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Abstract

The Earth’'s upper atmosphere is a highly dynamic region dominated by atmospheric
waves and stratified turbulence covering a wide range of spatio-temporal scales. A com-
prehensive study of the upper atmosphere is challenging since this region is still poorly
sampled. The altitude range of the upper atmosphere limits its study since is either in-
accessible by in-situ instruments or prohibitively expensive. Remote sensors, such as
radars, are the only alternative to observe the upper atmosphere continuously. Never-
theless, current remote sensors cannot provide measurements over the whole range of
frequencies and spatial wavelengths associated with atmospheric waves and stratified
turbulence due to their limited spatio-temporal resolution and coverage. Most of the
previous studies using radar measurements have resolved the spatio-temporal ambigu-
ity associated with the measurements focusing on particular scales and assuming a ho-
mogeneous atmosphere within the observed volume. To dramatically improve the un-
derstanding of the upper atmosphere and its components at different spatio-temporal
scales, an investment in large observational infrastructures is required to obtain 4D ob-
servations (space-time) with a sufficient resolution. Unfortunately, the deployment of

such systems is still prohibitively expensive.

This work investigates remote sensing techniques based on multiple—input multiple—|
output/(MIMO) and inverse problems to improve the capabilities of current atmospheric

radars, namely, improvement of the effective spatial resolution and observational cover-

age. The former using multiple transmitters and receivers closely separated, and the lat-
ter using multiple transmitters and multiple receivers widely separated. radars
are known for their superiority over conventional radar systems because they provide
better spatial resolution and coverage due to their higher number of degrees of freedom
and their flexible transmit beam pattern. Nevertheless, the application of MIMO]might
degrade radar systems’ performance by reducing the transmitted power per antenna,
increasing the computational complexity, and causing cross-interference between the

multiple transmitted signals.

This study particularly investigates the design of transmit waveforms and proposes re-
covery algorithms to retrieve radar parameters like signal amplitude, angle of arrival,
and angle of departure from atmosphericMIMOJradars. Since the performance of wave-

form design techniques and recovery algorithms are strictly related to the radar target,



two successful examples of[MIMO|are described in detail using|polar mesospheric sum-|
[mer echoes (PMSE) and specular meteor trail echoes as tracers of the dynamics.

These two implementations resulted in measurements of the MLT with unprecedented

spatial resolution and coverage. Additionally, numerical simulations are provided for

each case to support the experimental results.

The first implementation resulted in observations with six times higher spatial
resolution than the theoretical instrument resolution. These exceptional results have
been employed by supplementary studies to identify and characterize atmospheric in-
stabilities of kilometer-scales, which otherwise would be unresolvable by standard tech-
niques. Similarly, the second example presents the largest multi-static meteor radar
network deployed in the world, for which the total number of meteor detections per
day was ~120k compared to ~10k of commercial meteor radars. Such observations are
unique, and the results have also been employed by additional studies to measure the
energy spectrum in the mesosphere over a wide range of spatio-temporal scales. These
two successful experimental implementations demonstrate the feasibility of MIMO|for
atmospheric observations and open a new area of exploration in the atmospheric com-

munity.
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Chapter

Introduction

In this chapter
1.1  Motivation

1.2  Earth’s atmosphere observations

1.3 Radar measurements of the mesosphere and lower thermosphere
(MLT) dynamics

Objective of this work

Thesis structure

1.1 Motivation

The atmosphere is a highly dynamic region dominated by complex processes such as
gravity waves, tides, planetary waves, turbulence, wave-wave linear interactions, non-
linear interactions; covering different spatio-temporal scales [WHO6]. Observation and
characterization of these processes is quite challenging and, most of the time, it re-

quires combined observations by multiple sensors, such as ground-based remote sen-

sors, sounding rockets, and satellite observations [Hin+93;(Kat+19;/Che+20]. During the
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last decades, an increasing interest to characterize the different atmospheric regions to-
gether with a huge technological progress have allowed the construction of modern in-
situ and remote sensing instruments, and the development of outstanding techniques

to observe and measure physical parameters of the atmosphere. However, despite this

great progress, there is still an atmospheric region, the|[mesosphere and lower termo-|

region, which is still poorly sampled. The altitude of the[MLT region, which

extends from 50 km to 200 km, limits its study since it is prohibitively expensive by in-

situ instruments such as rockets and it is inaccessible for others such as balloons, air-
crafts, drones or in-situ satellites. Only remote sensors, ground-based and satellites,

are capable of making continuous measurements of the region.

To fully characterize the[MLT and to be able to separate and identify the contribution of
its components at different spatio-temporal scales it is required 4D (space-time) mea-
surements with good vertical and horizontal coverage and high spatio-temporal resolu-
tion. Recently, such kind of measurements have been proposed to study the[MLT using
multi-site lidars and multistatic radars [SC15;[Vie+16}[Ker+19].

Particularly with radars, a great effort has been done to obtain high resolution 4D mea-

surements of the region using high-power large aperture radars [Rap+11}[Lat+12a}
Som-+13] and low-power multi-static meteor radars [SCI5;[Vie+16]. However, the

achieved resolution and space coverage of the measurements have been limited by the

radars’ size.

In this dissertation, the capability offmultiple—input multiple—output/(MIMO) radar tech-

niques and inverse problem approaches are analyzed to improve the spatio-temporal
resolution and coverage of atmospheric observations, with a particular focus on the[MLT|
region. A[MIMOJradar is a system employing multiple receivers and multiple transmit-
ters in which each transmit element radiates an independent waveform from each of
the multiple transmit antennas. Compared to traditional phased array radars,
provides additional degrees of freedom thanks to the multiple independent transmit-
receive links. These additional degrees of freedom lead to an improved angular reso-
lution [BFO3], a better antenna beam pattern [LS07], and a larger number of detected
targets [[Fis+06]. The primary objective of this work is the estimation of target param-

eters such as range, Doppler, |angle of arrival (AOA), and [angle of departure|(AOD) in

MIMO|systems, which are required to estimate atmospheric physical parameters such
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as wind velocities, momentum fluxes, electron density, electron temperature, and ki-
netic energy. Moreover, since the main requisite of[MIMO|systems is the independence

of transmit signals, an emphasis is done on the waveform design, which plays a critical

role in the[MIMO|radar performance.

Particularly, this work focus on the estimation of |angle of arrival (AOA) and [angle of]
[departure (AOD) of atmospheric radar echoes and waveform design for [MIMO|radars
with colocated antennas. Even though[MIMO]radars have been amply discussed in the
past, most of the studies have been done from a theoretical point of view [LS07;[XLS06;
[CV08a], in the context of hard targets [Mas+10} [KD10; JLZ12; [HL15; [Mao+17; Tan+18],
or considering punctual targets [GDP12;|God+10;|GHBO%%|GHBIO;|Gom14;|Qin+17]. The
present thesis analyses existing radar signal processing techniques for traditional atmo-
spheric radars and extends the concept to[MIMOJradars considering hard and stochastic

targets, which are not necessarily punctual. Additionally, this work studies the influence

of sparse and limited sampling due to the reduced number of antennas available in a
radar system, and thereby, it proposes a set of inverse problem techniques to reduce the
undesired effects of distorted radiation patterns and improve the[AOA estimation. Fur-
thermore, the performance of the proposed techniques considering Gaussian-shaped
targets are evaluated and compared through simulations. Finally, two practical imple-
mentations of[MIMO]are showed to study the mesosphere using distinct tracers:
[mesospheric summer echoes| (PMSE), and specular meteor trails. The results confirm
the feasibility and benefits of[MIMO|for atmospheric applications.

In order to understand the current limitations of radar measurements and the complex-
ity of atmospheric layers, the following sections briefly describe previous atmospheric

observations and some of the complex processes we find in the[MLT region.

1.2 Earth’s atmosphere observations

The Earth’s atmosphere is the layer of gases surrounding the planet that contains the
air we breathe. These gases are retained around the planet by the Earth’s gravity. In-
deed, these gases play a critical role in protecting living beings on Earth by absorbing
ultraviolet solar radiation, keeping the surface warm, and reducing extreme tempera-

ture changes from day to night. The Earth’s atmosphere is a large and complex system
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which is described in terms of five layers based on their vertical variations of temper-
ature. The troposphere, the stratosphere, the mesosphere, the thermosphere, and the
exosphere [UCAI5]. Figure[L.I shows a sketch of the first four layers, as well as some nat-

ural phenomena and instruments used to study the different layers.

The troposphere is the lowest layer of the atmosphere, and it has an extension of about
10 km. The air temperature in this region is warmer close to the surface and gets colder
as altitude increases. Next is the stratosphere, where absorption of ultraviolet solar radi-
ation by ozone becomes essential, and the temperature starts to increase with altitude.
For both layers, airplanes, balloons, and ground-based and satellite instruments can be

used regularly to characterize their dynamics.

On top of the stratosphere, we find the mesosphere, which extends from 50 km to 85 km
altitude. The upper mesosphere, called mesopause, is the coldest part of the Earth’s at-

mosphere and interesting phenomena can be seen in this region, such as meteors,

[tilucent clouds|(NLC),[polar mesospheric winter echoes (PMWE), and[polar mesospheric

[summer echoes|(PMSE). This layer is hard to study with in-situ instruments since air-

planes and balloons cannot reach these altitudes, and satellites and space shuttles orbit
at much higher altitudes. The only way to study the mesosphere is through ground and

satellite remote sensors such as radars, lidars, and cameras.

Above the mesosphere is the thermosphere, which extends up to 1000 km. In this region,
the absorption of solar extreme ultraviolet (EUV) radiation causes the temperature to
increase again. The thermosphere is the layer where auroras occur and satellites orbit.
Lastly, we find the uppermost atmosphere’s layer, the exosphere, which is not shown in
Fig. The exosphere separates the Earth’s atmosphere from outer space. This region

is mainly composed of extremely low densities of hydrogen and helium.

As stated before, this work focuses on the characterization of the[MLT through ground-
based radar measurements. In the the transport and exchange of energy occurs
through complex processes. The main sources of the energy budget in this region are the

sun as solar radiation and the troposphere through upward propagating atmospheric

waves. Essentially, theMLT dynamic is dominated byjatmospheric gravity wavess|/(AGWs)

and turbulence processes covering different spatio-temporal scales [Vin15}[Sto+18}[Vie+19].

[AGWs|are generated in the troposphere by various processes such as flow over orogra-
phy, wind shear, and convective processes. [AGWs play an essential role in transporting
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Figure 1.1: Layers of Earth’s atmosphere (Exosphere is not shown). Typical neutral tem-
perature and density profiles for daytime solar medium conditions are drawn in red and
green, respectively. Sources of the energy budget in the mesosphere are the solar radi-

ation and upward propagating atmospheric waves. Continuous in-situ measurements
are available for all the layers except for the mesosphere.
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energy and momentum from the troposphere to higher altitudes such as the mesosphere
or some times even to the upper thermosphere. As the waves propagate upward, their
amplitudes grow due to the vertical decreasing neutral density, becoming significantand
unstable at upper heights [Yig+09]. At mesospheric altitudes,[AGWs|amplitude becomes
so large that they break and deposit their momentum on the mean flow, which causes
the mean zonal wind to change in intensity or even direction [Pla+15].

effects cannot only be observed in the wind, but also in the neutral temperature, the
neutral density, and the electron density [Liib+87;[Hoc85]. Multiple in-situ and remote
instruments such as airplanes, balloons, rockets, satellites, cameras, lidars, and radars,
have been used to characterize the atmospheric dynamics measuring the changes in
those atmospheric parameters. Among all of them, only rockets can make high-resolution
in-situ measurements of the mesosphere, but they are costly and rare. Another feasible
option is to use remote sensors. Next, some studies of the MLI]region through radar

measurements are presented.

1.3 Radar measurements of the mesosphere and lower thermo-

sphere (MLT) dynamics

In order to fully characterize the complexMLT dynamics it is desired to retrieve 3D re-

solved structures from remote radar observations for a broad range of spatio-temporal

scales [SC15;(Cha+19;[Vie+19]. These scales are important for understanding the roles of

atmospheric tides, gravity waves, and turbulences within the mesosphere [RL14]. Var-
ious radars and techniques have been used to measure spatio-temporal features of the
mesosphere, such as medium frequency radars, mesosphere-stratosphere-troposphere
radars, specular meteor radars (SMRs), and incoherent scatter radars in
monostatic and multi-static configurations. Unfortunately, in most of cases, radar mea-
surements are local or are limited in spatio-temporal resolution and coverage. Recently,
multi-static specular meteor radars have been proposed to obtain 3D radar measure-
ments from the mesosphere with a spatio-temporal resolution of 30 km-1h, so-called
[MMARIA|[SC15;|Vie+16]. Despite this great advance, the observed scales are not suffi-

cient to characterize km-scales and mesoscale dynamics fully. Figure[L.2]shows a theo-

retical kinetic energy spectrum at mesospheric altitudes for vertical and horizontal scales,
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Figure 1.2: Simplified vertical and horizontal kinetic energy spectrum at mesospheric al-
titudes where regimes dominated by Rossby waves, gravity waves, and Kolmogorov tur-
bulence are ideally well identified [Vie+19]. The X-axis represents the spatial frequency
or so called wavenumber. A log-scale is used for representing the Y-axis but no units are
shown intentionally. Vertical scales measured by rockets and horizontal scales measured
by radars (MAARSY|and [MMARIA) are indicated with a blue and orange boxes, respec-
tively. Proposed radar techniques based on MIMO (MAARSY-MIMO and [SIMONe) to

study smaller and larger scales are also indicated with a double dotted box.

where scales covered by standard instruments are indicated. Unquestionably, rockets
are by far the best instruments to study the turbulence dynamic at vertical scales in the
mesosphere. Unfortunately, they are costly, rare, and not continuous. On the other hand,
horizontal scales observed by standard radars likeMAARSY [Lat+12b] and[MMARIA|are
restricted to 10 km—45 km and 60 km-300 km, respectively.

1.4 Objective of this work

The primary objective of this work is the improvement of standard radar techniques
to observe and measure the region over a wide range of temporal and horizontal

scales. Moreover, two practical implementations are presented to measure horizontal
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scales between 1 km—45 km and 30 km—1000 km, which are associated to stratified tur-

bulence and[AGW]dynamics, hereinafter referred to as kilometer-scales and mesoscales.

In radar systems with in-beam capabilities, three factors limit the observation of hori-
zontal waves at multiple scales simultaneously. First of all, the radar antenna aperture,
which limits the angular resolution achievable by the system, and hence, determines the
smallest resolvable structure. The larger the aperture, the smaller the structure size can
be resolved. Secondly, the volume illuminated by the radar beam, which conventionally
defines the maximum resolvable spatial wavelength. And finally, the number of anten-
nas which limits the number of distinguishable wave structures within the illuminated
volume. The larger the number of structures, the larger the number of receive antennas
required to estimate spatial dynamics with the same accuracy. Indeed, observations of
horizontal dynamics at the[MLT have been accomplished in the past using multi-beam
experiments. However, the disadvantage of multi-beam experiments is their reduced

time resolution and the poor spatial resolution compared with in-beam experiments.

This study proposes new radar techniques based on multiple—input multiple—output|
(MIMO) to extend the horizontal spatial scales measurable by a radar system. A|MIMO|

system can be defined as a system with multiple-radiating antennas and multiple-receiving

antennas. Since the 1990s, such kind of systems have been widely used in communica-
tions to improve the capacity and reliability of communication channels
[LT03]. Likewise,[MIMOJis being employed in the 5G cellular network technology and the
IEEE 802.11n WiFi standard due to its excellent performance for interconnecting multi-

ple users at high-speed data transmission.

Particularly in this work, [MIMO]techniques in two different configurations are used to
enlarge virtually the antenna aperture, and to increase the number of transmit-receive
links available in a multistatic-radar with emphasis on the investigation of narrowband
radars for the observation of atmospheric targets. Although[MIMO]radars have
been intensely studied in the literature, the existing techniques have been usually pro-
posed and analyzed from a theoretical point of view or for hard targets. The objective of
this thesis is to study new[MIMO]and waveform design techniques, and to develop sig-
nal processing algorithms to characterize the mesosphere at different spatio-temporal

scales. The proposed techniques will be studied theoretically and experimentally, con-

sidering point-like and[wide—sense stationary|(WSS) targets.
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Even though[MIMO]|techniques help to increase the number of virtual antennas and to
increase the number of transmit-receive links, we still have to face the signal recovery
problem. Since ancient times, scientists have attempted to describe the world through
observations, unfortunately, for many cases, direct observations are not possible due to
diverse reasons such as limited technology, cost, or physical accessibility. When direct
observations are not available, the effects of the parameters of interest might still be mea-
sured. Forinstance, when Newton proposed the concept of the Earth’s gravitational field,
he did not measure the gravity’s acceleration directly, but he timed the falling of a free-
fall object, demonstrating that the acceleration of an object in a free fall is independent
of its mass. Currently, similar recovery problems when direct measurements are not
available can be found in various disciplines such as Seismology, X-rays/Tomography,
Optics, Astronomy, and remote sensing in general. In those cases, the problem can be
formulated as:

y = G(x) +n, (L.1)

where x is the parameter of interest or state vector, which cannot be measured directly.
y are the measurable effects or the measurement vector. 7 is the noise associated with
the measurements, and G is the theory that predicts the experimental outcomes y. The
problem of finding x from G and y is known as an inverse problem, which is the inverse
of the forward problem defined as the problem of finding y from G and x. Inverse prob-
lems are some of the most important mathematical problems in science because they
provide us with parameters which cannot be observed directly. Unlike forward prob-
lems, which can be solved by applying (.I) directly, inverse problems are more compli-
cated and challenging to solve. In most of cases, observations are undersampled and the
number of measurements in y is less than the number of unknowns in x. These prob-
lems are known as underdetermined inverse problems. In this thesis, advanced signal
recovery algorithms based on inverse problem techniques are used to recover the data
of interest appropriately. These algorithms are described along with the thesis for each

case individually.

1.5 Thesis structure

The thesis is organized as follows. In Chapter [2, the fundamental radar concepts for
range, Doppler, and angle estimation are presented. In Chapter 3 the MIMO|signal
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model considering atmospheric targets is described. Moreover, various transmission
diversity schemes are proposed to mitigate the cross-interference between transmit-
ted signals. Although there are two kinds of] configurations, coherent and non-
coherent[MIMO)}, this work focuses only on coherent[MIMO|] Non-coherent MIMO] has
been discussed amply in the context of multi-static radars, and it is typically used to in-
crease spatial diversity by observing a target from different view angles. Whereas coher-
ent[MIMO]is used to increase spatial diversity by observing a target from relatively the
same viewing angle. In Chapter[4] the observation and characterization of kilometer-
scale dynamics in the[MLT region using[MIMO]Jradars is described. Moreover, based on
the signal model described in Chapter[3] some guidelines to design[MIMO]antenna ar-
rays are presented. Consecutively, various inversion methods for angle estimation are
described, whose performances are evaluated by simulations. At the end of the chapter,
experimental results are presented to analyze the real performance of the discussed al-
gorithms. In Chapter 5} a novel meteor radar network based on[MIMO]with waveform
diversity is described in terms of feasibility and performance. More importantly, a novel
recovery technique based on compressed sensing is proposed and described to retrieve
meteor signal echoes in radar networks, which otherwise are unrecoverable. Simula-
tions are conducted to corroborate the recovery technique and to quantify the estimation
error. Experimental results are also shown to corroborate the success of the proposal. Fi-

nally, a summary and main conclusions are presented.

