral models, at least the problem of negative concentrations has to be fixed.

3.3 A Function of Representation for Positive Definite Mixing

Ratios

We introduce a new function of representation for tracer that ensures positive def-

inite mass mixing ratios. In order to show the demands for such a function, we

consider the transport equation (2.7), insert a functional c̃, and replace c by c[c̃]:

∂tc̃ + v · ∇c̃ =
1

ρ
∇ · (ρK∇c̃) + K(∇c̃)2 d2c

dc̃2

(

dc

dc̃

)

−1

(3.1)

Here, c should be treated as the inverse of the functional c̃. Therefore, c̃ must be

bijective and continuous. As we can see, the second term on the right hand side of

equation (3.1) includes the first and second derivative of c with respect to c̃. Using

the differentiation formula for inverse functions we further must claim c̃ to be at least

twice continuously differentiable. Additionally, any smooth function fulfills these

constraints. Scinocca et al. (2008) described a related method for spectral moisture

advection with a piecewise continuous “hybrid” variable proposed by Boer (1995)

for the GCM of CCCma called AGCM3 which does not fulfill the aforementioned

requirements. But in order to derive c̃ we use an analog approach. Consider the

identity:

c ≡ c0 exp{ln(c/c0)} (3.2)

Here, c is positive anyway. We now substitute the exponent by a first order Tay-

lor series expansion of the logarithm centered at one, hence ln(c/c0) ≈ c/c0 − 1.

Replacing c on the right hand side of equation (3.2) with c̃ leads to

c = c0 exp{c̃/c0 − 1} . (3.3)

This definition for the function of representation guarantees positive concentrations

and is adequate to the requirements since it is a smooth function. Only a few
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3.3 A Function of Representation for Positive Definite Mixing Ratios

properties will be discussed: We compute the variation of c.

δc = δc̃ exp{c̃/c0 − 1} (3.4)

When c̃ ≈ c0, the exponent vanishes and the function is approximately linear. In

case of c̃ > c0, the variation of c increases exponentially with c̃, i.e. when using c̃

as a prognostic variable that is represented by spherical harmonics and vertically

discretized, the corresponding numerical resolution of c is decreased. On the other

hand, the numerical resolution of c increases for c̃ < c0. This is a big advantage

taking the typical evolution of an atmospheric long-term tracer, like CO2 or SF6, into

account. It starts with high mixing ratio at the earth’s surface, getting rapidly mixed

in the troposphere, and enters the stratosphere through the equatorial tropopause

with a small concentration. Therefore, it is necessary to choose a typical mixing

ratio c0 for every tracer to minimize numerical errors.

The spectral method and the vertical discretization in KMCM are constructed in a

way that it conserves the total tracer mass when solving the linear transport equation

(2.7) with c as the prognostic variable. Now, the function of representation c̃ is the

prognostic variable instead of c. The corresponding non-linear partial differential

equation treated in KMCM is

∂tc̃ = −v · ∇c̃ +
1

ρ
∇ · (ρK∇c̃) +

K

c0

(∇c̃)2 = f . (3.5)

In order to solve the equation with the spectral method, c̃ is expanded in series of

spherical harmonics Ynm with wavenumbers n and m for the horizontal coordinates,

longitude λ and latitude φ. The vertical discretization uses a terrain following hybrid

coordinate numerically represented by layers l (Becker, 2003).

c̃l(λ, Φ, t) =
∑

nm

c̃lnm(t) Ynm(λ, Φ) (3.6)

Applying Galerkin’s method the model equation can be written as:

˙̃clnm =

∫

dΩ flYnm (3.7)
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3 Numerical Treatment of the Transport Equation

Here, Ω denotes the solid angle. The horizontal derivatives in fl can be computed

in spectral space by using the analytical derivations of the spectral representation

and taking advantage of the orthogonality of the spherical harmonics:

∫

dΩ YnmYn′m′ = δnn′δmm′ (3.8)

All other terms of fl have to be computed on the grid. Equation (3.7) is time

integrated with the semi-implicit leapfrog scheme. Assuming that the non-linearity

of fl is computed with high accuracy, the global integral of c̃ is now the conserved

measure. But no longer is it the total tracer mass. Hence, the scheme loses or

produces tracer mass during the time evolution.

The method can be tuned by adjusting c0 during a simulation trying to decrease

the impact of the mass defect. There are several disadvantages of this approach:

One needs to compute c0 depending on the time and further it is nearly impossible

to keep the mass constant in a long-term simulation. Therefore, a mass correction

is necessary.

3.4 A Mass Correction for General Circulation Models

It is crucial that the total mass of a tracer is conserved in time, especially for long-

term model experiments, e.g. simulating the “age of air”. The purpose of this section

is to introduce a very general method for a tracer mass correction that allows us to

use the new function of representation for the mixing ratio of a tracer, particularly

for long-term simulations. Note that such mass correction must be numerically

efficient. We must take into account that an expensive, ineffective method would

destroy the benefits of the new function of representation in combination with the

spectral transform method.

Mass corrections or mass fixer or mass restorations, alternatively, are closely re-

lated to “hole filler”. The latter are used to fill holes of negative mixing ratios with

material borrowed from points of positive ones. An extended overview about “hole

filler” is given by Rood (1987). With the function of representation introduced in

section 3.3 the mixing ratio is positive definite by definition.

A common mass correction algorithm is the mass fixer documented in Collins et al.
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3.4 A Mass Correction for General Circulation Models

(2004) for CAM3. In their model it is applied along with a semi-Lagrangian trans-

port scheme. A related approach to a mass restoration like the one in this work is

presented by Moorthi et al. (1995) with regard to the surface pressure. The basic

idea of the mass correction proposed in this study is to compute the mass defect

every time step and to redistribute it in a manner that the total mass converges to

its initial value. This can formally be described by the following equation:

cnew(r, t) = κ(t) w[cold(r, t)] (3.9)

Here, cold denotes the tracer concentration associated with a mass defect and cnew the

corrected one at time t and at point r representing longitude, latitude and altitude.

Furthermore, we must specify a weight function w depending on cold. It has to

be chosen in a way that the mass correction is most effective at points where the

greatest mass defects are expected. And it also controls the strength of the change

caused by the correction. Note that the weight function gives rise to a spurious

change in the entropy of mixing as it refers to a mass transfer.

In order to ensure conservation of the total mass the factor κ has to be derived

with respect to the fact that w is meant to be arbitrary. We define the current

uncorrected total mass Mold at model time t via the volume integral over the whole

atmosphere:

Mold(t) =

∫

dV ρ(r, t) cold(r, t) (3.10)

The new total mass after correction is presumed as

Mnew = Mold + ζ (M0 − Mold) (3.11)

Here, M0 denotes the total mass of the initial concentration. If there are neither

sources nor sinks, one needs to compute M0 only once. Otherwise, i.e. for reactive

tracer, it is necessary to calculate M0 every time step from sources and sinks, e.g.

condensation and precipitation rates when considering water vapor as a tracer. The

factor ζ is inserted in (3.11) as a control parameter, i.e. ζ is the parameter of

mightiness for the mass correction. It corresponds to the number of time steps until

Mold is forced to be equal to M0 again. For ζ = 0 no changes will be achieved and
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3 Numerical Treatment of the Transport Equation

for ζ = 1 the maximum effect will occur. Note that a strong effect may give rise to

numerical instabilities. Using (3.11) the coefficient κ can be written as:

κ =
Mold + ζ (M0 − Mold)

∫

dV ρw
(3.12)

In addition to the choice of w, it is crucial to take account of the representation

function c̃. Actually, we must write w = w[c0 exp{c̃old(r, t)/c0 − 1}]. For integrating

w (see denominator of equation (3.12)) one has to transform c̃ from its spectral

into its grid point representation, and vice versa after the mass correction has been

applied. Thus, truncation errors can increase and consequently the benefits of the

mass correction can vanish when w is selected in an insufficient manner. Moreover,

in case of a careless choice of w it is also possible to create an amount of tracer

concentration at points where the concentration should be close to zero, like a sort

of “teleportation”.