10
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Atmospheric radars

In this chapter

2
2.2
2.3
2.4
2.5

Introduction
Radar block diagram
Range estimation

Doppler estimation

Angle of arrival estimation

2.1 Introduction

This work proposes advanced radar techniques and novel recovery algorithms to over-

come the current limitations of atmospheric radars. To understand what these limita-

tions are and how they can be overcome, the basic concepts of radars, the characteristics

of atmospheric targets, and the radar signal processing are discussed in this chapter.
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An elementary radar system consists of a[radio frequency] (RF) signal generator (oscil-

lator), a transmitting antenna, a receiving antenna, and an signal-detecting device (re-
ceiver). When a@ signal is feed to the transmitting antenna, the antenna radiates en-
ergy in the form oflelectromagnetic| (EM) waves. The [EM]wave travels through the free

space until an object (radar target) intercepts some portion of the energy and re-radiates

it in various directions. The receiving antenna collects the portion of energy re-radiated
back in the radar direction and transforms it into an electric signal. The receiver detects
and quantifies the electric signal whose information is processed to estimate the target’s
position and relative velocity. The target’s position is determined by two parameters:
the distance between the radar and the target known as range, and its angular position.
Range information is determined by measuring the time taken for the[EM]wave to travel

to the target and back and it can be written as
R = ct, 2.1

where R is the two-way range, t is the traveling time to the target and back, and c is the
speed of the[EM]wave, which for free space is equal to the speed of light. In the special
case of a monostatic radar in which transmitters and receivers are located at the same

location, the distance between radar and target is half the two-way range
r=—. 2.2)

On the other hand, radar target’s position can be determined from the [angle of arrival
(AOA) of the reflected[EMJwave, which can be obtained by comparing the phase difference
between signals received at two spatially separated antennas. Furthermore, if relative
motion exists between target and radar, the target’s radial velocity can be measured from
the Doppler shift in the carrier frequency of the reflected [EM]wave.

In the following sections, basic concepts like the radar block diagram and radar scat-
tering in the atmosphere are discussed, which will help us to understand the process of

transmission and reception of[EM]waves in the atmosphere. Then, the signal processing

to estimate Doppler velocity, range, and [angle of arrival (AOA) is described in detail.
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Figure 2.1: Radar block diagram. The black circle represents the radar target.

2.2 Radarblock diagram

2.2.1 Radar components

Atmospheric radar systems work similarly as radars used to measure the car speed on

a road. The main difference lies in the characteristics of the target. For atmospheric

targets, a high transmit power is required and only a selected range of radar wavelengths

can be used. Fig. 2.1)shows the main components of an atmospheric pulse radar. These

components are classified into four groups: signal transmission, radar scattering, signal

reception, and signal processing.

2.2.2 Signal transmission

The transmission starts with the generation of a continuous |[RF|sine-wave, whose fre-

quency determines the radar wavelength \. Then, the[RF signal is modulated by a wave-
form and radiated by the transmitting antenna. For[VHE|or radars, the[RE/genera-

tion must be done with an oscillator with tens of mhz of precision.

13
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In the most typical case, a monostatic pulsed radar, the waveform is a single pulse which

is periodically repeated every T' seconds, where T is so called the|inter-pulse period|(IPP).
The[[PP|and the waveform bandwidth of a radar determine the range resolution Ar and

the radar range 7,4, as

C

QB’ ( )
Tma r 2 . 2"

These two parameters are very important because they determine the minimum dis-

cernible size and the maximum unambiguous range, respectively. In a radar with a sin-

gle pulse B = 1/7, where 7 is the[pulse-width|(PW).

Moreover, the ratio between the@and the known as the radar duty cycle, deter-
mines the transmit energy. Depending on the atmospheric target, the maximum range
and range resolution required can vary between 100 km to 2000 km and 50 m to 1000 m,
respectively. To be able to detect such distant objects (targets), high transmit energies
are required. High transmit energies can be achieved by using a long duty cycle with the
same transmit power but at the expense of a poorer range resolution. In the literature,
pulse coded techniques are discussed to increase the radar duty cycle (average transmit
energy) but keeping the same range resolution. These techniques are explored with more

detail in section[2.3]

Another important component of signal transmission is the transmitting antenna. De-

tection of small and distant objects requires large antennas with high gains. Typically,

this is done building big antenna dishes such as the |Arecibo incoherent scatter radar
[Alt98] or the[European incoherent scatter scientific association|(EISCAT) [FHWS3]|

radar; but also can be done using large antenna arrays such as[Jicamarca incoherent|

[scatter radar|(Jicamarca) [HCM13],[middle atmosphere Alomar radar system (MAARSY)
[Lat+12b],[Pansy (Pansy) [Luc+06], andjmiddle and up per atmosphere radar|(MU) [Sat+14].

This work focuses on the study of antenna arrays and how to improve their performance
through new configurations, namely,[IMIMO|techniques, which are explained in chapter
Bl

14
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Figure 2.2:[Radar cross—section|of a perfectly conducting metal sphere as a function of
the relative frequency. The x-axis represents the relative frequency, defined as the num-
ber of wavelengths in the circumference (f,.; = 2wa/)). The y-axis is the@relative to
the projected area of the sphere (o/7a?). [Adapted from Wikimedia Commons, the free
media repository]

2.2.3 Radio wave scattering

When a travelingwave encounters a target (particle or molecule) in the atmosphere,
some energy thereof is scattered. For that reason, radar targets are also known as scat-
ters. Different from reflection, where a wave is only deflected in one direction, scattering
is a phenomenon where radio waves such as light are deviated from a straight trajectory
toone or more paths due to a change in the refractive index in the medium through which
they travel. Changes in the refractive index are mainly due to the presence of particles,

bubbles, droplets, or density fluctuations.

Considering only elastic scattering, where energy transfer is negligible, there are four
different types of scattering depending on the relative target’s size compared with the
wavelength of radiation, as illustrated in Fig. (2) Rayleigh, (b) Mie, and (c) non-
selective scattering. Furthermore, for atmospheric observations, we have to include (d)
Thomson scattering, that is the elastic scattering of electromagnetic radiation by free

charged particles.
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Firstly, Rayleigh scattering occurs when a[EM]radiation is scattered by a small spherical
volume (molecule, particle, or atom) with a variant refractive index where the volume’s
radius « is much smaller than the wavelength of radiation (&« << ). The larger the
volume compared to the wavelength, the stronger the scattering. Rayleigh scattering is
also known as selective scattering since certain particles are more effective at scattering
a particular wavelength. Selective scattering by air particles is, for example, responsible
for the blue sky we observe since shorter wavelengths (blue color) are stronger scattered

than larger wavelengths (red color).

Secondly, Mie scattering arises when the target’s size is comparable to the wavelength
of radiation (A < a < 10\). In this case, the scattering intensity slightly varies within
the wavelength range. Unlike Rayleigh scattering, where the scattering has the same
strength in all directions, Mie scattering is more efficient in the forward direction. Ef-
fects of Mie scattering can be observed by the naked eye in our daily life, since it causes
the white appearance of cloud droplets. Droplets’ sizes are large enough to scatter all

visible light wavelengths with the same intensity and causes the white color.

Furthermore, when the target’s size is much larger than the wavelength (o« >> \), the
scattering intensity is the same for any wavelength (non-selective). The main difference
between Mie and non-selective scattering is the scattering intensity. While in the Mie's
regime, the scattering intensity can vary from 0.4 to 4 times depending on the wave-

length, in the non-selective’s regime, the intensity stays constant for any wavelength.

In the case of atmospheric observations, the primary source of scattering are the free
charged particlesin the atmosphere, namely, free electrons and ions also known as plasma.
Rayleigh scattering from charged particles is very weak due to their small sizes (much
smaller than atoms or molecules). High radar frequencies would be required to get an
appreciable scattering intensity from plasma in the Rayleigh regime. Unfortunately, ra-
dio waves with higher frequencies traveling through the atmosphere are more easily at-

tenuated. Thus, they are not used for atmospheric observations.

A different kind of scattering which only applies for charged particles is Thomson scat-
tering. It occurs when a[EM]wave hits a free charged particle, and the particle is accel-
erated, causing it to oscillate and emit radiation at the same frequency as the incident

wave. In the atmosphere, plasma is comprised of electrons and ions. They both can be
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used as targets. However, ion’s scattering is weaker than electron’s scattering because of
its mass. Ions are heavier and are more difficult to accelerate. Therefore, electrons are

commonly used as targets in the atmosphere [YP68].

Although the Thomson scattering intensity from electrons is higher than from ions, their

cross-section is minimal. It is in the order of 6 x 1072 m?. Only very large and high

power radars like[incoherent scatter radars|(ISRs) [FHW83}/Alt98};[Woo+19] are capable to

detect faint scattering from ionospheric plasma. This work uses data from much smaller
and lower power radars, whereby Thomson scattering from plasma is not detectable. For
low power systems, Thomson scattering from plasma is not detectable and a stronger

mechanism which intensify the scattering of free electrons is required.

2.2.3.1 Coherent scattering

In the presence of multiple electrons and depending on how they are organized, the to-
tal scattering might be much stronger and easy to detect even by small radar systems.
This process is known as coherent scattering and occurs when the reflected waves from
multiple scatter interfere constructively, i.e., when all scatters act as one in the medium.
Constructive interference enhances the total scattering amplitude and make the scatters

visible by low power radar systems.

Typically, organization of free electrons in the atmosphere is randomize and they do not
form coherent structures. Only in special cases, electrons are organized coherently. Two
known kinds of scattering from coherent structures in the atmosphere are Fresnel and

Bragg scattering.

Fresnel scattering takes place when particles, ions, or electrons are organized in a fine
horizontal layer in the atmosphere containing sharp vertical gradients of refractivity
[GBG8I; [Kir+10]. Vertical and horizontal extents of these layers are comparable to half
the radar wavelength )\ /2 and to the width of the first Fresnel zone (2))"?, respectively;
where z is the altitude. One main feature of Fresnel scattering is that they are highly
aspect sensitive, i.e., the scattering is more intense when looking vertically compared
with off-vertical beams. The reason is that for off-vertical beams, the interference is not

constructive anymore.
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Figure 2.3: Bragg scattering from a periodic structure (a) destructive interference (b) con-
structive interference, for which the Bragg condition is fulfilled (A = 2d).

Bragg scattering results from the constructive reflection of[EM]Jwaves on periodic struc-
tures whose distances are in the order of half the radar wavelength, as illustrated in Fig.
Bragg scattering maximizes when the distance between structures is exactly half the
radar wavelength and it decreases along with any difference between that distance and
the radar wavelength. The effect of constructive or destructive interference is intensified

by the cumulative reflection in successive structures (layers).

The Bragg's law describes the condition for constructive interference considering the in-

cident angle to be at its strongest when
2dsin = nA, (2.5)

where n is a positive integer, d is the distance (separation) between periodic structures, A

is the radar wavelength, and 6 is the incident angle of the[EM]wave respect to the layers.

The Bragg's law described above assumes a perfect crystal structure. Such assumption is
not hold in the atmosphere. Instead, the atmosphere can be thought as a layer composed
of distinct periodic structures of different distances. For which, the maximum scattering
occurs due to the structure with distance equal to half of the radar wavelength (d = A\/2)

for an incident angle of = 90°.
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Bragg scattering is the main reason why atmospheric radars work at frequency bands
from 30 MHz to 600 MHz (radio wavelengths from 10 m to 0.5 m), namely, [very high fre-]
lquency|(VHF) and ultra high frequency|(UHF) bands. Detectable coherent structures in

the atmosphere are mostly organized in meter-scales from 0.1 m to 5 m, which is equiv-
alent to 0.2 m to 10 m radar wavelengths according to Eq. Structures smaller than
0.2 m are not detectable since at those wavelengths the transmitted energy is easily at-
tenuated in the atmosphere. On the other hand, radio wavelengths higher than 100 m to

120 m are reflected in the lower mesosphere and do not reach higher altitudes. Radio fre-

quencies thatarereflected in the E and Flayer are also known as[E-layer critical frequency|

(foE) and [F2-layer critical frequency (foF2), respectively. They are typically measured by
[digisondes|and|continuous Doppler soundings/in a daily basis [KC18].

2.2.3.2 Stochastic nature of atmospheric targets

The primary source of scattering in the atmosphere are the free electrons, which move at
fast speeds and random directions. Assuming that the speed and direction of a free elec-
tron are measurable, the sampling rate of radar measurements are too slow compared to
the electron’s speed. Therefore, Doppler and[RCS measurements from free electrons are
considered as stochastic processes. For stochastic processes, only the statistical parame-
ters matters. One single measurement do not provide any information. Single measure-
ments of Doppler and[RCS|from free electrons are meaningless since they both depend
on the electron’s position and velocity at the measuring time. Therefore, multiple real-
izations are required to estimate the first and second statistical moment (mean and vari-
ance) of Doppler and[RCS from free electrons. [FL92;[FHO5]. Even in the case of coherent
structures, i.e., an organized cloud of electrons moving at a slow speed, itsis still
stochastic in nature since the total scattering results from the sum of scattering from sin-
gle electrons. In the following sections, the measured[RCS of coherent structures formed
by a cloud of electrons are considered as a stochastic process, whereas, their Doppler is

not since most of these clouds move at relatively very slow speeds.

2.2.4 Radar measurements

The ultimate goal of atmospheric science is the understanding of the atmospheric dy-

namics and all processes within. To study and understand these processes is required to
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Figure 2.4: Propagating radar wave scattered in a target at the far field.

measure and quantify some atmospheric parameters such as air/electron temperature,
air/electron density, air/electron velocity, kinetic energy, and momentum fluxes at dif-
ferent spatial and temporal scales . Such parameters cannot be measured
directly by radars, but instead, they can be inferred from the changes that an electromag-
netic wave suffers when are scattered in the atmosphere. Depending on the physical pa-
rameter of interest, they can be inferred from changes in amplitude, frequency, or phase

of the propagating radar wave.

2.2.4.1 RFsignal

The propagation of radio waves is governed by Maxwell’s equations. From these equa-
tions, one can derive the so-called free-space wave equation and obtain a solution of the

form
() = A lkrmeeh), 2.6)

where k is the wave number, r is the travelling distance, and w. = 27 f. is the radar
frequency. When a continuous propagating wave is reflected or scattered in a object at

range r = ct,/2, it suffers changes in amplitude, frequency, or phase that can be de-
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noted as
S(t) — A, ej(*kawc(tftT)fwrt+¢r) 2.7
= A Iwell=tn) g e (Zhr—wrttor) 2.8)
= f(t —t;)or(2), (2.9)

where 0,(t) = a, e/(-F"=wrt+¢r) represents the scattering caused by the presence of
a target at range gate r, f(t — t,) = Ae 7«(!=tr) represents a delayed version of the

carrier signal, and s(t) represents the signal at the receiving antenna in a monostatic

radar as shown in Fig.

There are three parameters in this wave solution that are commonly measured and used
to characterize the radar target: (a) The amplitude a,., which provides information about
scattering properties and target’s structure. (b) The Doppler frequency w,., which allows
us to infer the target’s velocity, and (c) the phase information ¢,, which is used to deter-

mine the angle of arrival (position).

Recovery of amplitude, frequency, and phase starts at the receiving antenna, where the
[EM]radiation is transformed into a electric signal. Usually, the radar return is so weak
that the signal requires some amplification using low-noise amplifiers, see Fig.[2.1, Then
the signal is digitized by the receiver, whose amplitude and phase are proportional to the

backscatter coefficient o, (t).

Equation is only valid for|continuous wave|(CW) radars in the presence of a single

target. For a[CW]radar in the presence of multiple targets at different range gates, the

received signal results from the range integral

s(t) = / £t =) on()dr. 2.10)

Notice that range information cannot be recovered from s(t) since scatters from differ-
ent ranges o, are all combined. Modern radars modulate the carrier signal using a pulse
or a waveform w(t) to be able to recover range information from multiple echos. Thus

becomes
S(t) = /w(t - tr)f(t - tr) Ur(t) dr + U(t)> (2.11)

where Re{s(t)} is the received signal, and 1(¢) is the receiving noise.
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2.2.4.2 Baseband signal

To recover the signal of interest 0,.(¢) for each range gate from (2.11), we first need to shift
the signal Re{s(t) } to baseband, i.e., we need to remove the carrier frequency f(t). This
process is known as IQ demodulation and it is done by multiplying the received signal

by the conjugate of carrier signal, i.e., by f*(t) = e/¥<!
v(t) = Re{s(t)}f*(¢). (2.12)

This operation results in two components, one of low frequency (baseband) and one of

high frequency. After applying a low pass filtering we keep only the low frequency signal

which is
vp(t) = { / w(t —t,) f(t —t,) op(t)dr + n(t)} £ (@) 2.13)
= /w(t —tp) or(t) f(t —to) fF(O)dr +n(t) f7(¢) (2.14)
= / w(t —t,.) op(t) 2 dr + 7(t). (2.15)

The signal in base-band vy p(t) is stored and used for further processing. The new noise
term 7j(t) keeps the same statistical characteristics of the measured one, and the term
e“<tr can be neglected or absorbed into the unknown phase of the scatter o,.. Therefore,

we get
vpp(t) = /w(t —t,) op(t)dr + 7(t). (2.16)

The demodulation process, known as in-phase and in-quadrature (IQ) demodulation, is
achieved in practice by multiplying the received signal by both a sine and a cosine and
then applying a low pass filter to the results. For an adequate demodulation f and f*
must have the same frequency. This is not a problem when the transmitter and receiver
are located at the same place since these both signals can be generated from the same
source. However, for bistatic or multistatic configurations, the receiver and the trans-
mitter are widely separated and some kind of synchronization between[RF generators is
required. For[VHFJand[UHF radars, commercial [GPS|oscillators can be used to synchro-

nize the generation of the carrier signal.
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Figure 2.5: Typical radar pulse

2.2.4.3 Matched filter response

To get an estimate ¢, of the signal of interest o,., we still have to get rid of the waveform
w(t) from (2.16). Considering that the received signal is passed trough a filter which is

matched to the transmitted waveform, the filter output tuned to delay ¢, is

T
o—}(tr):/o vrp(t) w*(t —t,)dt (2.17)
_ / ' / Wt — te) Wt — t,) 0w () dre dt + A(E). 2.18)
0

The output of a matched filter is represented by its range ambiguity function, which de-
scribes the interference caused by a target at a given range. The range ambiguity function

is expressed as

T
Cltr,ts) = / w(t —t) w(t —t,)dt (2.19)
0T+t7"
— / w(t — (ts — t,)) w*(t)dt. (2.20)
tr

The radar ambiguity function is an essential feature of a radar and it is usually used as
a metric for waveform design. Its importance resides in that it determines the range

resolution.

In the most simple case, the waveform is a single pulse with pulse width 7 and amplitude
|w(t)| = 1fort = [0, 7] and O elsewhere, as illustrated in Fig. In such cases, the

23



CHAPTER 2. ATMOSPHERIC RADARS

ambiguity function reduces to

(1 — 7'“*“'), if[t, —te] <7

T

Cltr,te) = (2.21)

0, elsewhere

Replacing in and replacing the range integral by a time integral (¢,; instead

of k) we get

tr+7 o
G (t) = / (1 - ”Tt“')a,g(t,i —t,)dt, + (t) 2.22)
tr—T
:/ (1- ‘i’f’)a,{(tﬁ)dtﬁ—i—ﬁ(tr). 2.23

The estimate &, is a smooth version of o,;, where ¢, is approximately equal to ¢, within
the interval [—7, 7]. This can be seen as the integral of the backscatter coefficients over

the neighborhood around the range r.

Although the data can be digitized at a high rate, i.e., small ¢, steps, the estimate &,
will still be smoothed and limited in resolution by the pulse width 7. Typically, pulse
radars are designed to have a sampling time equal to the pulse width (t; = 7), avoiding
unnecessary oversampling. When the range resolution is limited, shorter pulses or pulse

compression techniques can be used to overcome this problem.

2.2.5 Digital signal processing

Once the return signal o (¢), is retrieved, we have to separate the range and Doppler in-
formation. Range information is obtained measuring the travel time of the pulse to the
target and back, which is referred hereafter as the fast-time domain. On the other hand,
when multiple samples over time have been collected from the same range, they can be
grouped in a vector to estimate the Doppler frequency. The time separation between
samples, in this case, is equal to the[PRI|and we refer to these samples as samples in the
slow-time domain. In this section, we describe how to separate the range and Doppler

information.

Let us consider the same pulsed radar as in the previous section, which is shown in Fig.