We introduce a very intuitive way to choose w that provides convenient but nev-

ertheless efficient results. We choose:

w[cold] = cold (3.13)

This implicates that the mass defect is allocated uniformly over the atmosphere

weighted by the concentration itself, i.e. the higher the mixing ratio at one point, the

more it will be corrected. Furthermore, (3.13) prevents the effect of “teleportation”

because at points with concentration near zero the mass correction has almost no

effect. This is related to the constraint of monotonicity: Multiplying a monotone

function by a constant factor does not change its characteristics. Thus, the proposed

mass correction is monotonicity preserving.

Replacing c by the new prognostic variable c̃ yields:

c̃new(r, t) = c0 ln κ(t) + c̃old(r, t) (3.14)

We now expand c̃ in series of spherical harmonics according to (3.6) and take advan-

tage of the orthogonality of Ynm (condition (3.8)). We obtain the mass correction
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3.4 A Mass Correction for General Circulation Models

for the spectral amplitudes of c̃ on each layer,

c̃new,l00(t) = 2
√

π c0 ln κ(t) + c̃old,l00(t) (3.15)

with

κ = 1 + ζ (M0/Mold − 1) . (3.16)

The obvious benefit of this formula is that only one spectral coefficient, namely the

mean value of c̃ on each layer, has to be changed. No additional spectral trans-

formations need to be done. Furthermore, we can even simplify this method by

considering κ again: As we require the effect of the correction to be slight for nu-

merical stability, we can assume the total mass Mold to vary in a small range about

M0. Therefore, it is appropriate to expand the logarithm of κ to a first order Taylor

series. This leads us to the final expression which is implemented in KMCM for the

mass correction:

c̃new,l00 = 2
√

π c0 ζ

(

M0

Mold

− 1

)

+ c̃old,l00 (3.17)

Both mass corrections with and without Taylor approximation for κ have been

tested in KMCM. The results are the same and hence the approximation proves to

be appropriate.
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3 Numerical Treatment of the Transport Equation

0

0

Figure 3.2: A Gaussian curve (solid red line). Its representation by a Fourier series
(dashed blue line). And the Fourier series of its mass corrected function of
representation (thick black line). All truncated by wave number 4. Note the
disappearance of aliasing by the mass corrected function of representation.

In addition to the higher numerical resolution of the scheme for small mixing ra-

tios (see section 3.3), strong gradients are also better represented by the function of

representation in combination with the mass correction as illustrated in figure 3.2.

The proposed scheme can better deal with strong gradients without the occurrence

of aliasing due to the truncation of the Fourier series than the ordinary scheme.

Although the initial function (solid red line in figure 3.2) is considerably deformed

by the fast truncation of the Fourier series of its mass corrected function of repre-

sentation (thick black line in figure 3.2), it is worth noting that the monotonicity

and the sign is preserved. This may be an advantage as the issue of sharp gradients

in spectral GCMs is often criticized (Williamson and Rasch, 1994).

24



4 Validating the scheme

The previous section has proposed a method for tracer transport in a spectral GCM

including a new function of representation for a positive mixing ratio and a mass

correction. In order to proof the numerical consistency, conservation, and mono-

tonicity of the derived method, several tests will be performed. The aim of these

tests is to show the functionality as well as finding the lower and upper limits of

parameters the numerics can still deal with. We can distinguish two kinds of pa-

rameters: First, the set of control parameters, namely ζ and c0. Second, the set of

the physical parameters which are the coefficients of the transport equation, i.e. the

velocity field and the diffusion coefficients. The influence on the numerics by the

choice of ζ and c0 will be discussed in section 4.5 and 4.4.

For the physical parameters we use a benchmark deformational flow test based

on the idea of making the analytical solution available at the end of the simulation

by constructing a flow that leads back to the initial condition. Then, the resulting

mixing ratio can be compared directly with its initial distribution. Apparently,

the diffusion coefficient must be set to zero, otherwise the tracer would be mixed

irreversibly and the analytical solution would no longer apply.

The basic idea is to provide a flow deforming the tracer as challenging as possible

along non-trivial trajectories for a prescribed time T/2. Therefore, no analytical

solutions are accessible during this deformation. By reaching T/2 the flow turns

into its opposite direction such that after time T every air parcel returns to its

starting point (Nair and Lauritzen, 2010). One can derive a wind field fulfilling these

qualities simply by multiplying an arbitrary field by cos(πt/T ) as first proposed by

LeVeque (1996).

We provide two different deformational flow test cases of this kind: A non-

divergent flow with only horizontal transport in section 4.2 and a purely divergent

flow with only meridional and vertical transport in section 4.3 in order to test the

different numerical methods used for vertical and horizontal transport. Numerical
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4 Validating the scheme

errors are monitored by the total mass and the total entropy of mixing (see section

2).

4.1 Initial Condition

The initial mixing ratio for the experiments is generated by Gaussian curves in all

three dimensions completed by an offset value due to the requirement that c is not

allowed to be zero anywhere and finally filtered with a window function avoiding

discontinuities at the poles:

c(t0) = coff + cini cos1/4(φ) e−G2

(4.1)

G2 =
(φ − φ0)

2

4σ2
φ

+
(λ − λ0)

2

4σ2
λ

+
(p − p0)

2

4σ2
p

(4.2)

Both the non-divergent and the purely divergent test runs are defined by a set of

parameters listed in the table below (see also figure 4.1).

parameter description symbol non-divergent purely divergent

center of altitudinal Gaussian curve p0 800 hPa 700 hPa
width of altitudinal Gaussian curve σp 150 hPa 100 hPa
center of meridional Gaussian curve φ0 0◦ 0◦

width of meridional Gaussian curve σφ 11.459◦ 5.730◦

center of zonal Gaussian curve λ0 180◦ 180◦

width of zonal Gaussian curve σλ 11.459◦ 5.730◦

maximum mixing ratio cini 1 1
offset in mixing ratio coff 0.001 0.001

Figure 4.1: Initial parameters for the benchmarks

4.2 Non-Divergent Flow

The prognostic variables in the KMCM for the three-dimensional velocity field are

the horizontal vorticity ξ as well as the horizontal divergence D in combination

with the surface pressure ps. In a non-divergent flow only the vorticity plays a role.

Therefore, D is set to zero and ps is set to constant (ps = p00 with p00 = 1013 hPa).
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4.3 Purely Divergent Flow

Since the horizontal stream function Ψ and the horizontal vorticity are connected

due to

ξ = ∇2Ψ , (4.3)

one can use the more intuitive horizontal stream function to design a test flow.

Nair and Lauritzen (2010) proposed for a non-divergent, time-dependent wind field:

Ψ = k sin2(λ/2) cos2(φ) cos(πt/T ) (4.4)

Here, k is an arbitrary factor representing the amplitude of the displacement affecting

the tracer. It can be derived as the maximum velocity u0 scaled by the earth’s

radius a, i.e. k = au0. For the non-divergent flow case u0 is set to 600 ms−1,

which is obviously not very realistic but challenging instead. The term T is the time

period (see section 4) after which the mixing ratio reaches its initial distribution. T

is 4 days for all the following simulations. We now expand Ψ in series of spherical

harmonics according to (3.6). Since Ynm are eigenfunctions of the horizontal Laplace

operator, equation (4.3) can be written in spectral space as:

ξnm = −n(n + 1)

a2
Ψnm (4.5)

Additionally, the entire function of Ψ and hence ξ is shifted in zonal direction about

2π/3 for reasons of simplicity in the KMCM. The artificial parameter c0 is set to

one. Whether this is a proper choice will be discussed later.

4.3 Purely Divergent Flow

In the purely divergent flow case only the horizontal divergence plays a role and

hence the horizontal vorticity is set to zero and the surface pressure to constant

(ps = p00). We propose an analytical formula for the divergence in the following

way:

D = k(1 − 3 sin2(φ)) cos(πp/p00) cos(πt/T ) (4.6)

Equation (4.6) is inspired by LeVeque (1996), too. The basic idea is to obtain a kind

of a zonally symmetric Hadley cell lifting the tracer up on deforming trajectories

27



4 Validating the scheme

and bringing it back perfectly by switching from upwelling to downwelling during

the period T . For this purpose we must take into account that the mean value of

the horizontal divergence must vanish in order to conserve the total mass. In the

KMCM as well as in other spectral GCMs, this is associated with the fact that the

(0, 0)-component of D is zero. To meet this constraint the meridional dependence

(the second factor in (4.6)) is equivalent to the spherical harmonic function Y02(λ, φ).