[2.5. Data recording in the fast-time domain starts with the beginning of a radar pulse,
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Figure 2.6: Radar samples organized in the fast and slow time domain. Notice that the
fast-time and slow-time interval are equal to the receiver’s sampling time ¢, and the[PRI]
T, respectively. Fast-time samples represent the range bins and ¢, represents the range
resolution. Three targets are shown, two (orange and green) coexisting at the same range
and one (blue) alone.

and it is performed at a sampling rate of fs = 1/ts. The recording continues until the
desired maximum unambiguous range ry,q, = ¢T'/2. When the fast-time samples fora
given pulse are completed, they are stored in a (column) vector whose elements represent
the range bins or range samples. For every new pulse, a new (column) vector is stored
and appended to the two-dimensional matrix illustrated in Fig. The time between

pulses is 7', and the sampling frequency in the slow-time domain is Fs = 1/T, also

called [pulse-repetition frequency|(PRF).

Using this matrix organization and considering only one target per range bin, like the
blue target in Fig. the smoothed radar reflectivity &,.(¢) can be represented in the
discrete fast-time ¢; and slow-time ¢, domain as where &(¢;, t,) represents an element
of the matrix shown in Fig.[2.¢with

6ot =1T +rty) =6t t,) = a, eI (Thr—wrtitér), (2.24)

If enough samples are collected along the slow-time domain the amplitude a,., Doppler

frequency w,, and phase ¢, can be recovered from (2.24).

When multiple targets coexist in the same range, like the orange and green target shown
in Fig. the number of Doppler frequencies is higher than one. For such cases, (2.24)
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is represented as the superposition of multiples signals with Doppler frequency w; as
G(tity) = aj, el Thrwititoin) (2.25)
i
= 3 o) eI 226)
i

For practical reasons, in the following sections we use o, ¢, and r to represent the esti-
mated signal &, the slow-time domain ¢;, the fast-time domain ¢,; respectively. Thus,

(2.26) becomes

o(t,r) =Y t(wi,r) e, (2.27)

The signal ¢ (w;, ) = a;, e/(7F"+%.r) contains information about the amplitude and
phase of the reflected signal per frequency bin w; and range gate r. Notice that o (¢, )
and ¢)(w, r) form a Fourier transform pair and Doppler information might be recovered
applying the inverse Fourier transform to the signal o(¢,7). In the following section,
signal processing techniques are described to recover range, Doppler, and angle infor-

mation from radar measurements.

2.3 Range estimation

Insection|2.2.4.3[a simple technique to recover range information of radars transmitting
a single pulse was described. In this section, the concept is extended to a more general

waveform.

Ideally, we would like to detect very distant radar targets with a high range resolution. To
reach distant targets, a pulsed radar requires to radiate a high energy F, where £ = 7P,
7 is the pulse width, and P, is the transmit power. Likewise, to achieve a high range res-
olution, the pulse bandwidth also must be high, where Ar = ¢/(2B;), B; is the band-
width, and cis the speed of light. In a radar transmitting a single pulse they both depend
on the pulse width and therefore, the transmitted energy and the range resolution are in-
versely proportional to each other. To attain a high £ and a small Ar, pulse radars should
be able to generate a high transmit peak power in a short of time, i.e., high peak powers

P, and short pulse width 7. Although this can be achieved with current technologies, it
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is expensive and difficult to do in practice. To overcome this problem, long pulses with
high bandwidths are employed instead of short single pulses. When long pulses with
high bandwidths are used, the information is later recovered employing pulse compres-

sion techniques.

2.3.1 Pulse compression

Pulse compression is a technique used to attain a high transmitting energies enlarging
the pulse width but without losing range resolution. In order to radiate more energy
with the same peak power, the pulse width must be longer. For single pulse radars, the
longer the pulse, the smaller its bandwidth and hence a poorer range resolution. To keep
the same range resolution as the one obtained with a short pulses, the bandwidth of the
long pulse must be enlarged. The process of increasing the bandwidth of a pulse is known
as modulation. Modulation of a pulse can be done in amplitude, frequency, or phase and

they can be used indistinctly for most of the cases.

Pulse compression techniques are eployed to recover the radar signal echos from modu-
lated transmitted signal. To understand this concept recall the discrete version of (2.16),
where the measured complex signal v is equal to the convolution of the envelope w and

the target backscatter coefficient o

|
—

v(t,Kk) = w(k —ry)o(t,r) +1(t, k). (2.28)

i

Il
=)

Note that the envelope value depends on only the range index since it is a periodic func-
tion with period T'. In the most simple case, a radar with a single pulse, the envelope is a
rectangular pulse of width 7. However, in practice, the envelope can take any shape such
as Gaussian, triangular, rectangular, or even a random shape. Changes of w in ampli-
tude are known as amplitude modulation, which has been used in communications for a
long time. For atmospheric radars, amplitude modulation is not recommended for two
main reasons. Firstly, amplifiers are not totally linear it the whole range. Non-linearities
might introduce errors in the process which are difficult to identify and correct. Sec-
ondly, the objective of pulse compression techniques is to maximize the transmitted en-
ergy. Soitis better to keep the envelope’s amplitude at its maximum and do not play with

it.
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(a) binary code or waveform

(b) phase-modulated carrier signal

(c) waveform autocorrelation function

Figure 2.7: Pulse coded signal (a) waveform or code, (b) phase-modulatedRF signal, and
(c) autocorrelation function of the waveform

Others modulation techniques that are extensively used in communication and radars
are frequency and phase modulation. Due to the nature of radar targets, the usable fre-
quency bandwidth is limited and frequency modulation is not commonly employed. The
limited spectrum can be better used employing phase modulation. This work primar-
ily focuses on pulse compression by phase modulation, also known as spread-spectrum.
Spread-spectrum is done by dividing a pulse oflength L in N time slots of duration L. /N,
where the phase of the envelope at each slot can take any value between — to 7. By doing
this, the pulse bandwidth increases N times, from By, = 1/L to B = N/L. Likewise,
the range resolution increases by V. To maximize the pulse energy, the amplitude of
the envelope is kept at its maximum |w(r) = 1| when the radar is transmitting and 0

elsewhere.

Waveform with rectangular shapes are quite used in many applications, although they
are undesirable since their Fourier harmonics might affect other systems at nearby fre-
quencies. Typically, rectangular pulses are Gaussian filtered to mitigate the harmonics
and minimize undesired effects. Despite these considerations, we describe the envelope
as a rectangular pulse divided into sub-pulses since they are more simple to describe
mathematically. An example is illustrated in Fig. [2.7(a). In this case, the envelope can

take only a binary phase coding, 0 and 7.
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2.3.1.1 Signal decoding

If the envelope, also known as the waveform, is more complex than a single pulse, an
additional step is needed to get an estimate (¢, 7) of o(t,r) from (2.28). The process

of recovering & (t, r) is also known as decoding. One of the most known and simple de-

coding techniques is the[matched filter estimator|(MFE) defined as the cross-correlation

between the transmitted waveform and the received signal

n—1
a(t,r) =) v(t,kj)w*(k; —1) (2.29)
j=0
n—1n—1
= Z w(kj — k) o(t, ki) w* (k5 — 1) +0(t,T) (2.30)
j=0 =0
n—1
= C(ryk;) o(t, ki) +n(t,r), (2.31)
=0
where C(r, k;) = Z;’;& w(kj — ki) w*(k; — r) is the range ambiguity function. If

the waveform w(r) has ideal auto-correlation properties such that the range ambiguity
function is equal to the Dirac delta function §, then (2.31) reduces to

n—1

Gt,r) = 8(ki —r)olt, ki) + At ) (2.32)
=0

=o(t,r) +n(t,r), (2.33)

where the estimate (¢, ) is a good estimate of o (¢, ). The resolution got with (2.33) is
the same as the one got with a short pulse but with the advantage of a higher transmit-
ted energy. The problem lies in that there are no waveforms with such a perfect range

ambiguity function.

In the literature, some waveforms with good auto-correlation properties are proposed,
such as Frank codes, Costas codes, Pseudo-random codes, and Barker codes. Figure
@(a) and (c) show an example of a Barker code and its autocorrelation function, respec-
tively; where each symbol represents a different phase of the carrier signal. The auto-
correlation function of Barker codes looks like a triangular function with some sidelobes,

which different from the desired Dirac delta function.

In general, the goodness of the range ambiguity function is limited by two factors, (a) the

number of waveform symbols and (b) the number of time slots N. The symbols are the
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possible values a waveform can take in a time slot. In the case of Barker codes, the avail-
able symbols are +1 and —1. Previous studies have proved that the larger the number
of symbols available, the better the range ambiguity function [LK8I, e.g.]. Nevertheless,
systems with many symbols are more difficult to implement. Therefore, most of the ap-

plications prefer to use binary codes to keep a simple system.

Furthermore, for codes with good properties, the longer the waveform, the closer the
auto-correlation to the Dirac delta function is. To obtain a long waveform, we require
to increase the number of code bits, which can me done (a) reducing the time duration
of the code bit, or (b) increasing the total wavform length. The duration of the time slot
is limited by the effective sampling time, and it might be difficult to change it in real
systems. On the other hand, when there is no limitation on the waveform length, it can

be increased up to it maximum, i.e., a continuous wave radar.

2.3.2 Phase-coded continuous wave radar

Unlike pulsed radar systems, [continuous wave] (CW) radar systems transmit[EM]radia-

tion at all times, maximizing the amount of radiated energy. Conventional [CW]radar
cannot measure range because there is no basis for the measurement of the time delay
since the energy is transmitted continuously. However, when a[CW]radar is modulated

as done in pulse compression, estimation of range information is possible using similar

processing techniques such as[matched filter estimator (MFE).

[CW]signals can be modulated in amplitude, frequency, or phase. Nevertheless, radar re-
turns from atmospheric targets are weak and highly dependent on the carrier frequency.
Typical radars do not use amplitude and frequency modulations since amplitude mod-
ulation requires to vary the amplitude of the transmitted signals, which is not desired if
we want to maximize the radiated energy, i.e., to use the maximum amplitude available.

and frequency bands are limited to a few MHz.

Although the application of|frequency-modulated continuous wave (FMCW) is not feasi-

ble and recommended for atmospheric applications since it requires a high bandwidth,
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and its maximum unambiguous range is small compared to what is required for atmo-

spheric observations [Poo85;(St092f[MHLO7], variations of frequency modulation tech-

niques using a couple of different frequencies have been applied before in pulsed radars

to improve the range resolution of atmospheric radars [PYC99; |Che+16]. These tech-

niques are also known as(frequency domain interferometry (FDI) orjrange imaging (RIM).

Application of| is possible because it transmits two or more pulses whose frequen-

cies are separated less than a few MHz in order to ensure they sense the same target. A

variant of[frequency domain interferometry|(EDI) can be applied in[CW]radars, however,

it requires hardware with multi-frequency capability. Here we describe only[CW]radars

modulated in phase due to their simplicity.

Phase-modulated [CW]systems, also called phase-coded [CW]systems, are a generic ver-
sion of pulse compression, where the waveform w(t) can take any value. Recall 2.28),
where the measured signal at a given receiver results from the convolution of the wave-

form and the backscatter coefficient

|
—

v(t,k) =Y w(k — k) o(t, k) +1(t, k). (2.34)

i

Il
o

For radars with a single pulse, most of the values of w(r) are zero and simple techniques
like[MFE|are suitable since the resulting ambiguity function has few and small sidelobes.
Moreover, the presence of several targets at different ranges does not affect the perfor-
mance of the system. However, for long pulses or continuous waves, the presence of
multiple targets might enhanced the sidelobes of adjacent ranges. For those cases, the

MFE]technique is not efficient to recover radar returns since[MFE]maximizes the[signal-

[to-noise ratio|(SNR) but also the sidelobes. Thus, a more efficient approach is required

to decode[CW]radar returns where range sidelobes are minimized.

Let’s rewrite (2.34) for a given time delay ¢ in matrix form
v=Wo+n, (2.35)

where & € C¥ is the unknown vector which comprises the back-scattered reflectivity
for all the range gates, v € CF is the vector measurement, L is the waveform length

which must be larger than the number of range gates, i.e., L > R,and W € CF*®isa
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circulant matrix specified by the waveform w(r).

wy Wp-1 Wp—2 ... WL_R+1
w1 wp  WL—1 ... WL—R42
W = w9 w1 W .. WL—R+3]| . (2.36)
|wr—1 wp-2 WwWp-3 ... WL-R |

There are a couple of ways to solve (2.35). We can use theMFE used in pulsed radars which

in matrix form is expressed as
A H .
6 =W"'W o +n. (2.37)

The problem o is that its solution might contain a lot of artifacts since W/ W +
I. Another alternative applied to meteor radars was proposed by Vierinen et.al.
[Vie+16] based onlleast squares estimation|(LSE), which is expressed as

6 =WIW o+, (2.38)

with
whi = (WHw)"twH, (2.39)

The advantage of[LSE|compared to[MFE is that range sidelobes are cancelled. Neverthe-
less, the noise floor is enhanced. By using[LSE] we expect to loose the weak radar echoes
which might be confused with the noise because of the reduced[SNR] Depending on the
characteristic of the target, modern algorithms can be used to recover the signal of in-
terest and to even recover the very weak echoes. Some of them are based on compressed

sensing as described in Chapter[s]

2.3.2.1 Waveform design

Coding techniques used for pulsed radars are employed in radars as well, such as
Frank codes, Costas codes, Pseudo-random codes, and Gold codes. The selection of one
of them when only one transmitter is used is not a problem. However, it becomes a prob-
lem when the number of transmitters is high given that it is difficult to guarantee low

cross-correlation between multiple codes.
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Vierinen et.al. describe a simple waveform design based on pseudo-random se-
quences. As known, pseudo-random sequences have good auto-correlation and cross-
correlation properties. The basic idea is to generate a pseudo-random binary code se-
quence of length L, where each bit represents a different phase. To improve the range
ambiguity function of the codes, we can select a random code ¢ with a specific length

which minimizes the mutual coherence property
[ = arg min \WiHWi -1 (2.40)
i

This equation selects the waveform with the smallest sidelobes (off-diagonal elements).
When the mutual coherence is normalized, it is bounded by [Wel74]

1> p> 2.41)

R(L—1)
The lower bound, in particular, is useful for grading the designed waveform. The search
of Wj can be done by brute force or can be adjusted based on target and clutter statistics

FriO7]. More complex codes, as poly-phase codes, have better cross-correlation proper-
ties. However, systems using binary codes are much simpler to manufacture, operate,

and maintain.

2.3.2.2 Advantages

The main advantage of]| radars is that they operate at low transmit power since the
energy is radiated continuously. Low power transmitters are cheaper to manufacture
and simpler to operate. Moreover, for long waveforms, radars compared to pulsed
radars have the advantage that range and Doppler aliasing can be selected after perform-
ing the measurements, i.e., in the post-processing stage. Furthermore,[CW]radars using
orthogonal codes allow to operate multiple geographically separated transmitters oper-

ating at the same frequency.

2.3.2.3 Disadvantages

On the negative side,[CW]radars require the transmitting antenna and the receiving an-

tenna to be separated. [CW]radars cannot use the same antenna for both transmission
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Figure 2.8: Doppler processing by taking the[DFT of the slow-time data from a range bin.
Targets coexisting at the same range (green and orange) can be separated perfectly in the
Doppler domain [adapted from Christos Ilioudis, University of Strathclyde].

and reception as pulsed radar does. The problem lies in that the transmitting antenna
is continuously radiating a signal, saturating the receiving system, and thus, reducing
the receiver’s dynamic range. Depending on the power, the transmitting and receiving

antenna must be separated by a significant distance.

Signal processing of[CW]radar measurements require more computational power than
pulsed radars’. Depending on the desired Nyquist frequency, dedicated hardware might
be required to decode the radar data. Nevertheless, for typical Nyquist frequencies (a few

kHz) a standard PC is more than enough.

2.4 Doppler estimation

The Doppler effect is a phenomenon observed when a radio wave is reflected by a moving
target. The motion of the target causes a (Doppler) frequency shift in the reflected wave.

Doppler shift has been used to estimate the velocity of moving targets since the 1940s

[Mal47}[Bar49;[Ber57]. In the presence of a moving target with a radial velocity of v,., the

shift frequency f; due to the Doppler phenomenon in a monostatic radar is

2v,
fa= vac, (2.42)

where f. is the carrier frequency and c the speed of light. Positive Doppler shifts (f; > 0)

indicate that the target is moving towards the radar, whereas negative Doppler (f; <
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0) away from it. We have to clarify that v, is the relative velocity of the target in the
direction to the radar, i.e., v, is only a projection of the true target velocity v into the
radial direction. If € is the angle between the incident wave and the vector v, then

_ 2]|v|cos®

fi=—""—"Ffc. (2.43)

Cc

This equation tells us that to estimate the 3D vector-velocity v, we need at least three
radar Doppler measurements from three different viewing angles. Such kind of mea-
surements are not possible using only a monostatic radar. Since the estimation of the
vector velocity is essential for the understanding of the atmospheric dynamics, new multi-
static radars have been proposed recently to measure the 3D vector v unambiguously in
the[MLT. We show an example of this in chapter[s]

Knowing that the velocity of a target and its Doppler frequency are directly related, we
can focus on the recovery of the target’s Doppler frequency and then transform it to veloc-

ity. An easy way to estimate the Doppler frequency from is to apply the 1D [inverse|
[discrete Fourier transform|(IDFT) to the signal o' (¢, ).

n—1

Ylw,r) =Y olts,r) e, (2.44)

i
where each value of 1)(w, r) represents the magnitude and phase of one element of the
Doppler-range map from Fig. [2.8] Notice that the[[DFTis applied only to the slow-time
domain ¢. The range of frequencies and the frequency resolution are determined by the
sampling time (7) and the selected number of samples n in the slow-time. For a given
T and n, the resulting frequency resolution Aw, and the maximum frequency wn,,x are

determine by

2w
Aw = — 2.45
w= o (2.45)
Wmax= 2 and (2.46)
max— 2T7 .
-1
w = [— QAw, - n Aw] (2.47)
2 2

The larger the number of samples in the slow-time domain n, the closer the frequency
w to the real target’s frequency. The value of n is determined by the radar setup and de-
pends on the characteristics of the target. Mainly, n is limited by the duration of the
target within the illuminated beam and by the target’s correlation time. Typical correla-

tion times in the atmosphere go from hundred of ms to few seconds.
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Another parameter to consider is the maximum frequency wp,ax. When the target’s fre-
quency is smaller than wp,y, it can be estimated without ambiguity. For that reason,
Wmax 18 also known as the maximum unambiguous Doppler frequency or Nyquist fre-
quency. To increase the Nyquist frequency, 1" can be reduced. However, this will also
reduce the maximum unambiguous range r,,,q, = c¢7'/2. The selection of T' is a com-
promise between the desired maximum unambiguous range rp,x and the maximum un-

ambiguous frequency wmax, and must be carefully selected since

e
Wmax= .
2Tmaz

(2.48)

2.5 Angle of arrival estimation

Until this point, we have briefly described how to estimate the target’s cross-section,
range information, and Doppler frequency from radar measurements. As explained above,
these parameters can be inferred from measurements with only one single antenna.
However, when the target’s location is desired, it must be inferred from not just one,
but several antennas spatially separated, which is known as antenna array. In fact, the
target’s location is determined by two factors: the range and angle of arrival. Whereas
range information is estimated by measuring the time a wave travels to the target and
back, angle of arrival is estimated exploiting the interference between waves transmitted
or received at different spatially separated antennas. Constructive or destructive inter-
ference cause that the radiated energy can be focused in the desired direction or reduced
in other directions. We discuss two radar techniques in the following sections which use

the wave interference principle to estimate angle of arrival.

2.5.1 Phased array antennas and digital beamforming

Typically, single antennas have a wide antenna beam pattern since they radiate energy
in multiple directions. However, when a set of antennas is connected to the same feed-
ing system, the EM wave radiation can be focused in a single direction. This is known as
beam steering, and it is done by employing multiple antennas spatially separated where

each of them transmit a EM wave with a different phase shift depending on the desired
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Figure 2.9: Phased antenna array. Constructive interference of two (or more) radiating
sources focus the energy in the direction . Notice that the direction § depends on the
separation of the antennas d and the phase difference A¢

direction. The principle of a phased array is based on the wave interference effect as illus-
trated in Fig. [2.9] A phase-dependent superposition of two or several waves amplify or
cancel each other in a given direction. In-phase signals amplify each other, and counter-
phase signals cancel each other out. So if two radiated signals have the same phase at a
given position a superposition is achieved, and the resulting signal is amplified in that

direction and attenuated in other directions.

The phase shift for every antenna element can be regulated electronically, and thus, the
direction of radiation. Theoretically, the resulting gain in any direction should be con-
stant. However, in practice, the effectiveness of an antenna array is maximized in the
direction perpendicular to the antenna field, while extreme tilting degrades the antenna

performance due to antenna coupling.

The relative phase shift required to steer the beam in a desired direction 6 is determined

by the distance d between the antenna element and the reference point:

Ap = ?d cos 6. (2.49)

There are two kind of phased arrays: (a) the passive phased array, and (b) the active elec-

tronically scanned array. In a passive phased array, all the antennas are connected to
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a single transmitter or receiver, where the phase shift of each antenna element cannot
be changed. Even though there are still some radars such as Jicamarca that
use passive arrays, they are not the most common nowadays. On the other hand, in ac-
tive phased arrays, each antenna element has a phase-regulating module, which creates
the phase-shifting required to steer the antenna beam electronically. Active arrays are

a more advanced phased-array technology which has become most common nowadays.

In this second category we can find modern radars such[MAARSY [Lat+12b] or even fully
digitized radio receivers such|[KAIRA [McK+15].

In order to achieve very narrow antenna beam patterns with small side lobes, radars re-
quire many antennas. For example, the Jicamarca radar requires more than
19000 dipoles to form an antenna beam with|half-power beam width|(HPBW) of 1°. Sim-
ilarly, the [ MAARSY radar [Lat+12b] with 433 Yagi antennas is able to form a beam with
[HPBW]of 3.6°. Not all the radars have such an amount of antennas. When only a few an-
tennas are available and assuming a small number of targets, techniques such as|digital]

beamforming or radar imaging can be employed to improve the angular resolution or to

reduce the sidelobe’s gain.

The process of steering the antenna beam is also called beamforming. Beamforming can
be applied either on transmission or reception. Phased arrays on transmission are capa-
ble of steering the transmitted energy toward the desired direction by radiating delayed

versions of a single waveform. On reception, the receiving beam can also be steered in

a given direction to maximize the received [signal-to-noise ratio| (SNR). Beam steering

or beamforming can be done in two ways (a) analog beamforming, via the use of phase
shifters in the transmitting or receiving side, or (b) digital beamforming, via adaptive
processing of previously recorded data at each receiving antenna element. On reception,
signals at each receiving antenna are stored independently for further signal processing.
However, on transmission radar returns associated to different transmitting antennas
can not be decoupled on the receiving side since all the transmitting antennas radiated

the same signal.

Compared to analog beamforming,[DBF|has the advantage that digital data streams can
be combined to steer the beam in many directions at once (VB88]. This is done
by combining the receiving signals with appropriate phase shifts in a way that signals
coming from a particular direction experience constructive interference while other di-

rections destructive. The phase shifts are modified accordingly in software to cover all
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Figure 2.10: Antenna array. Signals at receive antennas are stored and processed dig-
itally. Notice that for a target at the far field r + o1, 7, andr + 02 can be considered
parallel vectors.

the directions. Moreover, advanced algorithms allow to process the digital data adap-

tively to minimize the sidelobe’s gain [[Jef09].

To be able to separate angle information with let us first consider the radar system
shown in Fig. [2.10 and rewrite (2.24) considering radar echos from targets at the far-field
coming from multiple directions.

o(dtr) =3 ag, o (Blrto—wirton),
1

(2.50)

where k; = 27 /A[cos 0; cos ¢;, cosb;sin¢;, sinb;] is the wave vector or beam direc-
tion, k; = |k;| is the wave number, o is the difference in magnitude between the range
measured from the center of the array and the range from the location of the receiving
antenna, and ko = kd is the phase offset of a target at far field which depends on the
wave vector and the antenna’s position. Notice that g is too small compared to the range
resolution and it is neglected in the range bin. However, it is large enough to add a phase
offset kp. Replacing all the terms in and considering k;r a constant phase shift
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Figure 2.11: Doppler and direction estimation by taking the 2D-{DFT of the slow-time and
antenna (spatial) samples, respectively.

absorbed by ¢; ,., we get

o(d,t,r)= Z ajr ¢l (kid_w”t'i'd)”) (2.51)

(2

= Z¢(ki,t,r) eikid (2.52)

where ¢ (k;, t,7) = a;, € (—wi,rt+¢ir) represents the radar return from direction k; and
range bin r. Notice that, for uniform arrays, o(d, t, ) and ¥ (k, ¢, r) also form a Fourier

transform pair.

Similar to the Doppler case, when multiple antennas spatially separated are available,

we can apply the|discrete Fourier transform (DFT) to separate the radar return for each

direction k:

vk, t,r) = Za(wi,t, r) e Ikdi, (2.53)

%

Equation is known as|digital beamforming|(DBF) which is obtained by applying the
is also known as the sum of delayed versions of the received signals o(d;, ¢, ).

Considering an arbitrary weight, the backscatter coefficient can be obtained from

bk, t,r) =Y o(dt,r) hikd;), (2.54)

7
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where h are the weights. Note that when h(kd;) = e~7kdi is equivalent to (2.53).
When only few antennas are available, the angular resolution is heavily limited. In such
situations, adaptive algorithms can be applied to find a more suitable weight, such as
Capon [Pal+98], that improves the angular resolution and reduces the sidelobes selecting
h(kd) adaptively.

In fact, the angular resolution and the maximum unambiguous angle are limited by the
number of antennas and the separation between them. In a uniform linear antenna ar-
ray, with k = 27/\[0;,60,,0.],and d; = [d,,,dy,, d.,]; the angular resolution and the

maximum unambiguous angle in the x, y, and z direction are determined by

A
A, — , (2.55)
0= A , and (2.56)
mvl; n—1
e = | — =Ab0y, ..., ——Ab,|. .
0 5 6 5 6 (2.57)

For antennas separated by d,_ = \/2, the maximum unambiguous 6,__ is 1.0, i.e.,

Tmin Tmax

no ambiguity. Unfortunately, such small separations are not feasible in practice due to

antenna couplings. Separations of more than 0.7\ are recommended to avoid antenna

couplings.

Furthermore, the 2D Fourier transform can be applied to both the antenna samples and
the slow-time domain to recover angle and Doppler information, respectively. Figure
2.11/shows the resulting matrix after applying the 2D-DFT. The resulting 3D matrix con-

tains amplitude and phase information for each range gate, Doppler, and angle of arrival.
U(k,w,r) = Z Z o(ds, ty,7) eI kdimwty) (2.58)
i
= Qhwr eI Pk, (2.59)
is nothing more than a weighted sum of the measured signals, where the weights

are ¢ Jkdi

Scattering from atmospheric targets can be considered volume-filling at a particular
spatio-temporal scale, i.e., a volume that presents the same statistical characteristics in

space and time. Moreover, when the scattering comes from a volume filled of electrons

41



CHAPTER 2. ATMOSPHERIC RADARS

the[RCS presents fluctuations. These fluctuations are faster than the sampling time. For
those cases, the instantaneous [RCS amplitude and phase from @.59) are meaningless
and the signal 1) is better modeled as a stochastic process with mean 0 and variance b,
ie., akwr ~ N(0,b). The variance b is the important parameter and it can be estimated
from the expected value of the measurements by (1)) = b. The algorithm to obtain b

directly from radar measurements is known as radar imaging.

2.5.2 Radarimaging

Radar imaging is a technique that extracts the angular distribution of volume targets
through the analysis of correlation functions. The cross-correlation of signals at two an-

tennas spatially separated Ad is expressed as
p(Ad,t,7) = <U(d, t,r), o*(d + Ad, 1, r)>, 2.60)

where (.) stands for expected value, and p(k Ad) is known as the visibility function. As
seenin the previous section, the complex baseband signal o can be expressedaso(d, t, ) =
Y(k, t,r) e/¥d, where v includes the backscatter coefficient amplitude and phase, and
kd is the phase offset due to the direction of arrival of the radar return. Replacing in

(2.60), we get
p(Ad,t,r) = < Z Yk, t, ) elkid Z ¥ (kg t,r) e*jkl(d+Ad)>. (2.61)
i !

Most of the atmospheric targets are stochastic in nature. Considering that ¢ (k;,¢,r)
and ¥ (k;, t, ) are stochastic processes and that these targets are separated by a consid-

erable distance such that they are spatially uncorrelated, we get
(ki t, ) (kg t, 1)) =0, for k; # k. (2.62)

Using the above equation (2.61) can be simplified to

p(Ad, t,r) = < > (ki t,r) e‘jkiAd> (2.63)
=Y <¢2(ki,t, r)> eIkind (2.64)
= b(ki,t,r) e TRiAd, (2.65)

1
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b(k;,t,7) = (1%(k;,t,7)) is also known as the Brightness function. Since the visibility
and the brightness form a Fourier transform pair for uniform antenna arrays, we can

recover the brightness applying the inverse Fourier transform to the visibility.

bk,t,r) = Zp(Adi, t,r)ekAdi (2.66)

Asin angular resolution and maximum unambiguous angle are determined by the
number of antennas and distance between them, see (2.57). To improve the angular res-
olution or when no uniform arrays are available, inversion methods such as the
[Fourier transform|(DFT) [Wo097], Capon [Pal+98],[MaxEnt [HCO6], and [CS] can

be applied to recover b from p.

2.5.2.1 Inversion methods

The radar imaging problem is to estimate the brightness b from the visibility measure-
ments p. For each range gate and time sample (2.65) can be expressed in matrix form

as
p=>®b, (2.67)

where p € CM is a column vector comprising the V' measured visibility samples, b €
R? is a column vector representing the discretized brightness, and ® € C"*? is a ma-
trix operator resulting from the phase shifts ®;; = e~7%24_ The value B are the num-
ber of unknows in the equation and it defines the image resolution. This value should
be chosen so that the grid size is smaller than expected features of the image. Notice
that the total number of visibility measurements in (2.67) is 2V (complex) for which not

necessarily all of them are non-redundant.

2.5.2.1.1 Directinversion Originally Kudekiand Siiriicii [KS91] proposed a direct in-
version of (2.67) using the inverse Fourier transform.

b=®"p. (2.68)

Nevertheless, most of the atmospheric radars have a limited number of digital receivers,

and hence a limited number of digitized signals at different antennas. Independently
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of the number of antennas available, the usable number of antennas is limited by the
number of receivers. Thereby p is only known for certain Ad, which implies that B >
2V, i.e., the problem is underdetermined. Implicit in the inverse Fourier transform is
the assumption that the values of the unmeasured antenna separations are zero, which

limits the achievable resolution.

2.5.2.1.2 Capon’smethod Anadaptive technique proposed by Palmer [Pal+98] to solve
[2.67) is the Capon's method [[Cap69]. Capon’s can be seen as an extension of the beam
steering approach. It chooses the antenna weights adaptively at each angle in order to

minimize sidelobe interference.
b= (v (2.69)

In this case, the visibility V must be in matrix form where an element of the visibility
is Vij(t,r) = (o(di,t,r),0*(dj,t, 7)), fori = 1,...,pand j = 1,..., p; where p is the

number of receiving antennas.

2.5.2.1.3 Maximum Entropy When the problem in (2.67) is underdetermined, there

are infinite possible image solutions b which agree with the data p. Of all possibilities,

[maximum entropy (MaxEnt) chooses the solution with the maximum entropy or mini-

mal amount of information [Hys96]. The[MaxEnt solution is believed to be the most likely

brightness distribution and consistent with the available measurements and their sta-
tistical uncertainties. The entropy for a given range gate and time sample is expressed

as
s(b) =) _b;In(b;/F),and (2.70)

F= Z b;. 2.71)

The|MaxEnt solution b is the one that maximizes the entropy and minimizes the square

€rror.

b = arg max s(b),
b

subject to ||p — ®b||3 < €2, (2.72)
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where €? is the expected noise variance. As Hysell and Chau suggested [HCO6|, the error
covariance matrix arising from correlated visibilities can be considered to optimize the

radar imaging problem. Moreover, the resulting non-linear problem can be solved
numerically using a hybrid method [Pow70].

2.5.2.1.4 Compressedsensing Traditionally, the Shannon-Nyquist sampling theorem
holds that the exact recovery of an arbitrary signal is possible if the signal is sampled at

twice its bandwidth. However, for simple signals that do not fully occupy the spectrum,

only a few measurements are required for exact recovery. [Compressed sensing|(CS) for-

malizes this idea stating that exact signal recovery of any arbitrary signal is possible with
fewer measurements than Nyquist requires if the signal is expressed in some known ba-

sis where the signal is sparse.

Natural images are not sparse in their original domain. Nevertheless, several authors

have shown that they are sparse in the Fourier and wavelet domain [TM02;(Sté09;|YH17;

[HM13]. To improve the sparsity of complicated images, other authors proposed the use

of curvelets [Smi+13], bandelets [LMO5], and adaptive dictionaries [Pey10]. The general-

ization of any sparsity basis can be expressed as

b = W¥s, and (2.73)
p=DUs, (2.74)

where ¥ € CB*B is the matrix that defines the sparsity basis of b, and s is a sparse

vector resulting from the transformation of b into the ¥ domain.

Despite the fact that (2.74) is still underdetermined, claims that the signal s can be
recovered even from a very limited number of measurements if two conditions are ful-

filled (a) the signal is K -sparse, meaning that the number of non-zero values is less than

K,with K < 2V; and (b) the sensing matrix H = ® W satisfies the|restricted isometry

[property| (RIP) [CTO5], which requires that any K columns of H are orthogonal. Even

though this may seem impossible, numerous authors have proven the robustness and
efficacy of |CS|even when the signal is approximately sparse and noisy [CTO5;|/CRTO6a;
[CRTO6b}[DW14;(SL15] For a noisy data, the[CS]solution is expressed as

§ = arg min ||s||o,
S

subject to ||p — ®Ws||% < €2, (2.75)
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where ||s||o is the "LO-norm” of s, i.e., the number of non-zero elements in s. This equa-
tion recovers the most compressed version of s that agrees with the measurements. Un-

fortunately, the "LO-norm” is computationally intractable for most of the problems.

If the|RIP|condition is satisfied, Candés [CRTO6b] and Donoho [Don06b] demonstrated

that the "LO-norm” minimization problem is equivalent to the "L1-norm” problem.

§ = arg min ||s||1,
S

subject to [|p — ®Ws||3 < €, (2.76)

The "L1-norm” minimization is more attractive computationally and it can be solved by
linear programming [CTO5]. The ”L1-norm” problem is also known as basis pursuit. Once
§ is recovered, we can use then (2.73) to get b.

Of all the methods described here,[MaxEnt and [CS|give the best results. However, their
running time is much worse than Capon or Fourier. At least 20 times slower for small
antenna arrays (8 antennas) . For large arrays (several antennas), this difference
increases exponentially. Harding and Milla have shown that the performance of
[CS|and[MaxEnt applied to radar imaging are quite similar in quality and computational
complexity. So, in this text, we use any of them indistinctly to solve the radar imaging

problem.

2.5.2.2 Normalized visibility

Equation (2.60) assumes we have noiseless measurements o. Nevertheless, we have ac-

cess only to noisy measurements and sometimes no calibrated signals &

g(d,t,r) =ay o(d,t,r) + n, (2.77)

a(d+ Ad,t,r) =az o(d + Ad, t,r) + 12, (2.78)

where a? = (6%(d,t,r)) and a3 = (6%(d + Ad, ¢, 7)) represent the receiving gains
which might be uncalibrated. Using this definition and assuming uncorrelated noises

with variance n? and 13, the cross-correlation function is expressed as

<&(d, t,r), 6" (d+ Ad,t,r)> = Zal ag b(k;, t,r) e IKiAd 2.79)
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which redefines the visibility function as

<&(d, t,r), 6*(d+ Ad, ¢, r)>

p(Ad,t,r) = (2.80)
a1 ag
(6(d,t,r), 5"(d+ Ad.t,7) )
- 2.81)
(o) ) (s 2arn) - 2)
= bk, t,r) e IKiRd, (2.82)

1

Real experiments described later in this work use the normalized visibility function,
(2.81), to estimate the brightness function. Hereafter, we refer to visibility as the nor-

malized visibility.

2.5.2.3 Uncertainties

One source of uncertainties which was not included in (2.81) is the error associated with
estimating the cross-correlation <77Z)2(k7 t,r) > It is known that the error at estimating
the variance of a random number ¢ using ensemble averaging depends on the number

of ensembles. Ensemble average can be expressed as

n—1
<¢32> = % >t (2.83)
=b Ji:eo (2.84)

where € = b/y/n is the deviation from the expectation because of the finite number
of samples involved [HCO6]. One way to reduce the error € is to increase the
number of ensembles. Nevertheless, this number cannot be too high because it is limited
by dynamic nature of the imaged target. The maximum number of ensembles depends
on how long a target remains at the same angular position. Hysell and Chau
improved the of the[MaxEnt algorithm by taking into account the uncertainties caused
by the finite number of ensembles. Such uncertainties are known also as the covariance

error.

In the next chapter, we discuss radar techniques to increase the spatial resolution of at-

mospheric measurements. In such cases, the time integration must be even shorter.
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Otherwise, the resulting image might be blurred since the time a target stays at the same
finer pixel is shorter. This is an essential point to consider in high angular resolution

imaging.
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Chapter

Coherent MIMO radar techniques

In this chapter
3.1 Whatis MIMO?
3.2
3.3
3.4
3.5 Far-field signal model of pulsed MIMO radars
3.6  Far-field signal model of CW-MIMO radars

3.7 Estimation of direction of arrival and departure in MIMO radars .

3.1 Whatis MIMO?

[Multiple—input multiple—output|/(MIMO) systems can be defined as systems with multi-

ple radiating antennas and multiple receive antennas. Since the 1990s, such kind of sys-
tems have been widely used in communications to improve the capacity [Tel99; |[FG98],
and reliability [LTO3] of communication channels. Currently,[MIMO|is being employed
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in the 5G cellular network technology and the IEEE 802.11n WiFi standard due to its ex-
cellent performance when interconnecting multiple users at high-speed data transmis-

sion.

In the case of radars, colocated multiple radiating and multiple receive antennas have
been used in the past to focus the transmitted energy and to steer the beam in the de-
sired direction [Wid+67], which is known as phased arrays. Phased arrays on transmis-
sion are capable of steering the transmitted energy toward the desired direction by ra-

diating delayed versions of a single waveform. At the receiving side, the receiving beam

can be steered in a given direction to maximize the[signal-to-noise ratio|(SNR) using the

same principle. Phased arrays are widely employed on transmission and reception for at-
mospheric observations as well. The first published Doppler radar wind measurements
using multi-beam configurations (phased arrays) in the troposphere were reported by

Browning [BSW?73], in the equatorial mesosphere by Woodman [Woo72], and to mea-
sure vector winds employing multi-beam configurations by Reid [Rei87].

The key difference between and phased arrays is that[MIMO] radars radiate in-
dependent/orthogonal waveforms through multiple spatially separated transmit anten-
nas. By transmitting orthogonal signals, transmit signals scattered at a radar target can
be received and decoupled on the receiving side. Compared to phased arrays,
provides additional degrees of freedom because of the multiple independent transmit-
receive links. What allows is, for example, the application of digital beamforming on
reception as well as on transmission. Additional degrees of freedom might lead to an
improved angular resolution [BFO3], a better antenna beam pattern [LS07], or a larger
number of targets a radar can detect [Fis+06]. Figure[3.1]shows two radars configura-
tions (a) a conventional radar system employing one transmitting antenna and multiple
receiving antennas vs. (b) a system employing multiple transmitting and multi-
ple receiving antennas (MIMO). Notice that in case of[SIMO|or[MIMO]the antenna sym-
bol might represent a single antenna or an antenna array transmitting/receiving a single

waveform.