Since the surface pressure is constant in time, the integral of D with respect to the

pressure over the whole air column must vanish in order to fulfill the continuity

equation (2.3). This explains the choice of the third factor in (4.6). The maximum

velocity u0 is set to 400 ms−1.

4.4 Assessing the Total Entropy of Mixing

In this section the influence of the mass correction on the total entropy of mixing is

estimated in order to evaluate the physical and numerical consistency of the mass

correction. Since the negentropy of mixing is equivalent to the entropy of mixing

and easier to handle, the total negentropy of mixing J is used for this purpose.

Inserting cnew = κcold (see section 3.4) into (2.19) yields

Jnew = κJold (4.7)

for the mass correction. The parameter κ of (3.16) depends on Mold and ζ. Small

mass defects and a small ζ give rise to insignificant changes in J due to the mass

correction. This is desired because the mass correction is in general unphysical.

Therefore, the resolution must be high enough so that the scheme without the mass

correction already keeps the tracer mass as constant as possible. Equation (4.7) has

to be considered in contrast to

Mnew = κMold (4.8)

which follows from definition (3.11). It denotes that the mass correction affects the

total tracer mass in exactly the same magnitude as it affects the total negentropy of

mixing. Most important is the direction of the change. For a negative mass defect

28
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the mass correction must annihilate entropy to give mass back to the system and

vice versa. Hence, it is crucial to examine how the entropy is linked to the mass

defect for the scheme without mass correction. In particular, for little mass defects

and a slender mass correction the scheme is supposed to work with high consistency

following Shepherd (2007) who argued for spectral transport schemes in spectral

GCMs.

4.5 Analysis and Results of the Benchmarks

This section analyzes the results of the benchmarks. Both experiments, the non-

divergent and the purely divergent case, have shown similar characteristics and hence

they will be discussed in the same context. As a first result of both benchmarks it

must be recognized that the numerical scheme is stable even under these challeng-

ing conditions, i.e. deformational flow fields with very strong winds combined with

a coarse resolution. Regarding the corresponding analysis by the use of the diag-

nostic measures we need to keep in mind that the flows are unrealistic because of

the idealized “laboratory”-like conditions. Tests under more realistic circumstances

(the KMCM is tuned as described in Becker (2003)) has proven to be much less

challenging for the scheme.
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(a) (b)

(c) (d)

Figure 4.2: Time evolution of a tracer in a non-divergent flow benchmark test (see section
4.2). (a) Initial distribution, (b) after T/4 = 1 d, (c) after T/2 = 2 d, when
the velocity field reverses, and (d) after T = 4 d, when the tracer field
is expected to match with the initial distribution. The mass correction is
adjusted with ζ = 0.2. Spectral resolution T31 and 30 vertical levels. The
mass mixing ratio is plotted using a logarithmic color scale at a pressure
level of 800 hPa. Wind field vectors are colorized with increasing values of
the horizontal stream function from black to red. The mixing ratio of 0.3 is
indicated by a white contour in each panel in order to highlight any aliasing
effects.
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(a) (b)

(c) (d)

Figure 4.3: Time evolution of a tracer in a purely divergent flow benchmark test (see
section 4.3). (a) Initial distribution, (b) after T/4 = 1 d, (c) after T/2 = 2 d,
when the velocity field reverses, and (d) after T = 4 d, when the tracer field
is expected to match with the initial distribution. The mass correction is
adjusted with ζ = 0.2. Spectral resolution T31 and 30 vertical levels. The
mass mixing ratio is plotted using a logarithmic color scale at a longitude of
180◦. Wind field vectors are colorized with increasing values of the horizontal
velocity potential from black to red. The mixing ratio of 0.3 is indicated by
a white contour in each panel in order to highlight any aliasing effects.
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(a) (b)

Figure 4.4: Dependence on resolution in the none-divergent flow benchmark test. Dif-
ference between the final and initial mixing ratio for T31 (a) and T42 (b)
spectral resolution. These differences represent the numerical error in the
two simulations (see section 4).