There are two kinds of [MIMO|configurations, depending on the relative separation of
the transmitting and receiving antennas. First, when the transmit/receive antennas are
closely separated such that the wave vectors for all the transmit-receive links are approxi-

mately the same, the reflected signals for two different links are correlated in magnitude
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(a) SIMO (b) MIMO

‘A A"

Figure 3.1: A bi-static radar system (a) in a|[SIMO configuration, and (b) in aMIMO)|con-
figuration. Unlike[SIMO,|MIMO|illuminates the target employing independent/orthog-

onal signals, which are indicated in red and green.

and phase. This correlation results because the different transmit-receive links observe

the same|radar cross—section|(RCS). For that reason, radars using closely separated an-
tennas are known as coherent or collocated [MIMO] radars [LSO7]. To keep some corre-
lation between the reflected signals for the different links, the antenna separation must
be a few tens of wavelengths. Coherent[MIMO]can be considered an advanced version
of phased antenna arrays given that by combining all the independent transmit-receive
links, a larger virtual antenna can be formed [Wani2]. Figure[3.1(b) is an example of a
coherent[MIMO|configuration, even though the transmit and receive station are widely

separated, all the transmit-receive links have the same wave vector.

On the other hand, when the transmit and receive antennas are widely separated, so that
the target’s|RCS/can no longer be considered the same for all the transmit-receive paths,

the return signal for two different transmit-receive paths are decorrelated. These kind

of radars are referred to as non-coherent or statistical  MIMO] [Fis+06; [Leh+07]. Non-
coherent[MIMO|has been discussed extensively in the radar community in the context
of multistatic radar systems [Chel8|], which are used to measure unambiguous vector

drifts and to exploit spatial diversity of random fluctuations of the target’s reflectivity.

MIMO|techniques are applied to a broad range of applications thanks to the improved

capability in the number of links, resolution, target parameter identification, and beam
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pattern. Examples include communications [Tel99], ground penetrating radars [JLZ12],
through-the-wall imaging radar applications for urban remote sensing [Mas+10], mar-
itime navigation ,and medical applications such as breast cancer detection [FBOS].
This chapter describes conceptual and mathematically the application of coherentMIMO|

radars for the observation of atmospheric targets, which are mostly stochastic in nature.

In this chapter, we consider only]MIMO|radars with colocated antennas (coherentMIMO),
and all subsequent mentions of[MIMO|refer to this type only.

3.2 Whyis MIMO required?

Radars are widely used to measure reflectivity, position, and Doppler velocity of distant
objects in many fields. In atmospheric science, radar measurements are employed to in-
fer physical parameters such as wind velocities, ion and electron temperatures, electron
density, electric fields, and kinetic energy [Hoc83}[Hoc855[HT]97;[HFVOL;[SullS}[Li+16]. In

most cases, they were done assuming homogeneous and quasi-stationary volume filling

targets within the illuminated beam because of the limited spatio-temporal resolution of
radar measurements. Temporal resolution in radars is restricted by the[PRI} range reso-
lution is by the transmit waveform bandwidth, and horizontal spatial resolution is by the
radar antenna size. Previous studies have focused on improving the temporal and range

resolution of radars. This study focus on improving the horizontal spatial resolution.

Over time, remote sensing techniques have evolved, and now they are capable of dif-
ferentiating echoes coming from different directions with good precision. This capa-

bility is achieved via spatial diversity on reception and employing radar imaging algo-

rithms [Wid+67} [Tal+16;[Mor+13]. Angle estimation is beneficial, for example, to deter-

mine mesospheric 3D wind fields from specular meteor measurements [SCI5], where
knowledge of meteors’ location is extremely important. Although significant improve-
ment was done during the last four decades, several atmospheric radars still have a lim-
ited horizontal spatial resolution. In order to improve the spatial resolution of a radar,
we require to construct larger antenna arrays. Figure[3.2 shows the relationship between
the angular resolution and the antenna size, where the resolution is inversely propor-

tional to the antenna aperture. In order to properly sample a spatial structure or wave,
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atmospheric structures

antenna beam pattern
with angular resolution A8

antenna aperture (d)

Figure 3.2: Angular resolution of a radar (A#) and its dependency on the antenna size (d)
and the radar wavelength (\)

the Nyquist condition must be satisfied, i.e., the spatial wave must be sampled at half of

its size. For a wave of size x located at an altitude h, we get
x > 2 hsin (A) 3.)

where ”h sin(A#)” is the spatial resolution at altitude h.

Even though very large radar antennas have been constructed to observe atmospheric
targets, their angular resolution is still limited to a few kilometers. Table[3.1shows the
spatial resolution of state of the art atmospheric radars. Not surprisingly, the achievable
horizontal spatial resolution with some of the biggest atmospheric radars in the world
is only a few kilometers at 85 km of altitude. To observe km-scale structures, even much

larger antennas are required.

In this chapter, we describelmultiple—input multiple—output/(MIMO) systems that make

use of diversity on transmission and reception to virtually increase the antenna size and

the number of antenna, allowing the observation of km-scales structures with current
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Angular Spatial Observable
Antenna . . .
Radar system size (d) resolution resolution horizontal
(AD) at85km scales ()
MAARSY 90m 3.6° 5.3 km >10.6 km
Jicamarca 300 m 1.0° 1.5km > 3.0km
EISCATVHF 32m 1.2° 1.8km >3.6km
EISCAT 3D 80m 0.97° 1.45km >2.9km

Table 3.1: Angular and spatial resolution of some of the biggest atmospheric radars in
the world

radars systems already installed. Furthermore, we investigate the main requirements

for the design and construction of future atmospheric radars.

As it was mentioned before, that the first condition a [MIMO| radar must fulfill is the
transmission of orthogonal signals from each antenna. Furthermore, also re-
quires that the transmitted signals are still orthogonal between after they are scattered
back from the target. This means that the transmitted signals must be orthogonal even
after the time delay and the Doppler shift caused by the target, which in the most simple
case depends on the target’s range and velocity. In a more comprehensive scenario, it

will depend on the target’s extension and the Doppler bandwidth.

Let’s imagine a scenario where two independent signals are transmitted by two anten-
nas spatially separated, where the signal frequencies are separated by 1 Mhz. Consid-
ering ideal band-limited signals, these two signals are independent from each other. If
they are used to illuminate a hard target with a narrow Doppler, for example a specular
meteor with a Doppler frequency less than 100 Hz, the scattered signals will still be in-
dependent of each other. However, if these two transmit signals are used to illuminate
a volume filling target with multiple scatters where each of them has its own Doppler
frequency higher than 500 kHz, i.e., an overspread target, the signals might not be or-
thogonal anymore once they are scattered back. When designing a[MIMO]system, we

have to take into account not only the transmit signals but also the target’s features.

3.3 Transmit diversity in MIMO radars

MIMO|radar is a system which employs multiple transmitting antennas and multiple

receiving antennas to improve the performance compared to conventional radars. The
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use of multiple antennas at the receiver or transmit side is also known as spatial diver-
sity. To achieve spatial diversity on transmission, a radar requires to transmit
independent signals by each antenna. This is also known as transmit diversity. Transmit
diversity is done by transmitting signals at a different time, with different frequencies,
with different phases, or with different polarizations. Although time, frequency, and
phase-coded diversity are based on the same principle (varying the properties of a pe-
riodic waveform) and they might achieve the same performance, their implementation
and hardware requirements are quite different. Transmit diversities have extensively
been discussed in the context of] radars [Fis+06;[Leh+07, e.g.] and in the field of
communications [Wee93}; [WSG94; [NTW99, e.g.]. Common diversities used in
communication channels are frequency e.g.] and phase coded [BP0O, e.g.] due

to their performance and easiness to implement.

Unlike communication channels, atmospheric targets exhibit particular features as de-
scribed in Chapter [2, which make them highly dependent on the radar frequency and
polarization. Therefore, application of frequency and polarization diversity are not suit-
able for atmospheric[MIMOJradars and other transmit diversities are required to obtain

independent signals.

In practice, fully independent signals on transmission are not viable. Depending on the
transmit diversity used and the target’s features, such as its extension and Doppler band-
width, radar returns from different transmitters might be partially correlated. There-
fore, decoupling of return signals might be more complicated. Moreover, the larger the

number of transmitters, the more difficult the signal decoupling would be.

In this section, we describe three transmit diversity alternatives, considering the target’s
extension and bandwidth. Table [3.2 summarizes the advantages and disadvantages of
the transmit diversities. The most simple transmit diversity is described first, time diver-
sity, which can be implemented with commercial radars. Then, the advantages of wave-
form diversity compared to time diversity is described. Finally, a more suitable transmit

diversity is presented, which requires a more advanced hardware and software.

3.3.1 Time diversity

One of the most simple ways of ensuring independent signals is implementing time di-

versity in a pulsed radar system. Time diversity is no more than transmitting the same
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Figure 3.3: Time diagram of a pulsed[MIMO|radar with two transmitters using time di-
versity. Notice that the time difference between transmitters At depends on the radar
pulse width 7 and the target’s extension L.
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Transmit .
L Advantages Disadvantages
diversity
-easy to implement -poor time resolution
Time -no additional signal processing | -range ambiguity
-less average Tx power
-one single operating frequency | -requires specialized software
Waveform . o
-coupling between transmit sig-
-scalable . .
nals might be problematic
one sinele operatine frequenc -requires specialized hardware
Optimal gieop gireq Y | and software
-coupling between transmit sig-
-scalable plng bety &
nals is minimized

Table 3.2: Advantages and disadvantages of transmit diversities

waveform from each transmit antenna but just delayed by some time At. To avoid over-
lapping between radar returns from two different transmissions, the minimum time
separation between transmissions At is a function of the pulse width 7 and the expected

target thickness or target’s extension L, see Fig.

At=71+L. (.2)

Because of the additional delay between transmitters the[pulse-repetition interval (PRI)

of each transmitter has to be extended to
T = At + 272/, (3.3)

where T is the radar T'maz 18 the desired maximum unambiguous range, and cis the
speed of light. Notice that if there is no delay between transmitters, the is equal to

the maximum unambiguous range ry,q; = ¢T'/2, as shown in Chapter[2.3.

Equation (3:2) and[3.3are only valid if no additional targets are expected at other ranges.
Usually multiple targets are expected within the range 7., which might cause interfer-
ence between radar returns from different transmitters. In such cases, to avoid interfer-

ence, 7mq, must be considered as the target’s extension, thereby (3.2) and (3.3) become:

At =7 4 27qq/c,and 3.4)
T = At + 2 7rmas/c, (3.5)

resulting in T = 7 + 47,4, /c. It means that the new radar must be larger than
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four times the maximum unambiguous range to avoid interference and to ensure inde-
pendent receive signals. Usually, it is only two times larger. When M transmitters are

employed, and become:

At =74 2(M — 1) "pmaz/c, and, (3.6)
T=742Mrna/c. (3.7)

Not surprisingly, we notice that the larger the number of transmitters, the longer the re-
quired radar which means a poorer time resolution and a reduced transmit energy.
The application of time diversity must be restricted to targets with high signal-to-noise

ratio, small range extension L, and long correlation times.

Few atmospheric targets satisfy the three conditions mentioned above. Nevertheless,

some practical experiments were performed in this study to validate the[MIMO|concept

with time diversity using two different targets: (a)lequatorial electrojet| [Urc+18], and (b)

[polar mesospheric summer echoess [Urc+19a]. One of the main advantages of time di-

versity is that it does not require special hardware nor additional data processing. The
radar processing technique described in Chapter [2 is sufficient to process signals ac-
quired with aMIMO|radar using time diversity.

3.3.1.1 Bandwidth and power reduction

As described in (2.47), the maximum unambiguous Doppler frequency w;y,q, is limited

by the[PRI| In a[MIMO|radar with M transmitters using time diversity the maximum

unambiguous Doppler frequency is given by

T
Wmaz = T (3.8)
— il (3.9)
T+ 2 M rae/c
~_— (3.10)
2M rmax

This equations indicates that the Doppler bandwidth in al]MIMO|radar with M transmit-
ters is M times smaller compared to the bandwidth of a radar with a single transmitter.

Notice that 7 is negligible compared to 2 M 7,4, /c.
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A similar analysis can be done for the average transmit energy in one second

-
Eovg = TPt (1s), (3.11)
T
= P, 3.12
T+ 2M rpag/c b (.12)
~——' p, (3.13)
2M Trmax

where P, is the peak transmit power. Under these conditions, the average transmit en-
ergy decreasesin the same proportion as the number of transmitters M increases. Pulsed
radars using time diversity are restricted to applications for which radar targets are con-
centrated within a small range. Thus keeping a short delay between transmitters and a
small loss in energy and bandwidth. In order to use shorter delays, time diversity can be
combined with waveform diversity, thereby the correlation between radar returns might

be reduced even if there is an overlap in time between returns.

3.3.2 Waveform diversity

Although waveform diversity can be implemented using linear frequency modulation
(FM) techniques and phase-coded waveforms, only phase-coded waveforms are used in
this thesis due to the reasons described above. Phase-coded waveforms are a good al-
ternative to build radar networks with transmitters operating at the same frequency as
described in [Vie+16]. Although, continuous-wave radars have some disadvantages as
described in Chapter they can be combined with phase-coded waveforms to gen-
erate quasi-orthogonal waveforms and to allow the deployment of large radar networks

without much effort.

Waveform diversity can also be applied to pulsed radars, which can be seen as a special
case of a phase coded continuous-wave radar. The difference lies in the fact that most
of the code bits are zero in amplitude. Shorter codes present higher correlations be-
tween them. Therefore, the application of only waveform diversity is not recommended

in pulsed radars.

For long pulses, various codes with good correlation properties exist such as Gold codes

[Gol67], Walsh-Hadamard codes [Har72], polyphase codes [Fra0s;[Chu72], and pseudo-
random binary codes [MS76]. The choice of one of them depends basically on the hard-

ware capabilities. The more complex the codes, the lower the correlation between them.
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Figure 3.4: Time diagram of a continuous wave[MIMO|radar with two transmitters using
waveform diversity.

Figure 3.4/ shows a time diagram of two antennas transmitting concurrently but with
different code sequences. Once the code sequences are selected (including code length
and baud), it is possible to recover the signal for each transmit-receive link using an in-
verse problem approach. Since specialized signal processing is required for the[MIMO
case, we first need to understand the signal model in a[MIMO|radar which is described
in section3.6

In this section, we focus on the analysis of the auto and cross-correlation properties of
two codes P and ). The codes will be based on pseudo-random binary sequences since
they are easier to implement with current radar systems. The pseudo-random binary
sequence can be generated using any random number generator to produce L random
binary values, where L is the waveform length. Then, we convert the random numbers

to phases, from 0 to 0° and from 1 to 180°.

The auto-correlation of a code, also known as the ambiguity function, was defined in
section[2.3.1.1. Similarly, the cross-correlation of two waveforms P and () can be written

as

C(ri,rj) = pr(rk — ri)wg (e — 15). (3.14)
k=1
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Figure 3.5: Auto and cross-correlation functions of two waveforms P and @) of length 50.
Notice that the correlation values are normalized to the code length. The mean cross-
correlation value is 0.12 (side-lobe gain).

This equation indicates how strong is the sidelobe caused by the interaction of two wave-
forms at a given range gate r; due to a target at range r;. In case of the auto-correlation,
maximum correlation is expected for r; = r;. Figure[3.5/shows the normalized auto and
cross-correlation functions for two pseudo-random binary codes P and () of length 50.
As expected, the auto-correlation for r; = r; is 1, which can be considered as the main-
lobe. In average the correlation values for sidelobes (r; # r;) is 0.12, indicating that the
[peak-to-sidelobe ratio (PSLR) is = 10.

In order to improve the [PSLR], the code length can be extended. Figure 3.¢/shows how
the mean cross-correlation of two pseudo-random waveforms varies as a function of the
waveform length. For each waveform length, the simulation was repeated 20 times with
different codes to mitigate statistical fluctuations. These results corroborates that the
cross-correlation between waveforms decreases with their length. Surprisingly, wave-
form’s lengths larger than 200 bits don’t improve the orthogonality between pseudo-
random codes significantly. Such results must be considered when designing a[MIMQ|

system or a[MIMO|experiment.

3.3.3 Suboptimal diversity

An optimal transmit diversity is the one that combines the advantages of all the transmit
diversities and minimize their disadvantages. Theoretically, an optimal diversity pro-

vides the highest number of fully independent transmitted signals using the same radio
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Figure 3.6: Mean cross-correlation of two pseudo-random binary codes P and @ as a
function of their length. Fully orthogonal codes should have zero cross-correlation. No-
tice that after a length of 200 bits the improvement is less than 121072 per 100 bits.
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Figure 3.7: Time diagram of a continuous wave[MIMO|radar using optimal diversity.
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cross-correlation of two pseudo-random waveforms
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Figure 3.8: Comparison of the cross-correlation of two waveforms P and () using code
and optimal diversity (code+frequency).

spectrum and achieving the same time resolution (Doppler bandwidth). However, a sys-
tem with such capability might be too complex to implement. In this section, a subop-
timal diversity that combines phase-coded and frequency diversity is proposed, which

might be implemented with small hardware modifications.

Combination of frequency and code diversity has already been employed to improve the
performance of communicationMIMOJchannels, namely,[OFDM and coding [BPOO, e.g.].
This suboptimal diversity can be seen as a way to increase the number of code bits of
a waveform, and thus the orthogonality between waveforms. Although, the same re-
sult might be achieved by increasing the waveforms’ length directly, it would require to
increase the effective sampling rate on transmission and reception (data throughput),
which is limited by the capability of current computers since currently most of the radar

signal processing is done in software.

Figure3.7/shows a time diagram where phase-coded and frequency diversity are com-
bined to obtain a lower correlation between the transmitted waveforms in a[MIMOQlradar
with two transmit antennas. Polarization diversity might also be included but most of
atmospheric targets are highly dependent on polarization, and therefore, it is excluded
from this example. In the figure, a code bit represents a change both in phase and fre-
quency. Corresponding phase and frequency for each bit can be generated using pseudo-

random sequences as described before.
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When frequency diversity is employed alone, the working frequencies of two different
transmit antennas must be separated by at least the target’s bandwidth in order to guar-
antee independent radar returns. For atmospheric targets, it could be a few Mhz. For
most of the atmospheric targets, such frequency separation causes that the observed
targets are not the same. Nevertheless, when both frequency and code diversity are em-
ployed, the large frequency separation is not required. Changes in frequency can be lim-
ited to a few tens of kHz, ensuring that the same target is being observed but, at the same
time, incorporating additional diversity. Figure[3.8/shows the performance of this com-
bined diversity using two symbols for phase modulation and four symbols for frequency
modulation. This kind of combined diversity is suggested for most of the applications,

but it would require some changes of current atmospheric radar systems.

3.4 MIMO virtual array

Coherent[MIMO]radar is a technique that employs multiple transmit and multiple re-
ceive antennas closely separated to obtain radar images with higher angular (spatial)
resolution compared to conventional [SIMO|radars. As explained in Section [2.5.2} an-
gular resolution and image quality depend on the radar antenna aperture and the num-
ber of receive antennas, respectively. With coherent[MIMO}, the angular resolution and
image quality both can be improved. While coherent[MIMO|does not provide spatial di-
versity as non-coherentMIMO] it can improve angular (spatial) resolution by combining
the information from all the transmit-receive paths. This results from the fact that all the
transmit-receive links observe the same[radar cross—section|(RCS). In a coherent[MIMO|

radar, the return signal from each transmit-receive path is correlated and the combina-

tion of them results in a larger virtual array. Similarly to how digital beamforming ex-
ploits spatial degrees of freedom on reception, coherentMIMO|exploits both degrees of
freedom on transmission and reception, which can be seen as a combination of a trans-

mit and a receive phased array.