(a) (b)

Figure 4.5: Dependence on resolution in the purely divergent flow benchmark test. Dif-
ference between the final and initial mixing ratio for T31 (a) and T42 (b)
spectral resolution. These differences represent the numerical error in the
two simulations (see section 4).

32



4.5 Analysis and Results of the Benchmarks

(a) (b)

Figure 4.6: Total tracer mass (a) and total entropy of mixing (b) as functions of time
in the non-divergent flow benchmark test: Black solid line. Without mass
correction, T31 spectral resolution; Green solid line: With mass correction
(ζ = 0.02), T31; Red solid line: With mass correction (ζ = 0.2), T31; Blue
solid line: With mass correction (ζ = 0.2), T42; Dashed black line: Initial
values for total mass and total entropy of mixing.

(a) (b)

Figure 4.7: Total tracer mass (a) and total entropy of mixing (b) as functions of time
in the purely divergent flow benchmark test. Black solid line: Without mass
correction, T31 spectral resolution; Green solid line: With mass correction
(ζ = 0.02), T31; Red solid line: With mass correction (ζ = 0.2), T31; Blue
solid line: With mass correction (ζ = 0.2), T42; Dashed black line: Initial
values for total mass and total entropy of mixing.
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The non-divergent and the purely divergent deformational flow test are shown

in figure 4.2 and 4.3. The tracer starts with its initial distribution in figure 4.2(a)

and 4.3(a) and gets maximally deformed by the flow field in figure 4.2(c) and 4.3(c)

where the wind direction is turning. The tracer returns in figure 4.2(d) and 4.3(d)

where it should match with the initial distribution. How it matches, can be seen

in figure 4.4 and 4.5. Here, the difference between final and initial distribution is

illustrated. Finally, figure 4.6 and 4.7 show the time dependence of total tracer mass

and total entropy of mixing.

Within the settings of the non-divergent flow the impact on the numerical sta-

bility by the choice of c0 was tested by varying c0 in a range of several magnitudes

(10−5 ≤ c0 ≤ 106). The differences among the results (not shown) were insignifi-

cantly small. From the lowest to the largest c0 the maximum peaks of c varied by

less than 1%. In conclusion, the choice c0 = 1 is appropriate for a wide spectrum of

applications.

In the figures 4.2(c) and 4.3(c) can be seen that weak aliasing errors with regard

to section 3.2 still occur when considering the contour of a mixing ratio of 0.3

and the swinging background noise which is highlighted by the logarithmic scaling

of the color scheme. But nevertheless, this effect seems to be small as it does

not affect significantly the final distribution. Note that spectral GCMs are always

contaminated with aliasing errors.

Figure 4.4 and 4.5 illustrate the relation between numerical errors and resolution.

The difference between the final and initial distribution is at most 3% for a T31 reso-

lution. Furthermore, the asymmetrical distribution of the error can be interpreted as

a phase-speed error. Nair and Lauritzen (2010) noticed that phase errors can cancel

when the flow reverses on the same trajectories and hence a zonal background flow

was introduced. We tested both benchmark cases additionally with an underlying

solid-body rotation with a self-evident period of 4 days in order to prevent this can-

cellation, but no significant differences in the numerical errors occurred. Therefore,

the phase-speed errors are seemingly immanent. However, with increasing resolution

the numerical error decreases. For a T42 resolution the numerical error is about, or

even lower, than 1% at the peak.

Without the mass correction the scheme is still stable, but the total mass is far
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from being constant. On the other hand the total entropy of mixing is approximately

constant as shown in figure 4.6(b) and 4.7(b) (solid black lines). With respect to

section 4.4, where we already mentioned the importance of the direction of the

change in entropy, we see from figure 4.6 and 4.7 that the scheme without mass

correction loses total entropy of mixing when losing total mass. Apparently, the mass

defect behaves like a constant sink term in the transport equation. Inserting such an

artificial sink term in (2.12) it is easy to show that it annihilates entropy. The mass

correction works vice versa, i.e. if the uncorrected scheme loses entropy because it

loses mass, then the mass correction annihilates further entropy by producing mass.