The advantage of MIMO|radars over traditional phased arrays can be explained by the
virtual array [Li+08]. A virtual array, for a system with a transmit array of P antennas
transmitting independent waveforms and a receive array of M antennas, consists of PM

virtual antennas. In the literature, the virtual array is also known as the co-array [HK90].
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However, in this work, we refer to it as the virtual array since it is the term most used.
Depending on the location of the transmit and receive antennas, not necessarily all of the
antennas of the virtual array are unique. Nevertheless, the additional degrees of freedom
provided by the transmission of independent waveforms improve the performance of a

radar system significantly.

To have an idea of how[MIMOJhelps to increase the number of virtual receivers and to en-
large the antenna aperture, figure[3.9)shows a[MIMOJlayout with two transmit and three
receive antennas. Where the resulting receive array can be explained as a combination
of a receive array having three antennas to the right of TX; and another receive array
having three antennas to the left of TX5, resulting in six virtual receive antennas in total.
We see that the number of virtual receive antennas has increased by 2 times compared
with the original number of receivers. In general, the number of the resulting number of
virtual receive antennas in a[MIMO]system is equal to the number of transmit antennas
times the number of receive antennas, which means that the number of virtual antennas
grows multiplicatively with the number of transmit-antennas. Due to its great impact
adding one antenna at one side (Tx or Rx), affects the resulting array multiplicatively.
But not only that, but we also see that the resulting antenna aperture is larger compared

to the original aperture. In the example shown it is three times larger.

Similar to what is done in phased array antennas, many adaptive array processing tech-
niques, including digital beamforming, Capon, maximum entropy, and compressed sens-
ing, can be applied for direction estimation when using coherent[MIMO] In the follow-
ing section, the narrowband signal model for a[MIMO|radar considering a target at the
far-field is described. Moreover, we describe the signal model in terms of an equivalent

virtual array and the signal processing to estimate range and angle information.

3.5 Far-field signal model of pulsed MIMO radars

Lets use the monostatic pulsed radar system shown in Fig. with multiple receiving
antennas and multiple radiating antennas where each of antenna transmits a pulse at a

different time instant. Considering alMIMO|system using time diversity that is perfectly
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Figure 3.9: A[MIMO|radar (top) and its resulting virtual array (bottom). The first row
shows the[MIMOJ radar with two Tx and three Rx antennas. The second and third row
show the layout considering only one Tx. The fourth row shows the equivalent array

which is a combination of the two independent layouts.
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Figure 3.10: A coherentMIMO|radar with two transmit antennas and two receive anten-
nas closely separated.
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synchronized and calibrated in phase and time, the signal seen by the receive antenna m

due to the transmitter antenna p can be denoted as

v(dp, t + Atp, 1) = Z iy ¢l (Z2mfir(t+Atp)+¢irtkidptkidm) | n(dy), (3.15)

(2

where d,, € R3, and d,,, € R? are the vector distances of the transmit antenna p and
receive antenna m, respectively, a; ,, fi », and ¢; , are backscatter coefficient amplitude,
Doppler frequency, and phase offset of the target at a given range gate r and direction
k;, At), is the time separation between the transmission of the first transmitter and the
transmitter p, and k; = (27/)) [cos 6; cos ¢;, cosB; sin ¢;, sin 6] is the wave vector
which is a function of the azimuth and elevation angle ¢; and ;. The summation is over

arange of angles which is limited by the illuminated area.

We start with a pulsed[MIMO|radar using time diversity since the signal model is much
simpler and the signals can easily be decoupled for each transmit-receive link using the

time information. As a result we get

U(dm, dp, t, ’I“) — Z i ej (=27 fi r (t+Atp)+i r+k; dp+k; dm) + ’I’](dm), (3.16)

()

where v(d;,,dp, t,7) € C is the measured baseband signal seen by the virtual receiver

mp for a given time ¢ and range gate r.

Since the aim of this chapter is to describe the radar signal model mathematically to find
the equivalent virtual array, and to see how this virtual array helps to improve the angular

resolution of a radar system, (3.15) is simplified as follows:

v(dp,,dp, t,7) = Z o (ki t,r) el Ki(dotdm) oifirbt (g, Y, (3.17)
i

where o (k;,t,7) = a;, €’ (=27fi,rt+6ir) is the backscatter coefficient amplitude and
phase for a given range gate r and direction of arrival k;. Note that this equation is quite
similar to the phased array equation described in section (2.52). However, there
are two big differences: First, the phase offset due to Doppler and time separation be-
tween transmissions ( f; »At,), which must be corrected before any kind of analysis. For
the purposes of this section we consider that this phase offset is calibrated and equal to
0. Secondly, the signal v(d;,,d,,t, ) does not only depend on the position of the re-

ceiver d,,, but it also depends on the position of the transmitter d,,. In the literature,
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v(dy,, dp) is better known as the "virtual” receiver mp, whose virtual location is given by

dpp = dy + dyy,.

Depending on the selection of the transmitters’ and receivers’ positions, a larger virtual
array might be created consisting of P M virtual antennas, where P is the number of
transmitters and M is the number of receivers. Recall that the angular resolution de-
pends directly on the radar aperture. The larger the array, the higher the angular reso-
lution. Figure shows a[MIMO]configuration with a vertical transmitting array with
seven antennas and a horizontal receiving array with seven antennas. Notably, the re-
sulting virtual array with 49 unique antennas is a perfect and uniform 2D-array, which
offers us much higher degrees of freedom in the spatial domain compared to the Tx or
Rx array. It improves not only the angular resolution (in the diagonal direction) [BFO3],

but it also increases the capacity of the system to identify targets in 3D.

The selection of the Tx and Rx array, i.e., the]MIMOJantenna array design problem, is not
atrivial task. If the location of the Tx and Rx antennas can be selected arbitrarily, diverse
design techniques can be used to select the best antenna locations. Some examples of an-
tenna array design are based on hexagonal arrays [DRVI5] or polynomial factorization
[WSCI3]. On the other hand, if the antenna array is already installed and the problem
is the selection of the best subset, genetic algorithms might be useful to find the best Tx

and Rx array combination [Hau94]. The[MIMO|antenna array design problem is out of

the scope of this thesis since it highly depends on the scenario. Despite the small but
important difference between the[MIMO|and the phased array equation, the same pro-
cessing techniques explained in Chapter[2/can be used to recover the range, frequency,

and direction of arrival information from virtual phased arrays.

Until this point, the signal model was described for[MIMOJradar using time diversity. As
described before, time diversity is restricted to systems with a very low number of trans-
mitters. To extend the concept to systems with a high number of transmitting
antennas, we have to combine the concept of[MIMO|and waveform diversity. In @.17), o
includes implicitly the transmitted waveform w(r); which for a pulsed radar transmit-
ting a single pulse is represented ideally by a Dirac delta function w(r — ro) = 6(r¢). In
the next section, we describe the signal model when the waveform is distinct from the
Dirac delta function. It could be a pulsed radar using pulse compression techniques or
a[CW]radar using waveform diversity. Hereafter, pulse coded radars are considered a

special case of[CW]radars using waveform diversity (phase-coded).
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Figure 3.11: (a) A|MIMO|antenna array with 7 Tx antennas and 7 Rx antennas, (b) The
resulting]MIMO|virtual antenna array consisting of 49 antennas.

3.6 Far-field signal model of CW-MIMO radars

MIMO|systems can also be implemented with [continuous wave| (CW) radars where the

carrier wave might be modulated in amplitude, phase, or frequency. In the literature, the
g p p q y

modulating envelope is commonly known as the waveform. As seen in section for

a[CW]radar employing one transmitter with an arbitrary waveform w(r), becomes
Y(dm, t,0) =D “w(l —7) o(ki,t,r) e kit dm) 4 o(d,, 10), (3.18)

where y(d,,, t, 1) is the measured complex baseband signal seen by the receiver that does
not distinguish which transmitter originated the return signal, and [ is the apparent
range. The model is described using only one transmitter and then it will be extended
the to a model with many transmitters. Although it is not possible to recognize which
transmitter originated the radar return, the phase shift (k;d,) due to the position of the

transmitter still influences the measured signal.

Unlike pulsed radars, where v from (3.17) represents a measured value corresponding to

one range r only. In[CW}radars, y results from the convolution between the transmitted
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waveform and all the scatters along the range R. To estimate ¢ from the measurements
y, (.18) can be inverted directly. However, for real applications this is computationally
expensive due to the high dimensionality of o. In order to reduce the computational
complexity and to apply the same forthcoming processing techniques to both the pulsed
radar and the[CW}radar data, the[CW} radar signal measurements y can be expressed as

a function of an equivalent pulsed radar measurements v from (3.17) as follows

Y(dm, t,1) =Y w(l =) 0(dm, dp, t,7) + n(dm, t,1). (3.19)
To solve this equation, we divide the problem in two parts (a) First, retrieval of the un-
known parameter v(d,,, d,, t, ) (decoding) for all the range gates r and one transmit-
receive link at a time, and then (b) recovery of the angle information o (k, ¢, r) for one

range at a time using (3.17).

3.6.1 Signal recovery

In order to recover the signal y from (3.19), the equation can be simplified expressing it
in matrix form and solving the problem for a given receiver m and a delay ¢ at a time.

Considering noisy measurements we get
Ym = Pupyp + 1,0, (3.20)

where y,, € CL is the measurement vector, Ump € CF is the unknown parameter
vector for all the range bins, ,, ~ N (0, X,,) is the receiver noise, and ® € CLoF is
the sensing matrix, which is a circulant matrix defined by the transmit waveform vector
w € Cl, where L > R is the waveform length, and R is the number of range gates.

With the consideration mentioned above, the sensing matrix is given by

wy  Wr—1 WL—2 ... WL_R41
wy wo  Wrp-1 ... WL-R2
b = () w1 wo ... WL—R+3]| . (3.21)
\wp-1 wr—2 wp-3 ... WL_R |
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Equation (-20) is valid for radars using pulse compression techniques as well as for[CW]
radars using waveform diversity. The difference lies in that, for pulse radars most of the

w; terms are zero.

Note that all previous equations consider only one transmit waveform. When multiple
antennas are transmitting at the same frequency but with different waveforms
using waveform diversity) the cross-interference between waveforms might degrade the
performance of the system. In such systems, with several transmit antennas using wave-

form diversity, (3.20) becomes

P
Ym = Z PpUmp + My (3.22)
p=1

where ®,, € CL*% is the sensing matrix due to the transmit waveform w,,, and P is the
number of antennas transmitting different waveforms. Equation (3.22) can be written

as

Y = X + N, (3.23)

T
with Xy = [U%I vl, ... vﬁp} , (3.24)
and  ®— [Hl H, ... Hp} : (3.25)

wherey,, € Cl', x,, € CV,® € C*N and N = PR is total number of unknowns

equal to the number of transmitters times the number of range gates.

It is known that the matrix ® defines the range and Doppler resolution of the MIMO]
system [SFRO8;|CV08b], which can be characterized by the ambiguity functionasin
or in matrix form as

C=3"®, (3.26)

where C is equivalent to the ambiguity function. Ideally, the matrix C should be equal
to the identity matrix. However, this is not the case in real applications with multiple

transmitters. Many studies on waveform design [Fri07;|Li+08;(CHMO9;|GDP12;(SBL14]

focus on finding the best ® based on the orthogonality between codes. Others proposed
special algorithms to reduce the cross-correlation between codes and avoid undesired
effects [Kay09;[SZW10} [Frili].
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The retrieval problem reduces to find an inverse of the matrix ® such that
Xm =@y, . (3.27)

In the literature, several techniques exist to find an approximate inverse when the prob-
lem is overdetermined (L > N), such as the pseudo-inverse matrix [Gre59;[Ste77], the
[matched filter estimator|(MFE) [Turé0], the[least squares estimation (LSE) [Ste77;[Bjo9¢],

the[minimum mean squares error estimator| (MMSE) [Tri+12;[Tag+17], the[maximum a

[posteriori estimator]| (MAP) [BD19], and when there are errors in both sides of the equa-

tion theltotal least squares estimator (TLSE) [Van+07;[VV91].

In this work, we use the approach described in section3.3.2 to select waveforms with re-
duced cross-talk. Because of the trade-off between performance and speed, we recom-
mend the weighted least squares estimator [Vie+16] to recover the backscatter signals in

overdetermined linear problems
o1~ (olxd) oy, (3.28)

where ¥ is the inverse of the covariance matrix error. If the covariance is not known, it

can be replaced by the identity matrix.

When the problem is underdetermined (L. < N), the addition of extra constrains is

necessary to find a unique solution. Some very well known algorithms are the regular-]

ized least squares estimation| (RLSE) [AF14], the [truncated singular value decomposi-|
[tion (tSVD) [Han87], the[least absolute shrinkage and selection operator (LASSO) [Tib96;
[PCO8], the Tikhonov regularization [Tik+95; [EL97], and [least angle regression] (LARS)
[Efr+04]. In section [2.3.1.1, we described some of them applied to arbitrary vy, sig-

nals. For particular cases, when the signal vy, satisfies certain properties, advanced

algorithms like[CS]can be applied to obtain a cleaner solution. One of these special cases

are explained in Chapter(3|

Once all the v,,, signals are recovered, they can be combined to estimate the
[rival (AOA). The next subsection describes the signal analysis to estimate[AOA in a[MIMO

radar.
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(a) SIMO (b) MISO

Figure 3.12: Bistatic radar configurations to estimate target’s location (a)[SIMO|to esti-
mate[AOA, (b)[MISO]to estimate[AOD)}, and (c)[MIMO]to estimate both[AOA and [AOD|at

the same time. See text for more details.

3.7 Estimationofdirection ofarrivaland departurein MIMO radars

[Angle of arrival| (AOA) estimation of narrowband targets located at the far-field employ-
ing antenna arrays is a topic that has been highly discussed in the past decades

[New+10;[Mor+13]. [AOA and [angle of departure|(AOD) estimation can be done combin-

ing signals at multiple receive antennas or signals coming from multiple transmit an-
tennas, respectively. Let us consider the monostatic[MIMO]radar system illustrated in
Fig. with a pair of transmit antennas p and ¢ and a pair of receive antennas m and
n closely separated at positions d,,, dg, d,,, and d,,, respectively. The transmit signals
are independent, and the return signals for each transmit-receive link are decoupled as
described in the previous section. Therefore, a larger virtual receive array can be formed

by combining all the transmit-receive signals.

Since the information for each range bin r is independent, we make the analysis for one
range bin only. Moreover, considering a maximum of one target with the same Doppler
bin and at the same wave vector, the signal model can be treated as a superposition of

independent narrow band signals in the frequency domain. The signal model is given by

U(dm, dp, 1) = o(k;, f,r) e ildntdp) (3.29)

i=1
In this section, we are interested in the target’s reflectivity o (k;, f,r) as a function of

the wave vector k;. The radar return o can be estimated from the measurements v by
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applying digital beamforming (2.68). Nevertheless, as explained in Chapter [2, most of
the atmospheric targets are stochastic in nature. This means that only the statistical
properties of the target can be determined, namely, the expected value and its variance.
The expected value of the angular scattered power distribution is given by b(k,r) =

(02(k, f,r)), and it is also known as the brightness function.

As described in Chapter[2, we can use the spatial cross-correlation p between radar re-
turns from two different transmit-receive paths to estimate the brightness. The spatial

correlation is given by

p(Adpg, Adpp, f,1) = <’U(dm,dp,f, r) v*(dg, dn, f, 7’)>, (3.30)

where Ad,,,, = d,;, — d,, is the spatial separation between receivers, and Ad,, = d,, —
d, isthe spatial separation between transmitters. Likewise, ()* represents the conjugate,

and (.) stands for the expectation along time. Replacing (3.29) in (3.30) we get

p(AdplP Admn) f7 T) (3.31)
:< Z ( & f’ ) eJk dm+dp Z U kl7 f7 eijkl(dn+dq)>.
=1 =1

Considering that signals coming from different directions are distant and uncorrelated,
their expected cross-correlation is zero. The cross-correlation is different than zero only
when k; = k;. Replacing in (3.32):

p(AdplP Adyn, f7 T) = Z <U(ki7 f7 T) U(ki7 f7 T) >eijki(Adpq+Admn) 3.32)

i=1
= b(kj, 1) e/ki(Adpatadmn) (3.33)
i=1

Equation presents two caveats (2) implementation imperfections such as the differ-
ence in amplifiers’ gain, cables’ attenuation, and filters’ gain are not taken into account,
and (b) phase shift caused by time difference between transmitters is not considered.
Phase offset calibration is described with more details in the next subsection. To com-
pensate the gain's difference between two different transmit-receive links, the spatial

correlation can be normalized using the signal power |vy,,|* and noise variance 7?. As
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such the spatial cros-correlation is obtained by

P(Adpqv Admna fa ’I”) = <Ump2 U;q> N’ (3-34)
V/{[vmpl? = n3) ([ong|? — 15)
= Z b(k;, ) ¢Iki(AdpgtAdmn) (3.35)

(2

Equation is a generalized form of the radar imaging equation shown in (2.65),
which considers only one transmit antenna. Similarly, radar imaging can be applied to

systems consisting of only one receiver but with a transmit antenna array, i.e., amultiple

[input single—output|(MISO) configuration. In such case (3.35) reduces to

p(Adpg, Adpy = 0, f,7) = b(k;,r) e/ki v, (3.36)

indicating that the position of a single target can also be estimated using only one receive

antenna and a transmit array.

Figure[3.12|shows a comparison of three bistatic radar configurations to determine a me-
teor trail’s location. The three configurations are considered as a coherent|MIMO|since
all the transmit-receive paths have the same Bragg-vector. For a bistatic radar, (3.35) can

be rewritten considering the incident k7 and the scattered kr wavevector

P(Adpg, Ady, f,7) = Y b(i,r) KT At akn B, (3.37)

(2

Performances of|single-input multiple-output (SIMO) radars andmultiple—input single—
(MISO) radars are expected to be the same since the number of antennas in the
array are the same. However, [MIMO|configurations’ performance exceeds the two pre-

vious configurations because of the resulting larger number of independent measure-
ments and the improved observing geometry [Urc+18], i.e., the target can be tracked
from two different view angles avoiding problems related to low elevation angles. Er-
rors associated to low elevation angles are generally caused by antenna coupling. Other
possible source of errors in a[MIMO]radars and ways to optimize a[MIMO|configuration

are discussed in the following subsections.
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3.7.1 Relative compensation of phase offsets

In (3.29) no instrumental phase calibration was considered. Phase offsets might be as-
sociated to the receivers, the transmitters, and the time difference between transmis-
sions. Usually phase offsets are caused by differences in cable length, amplifiers, or fil-
ters, which can be affected by the air temperature. Even though they can be compensated
at the beginning of an experiment, the phases might change with time. Considering all

the instrumental phase offsets (3.29) becomes

Ump(f,1) =Y o(ki, f,r) e T2 Atptki(dm b dp)tomtop), (3.38)
i=1
where ¢, is the instrumental phase offset of receiver m, and ¢, is the instrumental

phase offset of transmitter p.

There are many ways to calibrate ajMIMO|system. However, the results presented in this

work have been done using the following recipe:

1. Calibrate the instrumental phase difference A¢,,,, between receivers.

2. Calibrate the phase offset (27 f At,) due to the time difference between transmis-

sions and Doppler shift.

3. Calibrate the instrumental phase difference A¢,, between transmitters.

First, phase calibration of a receiving array is a very well known topic and it is not de-
scribed in this thesis. For example, Chau, et.al. [Cha+08] propose diverse approaches
for absolute and relative calibration using radio stars, meteor echoes, radio beacons, and

self-calibration approaches.

Secondly, to compensate the phase offset due to the time difference between transmit-
ters, the data analysis has to be done in the frequency domain. Let us consider two trans-
mitters p and g transmitting at time ¢ and time ¢ + At,,,, and only one receiving antenna

m. For a given Doppler the signals at the virtual receivers are proportional to

U (f, 1) oc e 7321, (3.39)
Vg (f>7) oc e 720 (tAta) - and (3.40)
(Ump(f.7) Vg (7)) o 727 Atpa, (3.41)
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To calibrate the system, it would be enough to multiply the signal v,,, with the complex

exponential e2™/Atra for each Doppler frequency f.