Aliasing errors also reduce entropy whereas numerical diffusion produces entropy.

We argue that the slightly varying total entropy of mixing of the scheme without

mass correction in figure 4.6(b) and 4.7(b) (solid black line) is dominated by the

mass defect and the numerical diffusion balancing each other whereas aliasing plays

a minor role. The perfect numerical transport scheme would keep total mass as well

as total entropy constant. As this perfect scheme does not exist, we have to find

a compromise how to adjust the mass correction to satisfy the constraints of total

mass and total entropy conservation as good as possible.

As noted in section 3.4, the parameter ζ controls the strength of the mass correc-

tion. It must be in the interval between zero and one. If ζ is set to one, the mass

will be corrected from one time step to the next to its absolute initial value and the

impact on the entropy will be strongest. But is that necessary? Actually, the mass

correction can ensure long-term mass conservation by small adjustments to the total

mass. In addition, the mass correction has a slight unphysical influence on the entire

transport as it replaces tracer mass. So we want to allow the total mass to vary

in a small range about M0, but to converge to M0 with time because the spurious

transport due to the mass correction must be small in comparison to the true trans-

port. The red and the blue lines in figure 4.6 and 4.7 reveal the influence of ζ on the

transport. For a small ζ (green lines) the total mass fluctuates significantly while

the variations of the total entropy of mixing are small. This should be contrasted

to the red lines. Here, the parameter ζ is 10 times stronger while using the same

resolution. In this case, total mass variations are reduced whereas those of the total

entropy of mixing are increased. For the same ζ but with a higher resolution of T42

35



4 Validating the scheme

(blue lines) mass conservation is nearly fulfilled and the influence on the entropy

is further decreased. But as a higher resolution causes a smaller mass defect, it is

supposed to apply a smaller ζ. This is supported by the constraint that a physically

consistent transport is rated higher than a perfect total mass conservation at all

times. Another argument is provided by the demand for a compromise mentioned

above.

Additionally, regarding figure 4.6(b) and 4.7(b) (green, red, and blue lines) the

production of entropy of mixing is on average positive. This suggests that the

scheme with mass correction is somewhat numerically diffusive. Without any mass

correction the scheme loses entropy because of the mass defect. It gains entropy due

to numerical diffusion if we assume that aliasing has no significant influence. The

resulting balance tends slightly to the mass defect. Turning on the mass correction

the mass defect vanishes while numerical diffusion still generates entropy. In section

4.4 we stated that the mass correction annihilates entropy. But since the mass

correction is monotonicity preserving, this annihilation must mimic a kind of anti-

diffusion. This anti-diffusion balances the numerical diffusion. But the latter still

dominates. As long as the resulting numerical diffusion is small in comparison

to a realistic, natural diffusion applied in simulations, this anti-diffusion can be

considered as a beneficial secondary effect.
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5.1 Summary

A new mass and sign preserving tracer transport scheme for spectral atmospheric

general circulation models has been introduced and validated by benchmark test

cases. The tests have shown a high stability of the scheme even for flows with

strong shear combined with a coarse resolution.

A function of representation for positive definite tracer mass mixing ratios has

been developed. This function depends on an adjustable parameter which is rep-

resentative of a typical mass mixing ratio. The experiments have shown that the

numerical results are hardly sensitive to this parameter. For the sake of simplicity

we have proposed to set it equal one.

In order to achieve mass conservation a mass correction has been derived which

is computationally very efficient in combination with the function of representation

since it affects only the zeroth spectral component of the latter. The mass correc-

tion is adjustable by a parameter which controls the mightiness of the correction.

This control parameter should be small such that the spurious transport due to the

mass correction is negligible in comparison to the physical transport. The bench-

mark tests have suggested that the choice of this parameter should depend also on

the resolution. The higher the resolution, the weaker the mass defect. Hence, for

higher resolution the control parameter can be smaller. We propose even for coarse

resolution to choose the control parameter of the mass correction not greater than

0.2.

For the purpose of validating the benchmark results the concept of the entropy of

mixing has been adopted to the issue of tracer transport. We state that the total

entropy of mixing can be used as a diagnostic quantity for the physical consistency

of the transport scheme. Since the total entropy of mixing is conserved with regard

to advection (only diffusion can alter the total entropy of mixing of a passive tracer),
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it is possible to measure the impact of spurious numerical effects by monitoring it.

Hence, the total tracer mass and additionally the total entropy of mixing has been

used to evaluate the transport scheme. With the help of the entropy of mixing we

have found that the proposed scheme is less artificially diffusive than the ordinary

spectral transport method. Furthermore, the new scheme can better deal with strong

spatial gradients before aliasing occurs.

5.2 Implications and Future Tasks

The purpose of this section is to discuss some further ideas and conceptual implica-

tions of this study. With regard to section 3.3 one may ask for an equivalence of the

function of representation to other existing theories. Within the field of information

theory the so called self-information function I is well known (Shannon, 1948). It

denotes the “surprisal” of the occurrence of a statistical event. Its expected value

with respect to the profile (here c) is the entropy or rather the Shannon entropy

which is related to the entropy of mixing. Minoshima et al. (2011) adopted this

concept for numerical advection schemes. In the nomenclature of the present work

they defined:

s = c I[c] (5.1)

Comparing (5.1) with the definition of s in (2.20) yields:

I = −R ln c (5.2)

When we derive the inverse of (3.3) using c0 = 1, we obtain the function of repre-

sentation.

c̃ = ln c + 1 (5.3)

Apparently, I and c̃ are linearly dependent in c, i.e. it should not make a difference,

if we use the one or the other as the prognostic spectral variable. Note that the

function of representation is a kind of self-information function.

But what does this mean in the context of transport? If the self-information

in information theory denotes the “surprise” of the outcome of a signal channel

in time with the knowledge of all outcomes before, then the self-information with
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respect to transport must be the “surprise” of a mixing ratio at a certain point

with the knowledge about all the other points. As the numerical treatment of the

prognostic variables in the KMCM is designed in order to achieve conservation, we

can reason that the self-information is conserved when the function of representation

is employed. Thus, in terms of information theory the global information content

(in contrast to the global entropy) remains constant in time.

The future tasks with the KMCM and the transport algorithm will be to estimate

the “age of air” and to simulate the transport of water vapor and other chemical

species. Therefore, it is necessary to implement sources and sinks in the transport

scheme. These additional terms depend on time and location as they represent the

production and reduction rates of the constituents, e.g. condensation of water va-

por in clouds. For this purpose we propose to use both the total mass and the total

negentropy of mixing as additional prognostic variables. For each constituent this

denotes only two additional components and hence it is hardly further computation-

ally expensive since total mass and total negentropy of mixing should be computed

to monitor the performance of the transport scheme anyway.

In order to assure global conservation of mass and negentropy, we propose to use

a mass and negentropy correction:

1. Execute the time stepping on the mixing ratio, the prognostic total mass, and

the prognostic total negentropy of mixing.

2. Compute the actual total mass with (3.10) and correct it with the proposed

mass correction:

cnew = κcold (5.4)

Instead of M0 the new prognostic total mass is used to compute κ.

3. Compute the actual total negentropy of mixing with (2.19) and correct it

according to a new approach:

cnewest = cnew − µ∇2cnew (5.5)

The parameter µ is a kind of an anti-diffusion coefficient and represents the

defect between numerical and physical diffusion. We may derive µ from the
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new prognostic total negentropy of mixing with an approach similar to (3.11).

Note that (5.5) is closely related to “flux-corrected transport (FCT)” (Boris and Book,

1973). But instead of deriving an anti-diffusion from higher order schemes we pro-

pose to compute it explicitly from the total negentropy of mixing. Furthermore, it

must be acknowledged that FCT computes the flux for every fluid parcel whereas

the proposed negentropy correction is an approximation on the globe. A real FCT

scheme can be provided by computing the anti-diffusive flux from (2.20).
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