Finally, one of the most tricky parts is to compensate the phase offsets of the transmit
array. Similar to what is done to calibrate a receiving array, we can use a point-like target
with a known position such as an airplane, a meteor head, or a drone where the phases
at each transmit antenna are also known and they can be compensated. As in receive
phase arrays, once the phases are calibrated, they might change over time. In order to
keep the phases calibrated relatively, the phase offsets might be measured over time and

be corrected online.

When no drones or airplanes are available, relative phase calibration of a transmit array
can be done by taking advantage of the redundant virtual receivers generated for two
different transmit antennas. Two virtual receivers located in the same virtual position,
must have the same offset, i.e., they must have a phase difference equal to zero. Let us
consider that v, and v, are two virtual receivers located at the same virtual position
where phase offsets due to the receive array and the transmit time difference have already

been calibrated. Then

Ump(f, 1) e I, (3.42)
Ung(for) oc 9%, (3.43)
(Vmp(f,7) U (f, 7)) ox e300, (3.44)

We know that the phase offset A¢,, = (¢, — ¢,) must be zero since vy, and vy, are
located at the same virtual position. When the phases are not calibrated, the measured
phase difference Aquq is different from zero. Taking one transmitter as a reference, i.e.,

¢p = 0, we can calibrate the other transmitter using

¢q = ¢p + A(;;p(h (3.45)
bg = Adpg. (3.46)

3.7.2 Angular resolution

In the previous chapter, we stated that the angular resolution is defined by the number of
antennas and the maximum separation between them. Depending on the MIMO|config-
uration, these parameters might change. Here we analyze the implications of selecting

one or another configuration. The analysis is done in 1D but is easily expandable to 3D.
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Figure 3.13: Angular resolution comparison between[SIMO and[MIMO]. (a) Transmit and
receive array (b) Visibility samples considering only one transmitter and the receive ar-
ray, i.e.,[SIMO} (c) Point spread function the corresponding visibility. (d) Resulting vir-
tual array by using[MIMO] (e) Visibility samples corresponding to the virtual array, i.e.,
[MIMO], (f) Point spread function for[MIMO}

Let us consider the uniform linear array shown in Fig. 3.13(a), consisting of a transmit ar-
ray with two antennas and a receive array with six antennas. The spatial points at which
the visibility p(Ad,q, Adyy, ...) is sampled are known as baselines. The resulting base-
lines forcan be expressed as Ad = Adp, + Adyyp,. ForAdpq = 0and
hence Ad = Ad,y, holds. Fig. 3.13(b) shows the baselines for the[SIMO configuration
in which only one transmitter is considered. Note that many baselines are located at the
same position since the receive array is uniform and a combination of different antennas
result in the same baseline. Baselines located in the same position are known as redun-
dant baselines. The number of redundant baselines are color coded in Fig. b) and

(e).

To evaluate the performance of antenna arrays, the point spread function or instrument
function is commonly used as a metric. The point spread function of an array is obtained
by inverting (3.35) for all the vectors k assuming the presence of only one punctual target

at ko, i.e., (k;, ) = 0 fori # 0. Under that condition the visibility reduces to

po(Ad, f,r) = b(kg, ) e?ko(Ad), (3.47)
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The point spread function b is obtained by applying the inverse Fourier transform to the

visibility, which can be written as

Z)(k, r) = EPO(Adi7 fir) e~ Ik(Aady) (3.48)

(2

Replacing (3.47) in (3.48), we get

b, r) = > b(ko, r) e/0(Ad) g=ik(Ad), (3.49)

where
C(k) = Z eIko(Ad) ,—jk(Ad;) (3.50)
- Z e~ J(k—ko)(Ad;) (3.51)

is known as the angular ambiguity function. It characterizes the angular resolution
achieved by an antenna array. Plainly, the ambiguity function does not depend on the
selected k¢. Anideal antenna array has an angular ambiguity function equal to the Dirac
delta function. However, this is not possible in practice. Conventional arrays have a lim-
ited number of visibility samples and hence a finite angular resolution. Fig. [3.13(c) shows
the resulting angular ambiguity function or point spread function for the array
considering kg = 0. Clearly, the result is not close to a Dirac delta function. It contains
a main lobe with ahalf-power beam width|(HPBW) of 2° and sidelobes of —14 dB.

For uniform linear arrays with k = 27 sin(6), the angular resolution A¢ and the maxi-

mum unambiguous angle 0, are given by

SIH(AQ) = (Ad)\)’ and (352)
A

In our example, theMIMOJarray can be expressed as a (virtual) uniform array containing
twelve antennas. Figures d), (e), and (f) show the resulting virtual array, visibility,
and instrument function for theMIMOJconfiguration, respectively. Notably, the angular
resolution achieved by our[MIMO|configuration is two times better than the[SIMO}s. This
is explained by the maximum baseline (Admax) for the[MIMO]case, which is two times
larger than the[SIMOJs maximum baseline. Notice that, even though the sidelobes have
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been modified the peak sidelobe is still &~ — 14 dB

3.7.3 Redundant baselines

In most of the practical applications, the number of redundant baselines by applying
[MIMO]might be very high since current atmospheric radars were not designed for such
kind of applications, and they are not optimized for configurations. Moreover,
the distribution of the redundant baselines might be irregular over the sampling do-
main. This section investigates the effects of redundant visibility samples and their im-

plications in the angular resolution.

To understand the impact of redundant visibility samples, we analyze the instrument
function of two arbitrary antenna arrays, where the first one has no redundant visibil-
ity samples, and the second one does. Figure illustrates the two arbitrary arrays,
theirvisibilities, and their resulting instrument functions. According to the conventional
definition of the achievable angular resolution of an antenna array described in (3.53),
these two arbitrary radars should have the same angular resolution since the maximum
baseline for both of them are the same. However, if we analyze the resulting instrument

function for both cases, we notice that they don't have the same angular resolution. Sur-

prisingly, the angular resolution orfhalf-power beam width|(HPBW) of the second array,

which contains a higher number of antennas, is not better than the first one. Its main
lobe is slightly wider, which intuitively is not expected. Nevertheless, if we observe the

resulting sidelobes, the second array has sidelobe peaks reduced by at least 8 dB.

These results can be explained by the angular ambiguity function considering only unique

(non-redundant) baselines tapered by the number of repetitions.

C(k) =) h(Ad,) ko t(adu), (3.54)

where h(Ad,) is the weight or number of repetitions of a given baseline, and the sum-

mation is done over the unique baselines Ad,,.
In our example, the weight function has a triangular shape, and the resulting instrument

function is a convolution of the first array’s instrument function and the triangular func-

tion. Therefore, the main lobe is widened, but the sidelobes are reduced. Depending on
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Figure 3.14: Same as Fig. [3.13|but for two arbitrary arrays. The first row shows the an-
tenna array, the resulting visibility, and the instrument function of an array which con-
tains non-redundant visibility samples. The second row shows an array with the same
visibility samples but in which some of them are redundant.

the selection of the transmit and receive array, and hence the weight function, the side-
lobes of the resulting virtual array might be reduced or enhanced. Diverse design tech-
niques can be used to select the best antenna configuration, such as the one based on
hexagonal arrays [DRVI5] or polynomial factorization [WSCI3]. If the antenna array is
already installed and the problem is the selection of the best subset, genetic algorithms

might be useful to find the best Tx and Rx array combination [Hau94].

3.7.4 Signal processing

When multiple targets coexist within the illuminated volume, it is desired to identify
their position and their Doppler frequency as well. If is analyzed in the time do-
main, we will only get the angular distribution of the scattered power. In order to esti-
mate both Doppler information and [AOA, the spatial cross-correlation is expressed in
the frequency domain as in (3.35).

The difference between the spatial cross-correlation in the time domainand in the fre-

quency domain lies in that the latter estimates B for each Doppler frequency f. This

81



CHAPTER 3. COHERENT MIMO RADAR TECHNIQUES

means that the brightness can be separated in its different frequency components, sim-
ilar to how a camera does when it takes a picture in color. The disadvantage is that the
total number of time samples required to estimate the expected value p decreases in the
same proportion as the number of selected frequency points. If the number of time sam-

ples is too few, the uncertainty in p might be problematic. This problem was described

in section(2.5.21

Since the analysis could be done in the time or the frequency domain, the domain and
the time difference between transmitters At,, is omitted intentionally hereafter. In the
radio astronomy community, the visibility p(Ad,,,, Ad,,) for a given range gate and
frequency bin is also called the visibility sample at (Ad,,,,, + Ad,,) and can be written
in matrix form as

p=®b+e, (3.55)

where p € CV is a column vector comprising all the visibility samples, b € R is
the brightness in vector form (flattened), ® € CY*X is the Fourier matrix, and & ~
Nc(0,X) is the statistical uncertainty associated with estimating the cross-correlation
with finite integration times. The number of visibility samples V- = PM(PM + 1)/2
represents the total number of virtual receiving pairs and it is a function of the number
of transmitters P and the number of receivers M. Likewise, K is the number of wave

number directions or (image) pixels.

To simplify the notation we use Ad; = Ad,,, + Adp, for j = 1,2..., V to indicate all
resulting (virtual) antenna separations, where V' is the number of possible combinations
between m, n, p, and ¢q. Using this notation the Fourier matrix for a[MIMO|system is

written as

Jki(Ady)  ke(Ad)  kg(Ady)
cki(Ady)  gka(Ad2)  ki(Ady)

P = ' ) . ) (3.56)
eki1(Ady)  ka(Ady) ki (Ady)

The selection of the brightness grid k; for i = 1,2..., K, and the number of pixels K
might be arbitrary. However, it should follow certain rules as in the Fourier transform.
Firstly the angular resolution Ak = k;; — k; should be defined according to the maxi-
mum separation of two antennas Ak = 1.0/max(d;), similar to how the frequency res-

olution is defined by the total observation time in a Fourier transform Af = 1.0/T},45-
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Secondly, the number of pixels N should be less than the number of visibility samples
M . When this is not the case, the problem becomes ill-posed, and inverse problem tech-

niques are required to try to find a solution.

For most applications, [MIMO| helps to increase the number of independent measure-
ments and to make the problem less underdetermined. However, it is necessary to add a
regularizer to solve (3.55) if the problem is still underdetermined. So the problem reduces

to find an estimate 0, which minimizes the following equation:

b= argbmin {f(b) + Ag(b)}, (3.57)

where f(b) is the cost function, g(b) is the regularizer, and X is the Lagrange multi-
plier or the trade-off between the cost function and the regularizer. In most of the cases
the L2-norm is selected as the cost function, i.e., f(b) = ||p — ®b||3. The selection of
the regularizer depends on the problem and so does the algorithm to solve the problem.
Some of the most important inverse problems techniques are described in Chapter[2.5.2)
for phased arrays and can be applied for the[MIMO]virtual array indistinctly.
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Chapter

Resolving kilometer-scale dynamics in the mesosphere

In this chapter
4.1 Introduction
4.2 Highresolution spatio-temporal measurements of the MLT dynamics 88

4.3 Simulations

4.4  Experimental implementation

4.5  Experimental results

4.1 Introduction

The dynamics in thejmesosphere and lower termosphere|(MLT) region are mainly dom-

inated by [atmospheric gravity wavess (AGWs), atmospheric tides, non-migrating tidal

modes, and turbulent processes, whose effects can be observed by in-situ instruments,
ground based remote sensors, and satellites. There are plenty of studies of the re-
gion using observations from ground-based sensors such as meteor radars [Hoc05],[MF|

radars [Hof+10; [Pla+15], airglow imagers [HecO3], lidars [HLO7; [RGLO8], and cameras
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Figure 4.1: Simplified vertical and horizontal kinetic energy spectrum at mesospheric al-
titudes where regimes dominated by Rossby waves, gravity waves, and Kolmogorov tur-
bulence are well identified. Similar to [Vie+19]. Vertical scales observed by rockets and
horizontal scales resolved by the]MAARSY and[MMARIA|radars are indicated with a blue
and orange box, respectively. Horizontal scales resolved by the proposed radar technique
based on|MIMO|(MAARSYHMIMO]and[SIMONGE) are also shown.

[Pau+11; [Dem+14], as well as satellites [Ern0o4} and numerical modelling. Al-
though these observations have helped to understand the importance of in the

region,[AGWS' effects on the background flow and on the global circulation, and the
mesosphere-ionosphere coupling [Vin15], none of them provided unambiguous spectral

information of small and medium scale dynamics, which is important to understand

turbulence processes and mesospheric instabilities in the

Turbulence processes and mesospheric instabilities generated by wave breaking, turbu-
lence dissipation, and turbulence mixing, play an important role in the energy budget
in the MLT} since they transport heat and momentum from and to other atmospheric
altitudes @]. To be able to quantify the contribution of each of these processes, 4D
observations (space-time) at their different scales are required. Figure4.Ishows anideal
kinetic energy spectrum of very well identified regimes Kolmogorov turbulence,
and isotropic turbulence) and their scales in the horizontal and vertical direction. Note
that scales of isotropic turbulence are in the order of tens of meters, whereby they are

only measurable by in-situ sensors with very good resolution such as sounding rockets.
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antenna aperture angular resolution spatial resolution horizontal scales

90m 3.6° 5.6 km 11.2km
450 m 0.72° 1.12km 2.2km
900 m 0.36° 0.56 km 1.1km

Table 4.1: Antenna aperture required to measure horizontal scales at 80km altitude

Onthe other hand, horizontal scales of Kolmogorov turbulence and[EGWs are observable

from kilometer-scales up to hundreds of kilometers.

In order to characterize Kolmogorov turbulence, mesospheric instabilities, and[@
in the @, 4D measurements at small, medium and large-scales in the vertical and
horizontal direction are desired. Spatial resolution in the vertical direction achieved by
radars is about 150 m, which is within the desired range. However, the vertical coverage
is still a challenging problem. In the horizontal direction, the problem lies in both cov-
erage and resolution. Stober and Chau [SCI5] recently proposed the use of meteor radar
networks to measure 4D wind fields within a region of 300 km with a horizontal reso-
lution of about 25 km. Thus, being able to resolve medium-scale dynamics in the order
of 50 km to 150 km in the horizontal direction. Unfortunately, the network proposed by
Stober and Chau is not scalable and its deployment in large areas is prohibitively costly.
Chapter[5|describe a novel and scalable meteor radar network based on[MIMO]to over-

come this problem.

On the other hand, small and kilometer scale dynamics have barely measured by remote
sensors. Most of available measurements have been done by sounding rockets, which
are also rare and costly. This chapter focuses on the capability of MAARSY combined
with[MIMO]to measure medium-scales dynamics from 1 km to 30 km in the[MLT) here-
after referred as kilometer-scale dynamics. Typical 4D radar observations with[MAARSY
have a horizontal resolution limited to a 5.4 km at 80 km altitude and a temporal resolu-
tion of a few minutes. Thereby, resolvable horizontal scales With‘@ in a standard

configuration are limited to 10 km to 30 km.

Measurements of kilometer-scale dynamics have not been previously obtained with radars
due to the limited size of existing systems. As shown in Fig. 4.2, the angular resolution
and hence the resolvable horizontal scales are limited by the antenna aperture. The larger
the aperture, the smaller the resolvable horizontal scales. Table I‘E shows the antenna

aperture required to resolve horizontal scales at mesospheric altitudes (~80 km) with a
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Figure 4.2: Maximum achievable angular resolution by an antenna array. Notice that the
angular resolution Af is limited by the antenna aperture d.

radar operating at 50 MHz. As the Nyquist theorem states, the sampling frequency must
be atleast two times the desired signal frequency. Thus, to characterize horizontal struc-
tures of 11.2km or more in the spatial domain, at least a spatial resolution of 5.6 km is
required. Likewise, to resolve kilometer-scale structures (1.1 km), a spatial resolution of
0.56 km is required, which is equivalent to having an antenna aperture of 900 m. Un-
fortunately, such big antennas are not feasible in practice. Even the largest radars in the

world, such as a Jicamarca and Arecibo, have an antenna aperture limited to few hun-

dreds meters (<300 m) [HCMI3}[Alt98].

In the following sections, a radar approach based on coherentMIMO|and radar imag-
ing is described that allows|[PMSE|observations with unprecedented angular resolution

(0.6°) [Urc+18]. The technique combines the concept of[MIMOJto virtually enlarge the an-
tenna size ofMAARSY|and radar imaging to obtain 4D measurements of kilometer-scale

structures at mesospheric altitudes. The resulting resolution is evaluated by simulations

and imaging specular meteor echoes. Furthermore, the advantage of the new technique
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is evaluated with two events of 3D [PMSE|structures showing: (a) a[Kelvin—Helmholtz]
(KHI) event drifting with the background wind with a horizontal wavelength

of 8 km to 10 km and a period of 4 min to 7 min, and (b) a possible gravity wave structure

drifting against the background wind with a horizontal wavelength of 12 km to 16 km

and a period of 15 min to 20 min.

4.2 High resolution spatio-temporal measurements of the MLT

dynamics

Itis known thatjmesosphere and lower termosphere (MLT) dynamics (background wind

flows) are not measurable directly by[VHF|radars. To track the background, some kind of
tracer is required to make it detectable by radars. Typically, meteor trails
[Wil09], [polar mesospheric winter echoes (PMWE) [LS15], and [polar mesospheric sum-
[mer echoes (PMSE) [JHO3;[Sto+13}(GSC19] are used as natural tracers of the[MLT dynam-
ics over the polar regions. Particularly, is known to be a suitable tool to monitor
the thermal and dynamic structure of the[MLT region [RLO4]. In this chapter, we use the
[middle atmosphere Alomar radar system|(MAARSY) radar to perform 4D measurements

of the|MLT|using[PMSE|as tracers.

Various authors have used MAARSY to study(PMSE|and its dynamics in4D
SC16]. In the best case, the resolution achieved by[MAARSY|was limited to a couple of

minutes in time, 150 min altitude, and ~5 km in the horizontal direction at mesospheric
altitudes. The low resolution in the horizontal direction achieved by previous studies

using [MAARSY, and other modern radars, did not allow to characterize the kilometer-
scales dynamics present in[PMSE

Here, and radar imaging techniques are implemented to improve the angular
(spatial) resolution of to be able to characterize kilometer-scale dynamics of
the[MLT in 4D (space-time). As described in the previous section,[MIMO|can be imple-
mented employing time or waveform diversity. Although the performance of waveform
diversity in[MIMO]is remarkably better than time diversity, its implementation would

require infinitely long pulses to guarantee totally independence between transmitted
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waveforms. This is not feasible in practice. However, long waveforms with good cor-

relation properties can be generated using[CWjradars.

Unfortunately, monostatic radars like do not posses capability and the
use of only waveform diversity might result in highly correlated transmitted waveforms.
Therefore, MIMO] with time diversity is the most adequate diversity to measure [PMSE]|
dynamics with[MAARSY. Since the application of[MIMOJwith time diversity is not free,
some restrictions during its application must be considered such as power loss, and a
large sampling time. In particular, the feasibility of] to observe any kind of phe-
nomena will be restricted by its scattering intensity and its correlation time (spectral
width). In the next section, we describe the nature of] and whyMIMO|with time

diversity is suitable to measure these kind of echoes.

4.2.1 Polar mesospheric summer echoes as tracers of the MLT dynamics

It is very well known that [polar mesospheric summer echoes (PMSE) are very strong

radar echoes produced by the presence of ice particles, turbulence, and free electrons

in the mesopause at polar regions [Rap03]. Although the first observations ofPMSE|go

back to the 1970s, the scattering mechanism of these echoes were in discussion for long
time [HRC86}[Zec+01]. Nowadays, we know that[PMSE]is caused by irregularities in the
radar refractive index which satisfy the Bragg condition [RLO4]. The Bragg condition
states that for efficient scattering, the electron density irregularities must reveal struc-
tures at the half radar wavelength, which forradars (50 MHz) it is ~3 m.

Previous studies of investigated the physical processes leading to formation of
these irregularities in the mesopause. Under normal conditions, plasma
irregularities at spatial scales significantly smaller than the inner scale of the turbulent
velocity field (meter-scales) should notlast, and hence should not be detectable by radars.
To allow these plasma irregularities survive for much longer times, their electron diffu-
sivity should somehow be reduced significantly. It is very well known that the electron
diffusivity is reduced significantly in the presence of heavy charged ice aerosol particles,
which in combination with neutral air turbulence, lead to the creation of plasma irregu-

larities at meter-scales that last for very long lifetime (10 min-few hours), and therefore,

are detectable byVHF|radars [RLBO3]. Surprisingly, the conditions for ice formation in
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Figure 4.3:|Range time intensity|(RTI) plot ofPMSE|observed with the[]MAARSY|vertical

beam.

the mesopause are satisfied only in summer due to the gravity wave disturbances which
cool the atmosphere above the summer pole [Litb99]. This explains why [PMSE|can be

observed only during summer.

PMSE|has been used as a tracer of the complex atmospheric dynamics for long time.

Physical parameters such as neutral winds [DLH96; [Hol+97; [Sto+13} [GSC19] and tur-
bulence parameters [BR84; have been obtained from [PMSE] radar observations
assuming horizontal homogeneity at scales of tens of kilometers. However, Sommer
and Chau have recently shown that[PMSE|is not homogeneous horizontally, and
instead it is composed of localized isotropic scatters. Moreover, their results suggest
the existence of small-scale structures in [PMSE] which might be resolved using high-

resolution observations in 4D space-time.

Figuref4.3|shows typical radar measurements ofPMSE|made by[MAARSY|using a vertical

beam, in which only 1/7th of the available power and 1/7th of the antenna array were

employed. Clearly, PMSE|structures are highly dynamic in time, altitude, and power.

We can even observe some wave-like structures in the [range time intensity (RTI) plot.

Although, a small portion of the antenna and the transmit power were used in this ex-
ample, the is still very high. Sometimes, it reaches up to 45 dB.

To implementMIMO|with time diversity atMAARSY), the antenna array and the trans-
mitting power is splitted into P sub-arrays. Thereby, the sensitivity of our[MIMO|system

will be reduced compared to its counterpart/SIMO|by P. For example, in aMIMO|config-

uration with seven transmit sub-arrays, both the antenna gain and the transmit power
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are divided by seven. Thus, the total power loss on transmission will be —17 dB, which
indicates that some of the weak [PMSE]echos will be lost. Looking at the radar reflectiv-
ity distribution of PMSE|from Fig. 1in [LB17], we notice that around 20 % of the weakest
[PMSE]echoes would be lost only by the reduction on the transmitting side. In addition,
we also have to consider the losses o on the receiving side, and the losses caused
by the reduced sampling time. Next, let us describe the[MAARSY radar, the radar param-
eters to observe[PMSE} and the[MIMO|experiment to understand how these parameters
affect the[PMSEJobservations.

4.2.2 'The MAARSY radar

The |middle atmosphere Alomar radar system|(MAARSY) is a monostatic radar system

located in Andoya, Norway (69.30° N, 16.04° E), with an active phased antenna array op-
erating at 53.5 MHz and at a maximum peak power of 800 kW. The array consists of
433 Yagi antennas arranged in a nearly circular grid of approximately 90 m of aperture
as shown in Fig. 4.4. The core array is arranged in 55 symmetric "hexagons” containing
7 antennas each. In addition, 7 adjacent hexagonal antenna structures can be grouped

into an "anemone”, which can act as one to transmit or receive antennas.

The main characteristics of each Yagi antenna are a bandwidth of 5 MHz and a directive
gain of 6.88 dBi. When the full array is used to point to the zenith, the beam has a direc-
tive gain of 33.5 dBi, a half power beam width of 3.6°, and a maximum sidelobe suppres-
sion of 17 dB with respect to the main lobe. Similarly, the beam width for a "hexagon”
and an "anemone” are 30° and 11°, respectively. Refer to @] for more details.

One of the main advantages of the[MAARSY radar is that each Yagi element is connected
to its own transceiver module, allowing the modulation of the transmit/receive signal in
phase and amplitude independently at each element. Using this capability, the beam can
be steered in any desired direction up to 30° off zenith, with a minimum beam width of
3.6° [Lat+12b]. This arrangement provides a great flexibility allowing different modes of
operation such as beam swinging, simultaneous multi-beam, and in-beam imaging. It
is important to notice that(MAARSY is the only[VHF high-power large-aperture radar in

northern polar region capable of radar imaging.
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Figure 4.4: Sketch of the[MAARSY|antenna array. The core array consists of 55 identi-
cal hexagons from A01 to F'11 containing 7 Yagi antennas each. A group of 7 adjacent
hexagons can form an anemone as indicated by the colored areas, which can act as one

antenna to transmit or receive. [Courtesy: Ralph Latteck].
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Unlike the multi-beam experiments, radar imaging allows to retrieve 3D images at once,
avoiding the interleaving from beam to beam and hence increasing the achievable sam-
pling time. The disadvantage comes with the limited number of receivers.[MAARSY]pos-
sesses only 16 signal processing units and hence only signals from 16 selected antennas or
group of antennas can be stored. These 16 signals can be selected either from “hexagons”

or “anemones”.

A simple radar-imaging experiment to image [PMSE|was conducted using [MAARSY to
compare[MIMO]to[SIMO! Since a fair comparison between the two implementations is
not possible because of the difference in transmitting power, antenna gain, and sampling
time, firstly, results from a numerical simulation considering equivalent conditions is

presented and discussed and, next, experimental results are discussed highlighting dif-

ferences caused by both[MIMO|and [SIMO]implementations.

4.2.3 SIMO configuration

To image a radar imaging experiment was conducted similar to Sommer and
Chau’s using 15 "hexagons” on reception and 1 "anemone” on transmission. Figure
[4.5(a) shows the selected transmitting and receiving array. Although three transmitting
antennas are shown, only one was used for the case. Fig. b) shows the result-
ing visibility considering only one of the transmitters and the fifteen receivers, i.e., the

visibility for|SIMO.

In theimplementation, the receiving setup was optimized employing genetic al-
gorithms [Hau94], and using as cost function the minimum number of gaps in the visi-
bility (more uniform) and the minimum number of redundant baselines. Genetic algo-
rithms are a class of algorithms designed to optimize a large search and to find near-
optimal solutions by mimicking evolution and natural selection. The resulting number
of unique baselines in our implementation is 163 compared to 145 of the Sommmer and
Chau’s implementation. The larger number of unique visibilities in our implementation
results in a more uniform point spread function with smaller sidelobes. Fig.[4.5{c) show
the resulting point spread function of our[SIMO configuration. Notice that the shortest

baseline of this configuration is 10.6 m, and the longest 73.3 m. Moreover, the resulting

[HPBWJis about 3.6°.
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(a) SIMO: antenna array (b) SIMO: visibility (1 Tx) (c) SIMO: point spread function
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Figure 4.5: [MAARSY|antenna configuration for [SIMO|(a, b, ¢) and [MIMO|(d, e, f). ()

The receiving array consisting of fifteen hexagons is shown in grey and the transmit-
ting array consisting of three anemones is colored. (b) Visibility samples for in
which the redundant baselines are color-coded. (c) Resulting point spread function of
(d) Resulting virtual array by using[MIMOQ] (e) Visibility samples for MIMO] (f)
Point spread function of The point spread function was calculated using both
the non-redundant and redundant visibilities.

94



CHAPTER 4. RESOLVING KILOMETER-SCALE DYNAMICS IN THE MESOSPHERE

4.2.4 MIMO configuration

As described above,[MIMO]with time diversity was chosen to improve the performance
of the radar imaging experiment. Employing the same receiving antenna layout used
in the[SIMOlimplementation, the transmitting antenna array was splitted in three sub-
arrays. The transmitting sub-arrays can only be selected from the available locations at
MAARSY]as shown in Fig. 4.4, which can be either an "hexagon” or an "anemone”. The
criteria of selection of one or another is based on the trade-oftf between antenna gain and
flexibility to form a larger virtual array. For example, if hexagons (401 and C01) com-
pared to anemones (A and C) are used as transmitting antennas, the longest baseline
of the resulting virtual array might be 1.4 times larger. However, the antenna gain of a
hexagon (15.33 dBi) is 8 dB less compared to the anemone gain (23.78 dBi). This dif-
ference affects significantly the detection of] particularly, of the weakest echoes.

Therefore, anemones are picked as transmit units.

All available anemones might be employed as transmitters. However, when time diver-
sity is used, the transmit power is reduced linearly by the selected number of transmit-
ters. Moreover, after a given point, addition of new anemones does not improve the vis-
ibility function. It only increases the number of redundant baselines. Since the number
of possible selections is reduced and the array is symmetric, the optimal solution can be

found straight away.

Fig. a) and (d) show the selected anemones used as transmitters and the resulting
virtual array, respectively. Fig.[4.5|e) shows the visibility of the virtual[MIMOJarray. Note
that the longest baseline for]MIMOJis 121 m compared to 73.3 m for[SIMO The improve-
ment of[MIMO]can be better observed in the point spread function shown in Fig. [4.5(f).
Not only the[HPBW]improved by 1.65 , but also the sidelobes are largely reduced.

The|MIMO|array was carefully selected to have three redundant virtual receivers located
at the origin, see Fig. [4.5(d). These three redundant virtual receivers are used for trans-

mitter phase calibration purposes as described in the previous chapter. To corroborate

the advantage of [MIMO|vs. [SIMO), simulations results are presented in the following

section.
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4.3 Simulations

A simple radar imaging experiment is simulated in this section to compare the perfor-

mance of[SIMO|and [MIMO|under identical conditions of transmit power, antenna gain,

and sampling time. For the sake of simplicity, the simulation is carried out in 2D only,
one range gate and one frequency bin. Equation (3.29) is used as a forward model since
it is valid for uniform and non-uniform arrays. The forward model can be written for a

given range gate and frequency bin in matrix form as
v=231+mn, 4.1)

where v € CV is a column vector comprising the measured complex signals for all the
transmit-receive links, N = P M is the number of virtual receivers equal to the number
of transmitters P times the number of receivers M, ¢ € R is the complex valued

image in vector form (flattened), ¥ € CNzK

is the Fourier kernel matrix, and n ~
Nc(0,X) is the receiving noise. Although the image is in 2D, here 4 is represented as a

column vector with a total number of K pixels.

Similar to the model used by Yu et.al. , the signal 9 ~ N(0, 02) from rep-
resents a Gaussian random process with mean 0 and variance 2. In those cases, the
expected variance of @) can be estimated from the spatial cross-correlation of the mea-
sured signals b using (3.55).

p=®b+eg, (4.2)

where p € CV is a column vector comprising all the visibility samples (cross-correlated
measured values), b € RE is the brightness in vector form (flattened), ® = Yy e
CV=K is the kernel matrix, and e ~ N¢(0,Y) is the statistical uncertainty associated
with estimating the cross-correlation with finite integration times. Since the white noise
for different channels (n;, n;) are uncorrelated, its effect is only considered for auto-
correlated samples, which is subtracted at calculating the normalized visibility. The num-

ber of visibility samples V. = PM(PM + 1)/2 represents the total number of virtual
baselines for[MIMOl

Following Harding and Milla’s work [HM13], a high-resolution 2D grid (K=640x640) is

used to simulate the signal measurements, and a coarser grid (K'=128x128) is employed
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Figure 4.6: Results of simulated radar data employing three inversion methods for|[SIMO
and|MIMO|configurations.

for the inverting algorithms. This is done to ensure that the model captures the image
features even if the recovering algorithm cannot recover them. The error term 7 is mod-
eled as a Gaussian white noise and the number of integration times used is 200, which
gives us a statistical error of 7.07 % using the definition from (2.84). The true image b is

considered to be formed by the superposition of multiple Gaussians or blobs. To inves-

tigate the performance of[SIMO|and[MIMO)|, we analyze the results by reconstructing an

image composed of two narrow blobs with three different algorithms.

4.3.1 Filter response

Let us consider an image composed of two narrow blobs of 0.6° width each as the truth.
To simulate a near-real scenario a Gaussian noise with variance % is added to the image
and the measured signal at one receiving antenna is obtained from @.I). The visibility
(expected value) is estimated from the received signal using 200 realizations. Then, the
problem in (4.2) is inverted by using one of the three algorithms described in Chapter
the inverse Fourier transform, Capon’s method [Pal+98], and the [maximum en-
[tropy] (MaxEnt) method [HCO6]. Results for the three methods using[SIMO|and[MIMOQ|

configurations are shown in Fig.4.6. Since Capon’'s method does not produce meaning-

ful absolute values, the results have been normalized for a better comparison.
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Visually the[MIMOJresults outperforms their counterpart[SIMO]s in all the cases. Previ-
ous studies have already shown the superiority of[MaxEnt over the other
two methods. The interest of this section is to show the improvement of the image recon-
struction when the imaging methods are combined with[MIMO] Qualitatively, Fig. 4.6
suggests that the solution closest to the Truth is the one using[MIMO]and the [MaxEnt
method. Meanwhile, Fourier combined with produces the worst reconstruction

with many artifacts. The following section quantifies the estimation error and the per-

formance of each algorithm when combined with[MIMO}

4.3.2 Error analysis

Quantifying the image quality is a hard problem when comparing different algorithms.
Typical metrics such as the mean squared error assume unbiased absolute values and
offsets, which is not the case for Capon’s method. Following the work done by Harding
and Milla [HM13], the normalized correlation is used as metric to quantify the similarity
between our results and the Truth. The correlation is defined as
blb
CoIt = i 4.3)
[Bescl2/[b]l2

where beg and b are the estimated and true values with means subtracted. This can be

seen as the normalized squared error.

To investigate the performance of our configuration, the simulation presented
above is repeated many times with values of the [SNR from —20 dB to 30 dB. For each
value of the[SNR, the simulation is carried out 50 times in which the blobs are localized
randomly in order to mitigate statistical fluctuations. The average over the 50 realiza-

tions is shown in Fig.[4.7

Evaluating the imaging methods, the Fourier results are poor and they barely reproduce
the true image. The main reason of their low correlations are the strong sidelobes, which
are confused as real echoes. On the other hand, Capon’s method reduces the sidelobes
considerably that for high[SNR echoes the sidelobes are almost indistinguishable from
the noise. Finally, the[MaxEnt method results outperform all the previous methods.
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Figure 4.7: Comparison of inversion methods as a function of the(SNR for the[SIMO|and
MIMO|configuration. The metric selected is the correlation with Truth.

Evaluating the transmitting antenna configuration, the MIMO|results are better than

their counterpart[SIMO|by ~60 % for low signals. Considering the results for[Max]
[Enonly, the improvement can be observed within the range —15 dB to 0 dB. The 60 %

improvement is expected since the antenna aperture was enlarged by 65 % by usingMIMO

Nevertheless, compared to the improvement achieved by using more efficient algorithms
the improvement due toMIMO]is not significant. Note the improvement from Capon to
[MaxEnt at 0dB, it is larger than 100 %. Does it imply that an more efficient inversion

technique is more important than a larger antenna array?

For simple images like the one composed by two narrow blobs, the[SIMOJantenna array
and the resulting visibility are sufficient to get a good estimate. The addition of more
visibility samples (larger aperture) by using[MIMO]does not affect the result as signifi-
cantly as it does the application of a good inversion method because the unknown signal

is already oversampled.

For more complex images, one might expect a different result. To evaluate both config-

urations in the presence of more complex structures, a simulation run was performed
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Figure 4.8: Same as Fig. [4.7]but with an image composed of multiple blobs. In this case,
the performance is evaluated as a function of the blob width.

consisting of an image with fifteen blobs and resulting[SNR of 0 dB. The simulation was

repeated multiple times with Gaussian widths from 0.2° to 4.5°. The results are shown

in Fig. 4.8,

Looking at the results, we observe that the improvement from[SIMO|to[MIMOis as good
as the one achieved by using a more efficient algorithm, i.e., from Fourier to Capon or
from Capon to[MaxEnt. For example, see the performance gain from Fourier{SIMO|to
Capon{SIMO vs. Fourier{SIMO|to Fourier{MIMO| These results do not tell us that the
performance of has increased but that the performance of the inversion tech-
niques have been reduced due to the more complex structures. These results corroborate

the necessity of more antennas to image more complex images.

Another important feature of the correlation shown in Fig. [¢.8]is the resulting correlation
asafunction of the blob width. The performance of the six techniques is poor at extremes
width values, for very narrow and very wide structures. However, when the blob width
coincides with the technique’s resolution, the correlation maximizes. The point of max-
imum correlation is indicated with a black dot in Fig. and it gives us an idea of the

resolution achieved by each technique.
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Even though the reconstruction results seem very promising, we have to consider the
running time of each algorithm. For Fourier and Capon’s the running time were below
a couple of seconds per inversion, whereas, for the @ method it was about 20 s
for[SIMOJand about 30 min for[MIMO] The larger running time for[MaxEnt and[MIMO]

was expected since the complexity of the(MaxEnt method depends exponentially on the

number of visibility samples.

4.4 Experimental implementation

The techniques described above are applied to actual data using the[MAARSY radar. An
experiment was conducted on July 16, 2017 during[PMSE|conditions using the same an-
tenna configuration as in the simulation. The transmit diversity employed was time di-
versity, which was implemented by interleaving the transmitters every 2ms. Indeed,
five anemones were used on transmission but only three of them are considered for sig-

nal processing corresponding to the same anemones used in the simulations. The radar

pulse was phase coded using a binary Complementary-16 code [Gol61} [SG96; [IMCK96),

e.g.]. The decoded data was stored using two coherent integrations and the resulting

[pulse-repetition interval/ (PRI) was 10 ms for each transmitter. Visibility estimation was

done in the frequency domain applying four extra coherent integrations to the complex
signals for each transmit-receive link, [FFT with sixteen points, and 128 incoherent inte-
grations to obtain an estimate (average) of the visibility. The complete list of radar pa-

rameters are summarized in Tablel4.4.

Although the experiment was performed using five anemones B, C, D, F, and F on
transmission, only three of them were processed. For the[SIMO case, the anemone B
was considered as transmitter, whereas, for the case, anemones B, D, and F
were used as it was in the simulation. Notice that the effective time difference between
transmitters for the selected anemones is 4 ms. As mentioned in section[3.7.1, this time

difference adds an additional phase offset to the system and needs to be calibrated.

4.4.1 Phase offset compensation

Before data inversion, instrumental phase offsets associated to the receivers and trans-

mitters, as well as the phase offset due to the interleaving between transmitters were
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Radar parameters |SIMO‘ |MIMO‘
frequency 53.5MHz 53.5MHz
pulse coding Complementary 16 Complementary 16
effective (after decoding) 100Hz 100Hz
range resolution 450m 450m
number of coherent integrations 4 4
effective (after integration) 25Hz 25Hz
number of [FFT points 16 16
number of incoherent integrations 128 128
equivalent integration time 81.92s 81.92s
equivalent integration time 81.92s 81.92s
number of transmitters (beams) 1 5 (3 processed)
transmit diversity - Time

Tx interleaving - 2ms

Table 4.2: Radar parameters used for[PMSE|observations

corrected using the procedure described in section Specifically, absolute phase
calibration of the receivers was done using the radio star Cassiopeia-A, similar to Chau
et.al. [Cha+14). For the[MIMO]configuration, phase offsets due to the time difference
between transmitters and Doppler shift (A¢ = 27 f47) were corrected directly since the
Doppler frequency f; and the time difference between transmitters T are known, similar

to [Urc+18].

On the other hand, a relative phase calibration of the transmitters was performed us-
ing the three redundant virtual receivers located at the origin which were shown in Fig.
d). Each of these redundant virtual receivers belongs to a different transmitter, and
since they three are located at the same virtual position, the difference in phase between
their signals must be zero. Assuming a phase offset of zero for transmitter B, the other

two were corrected.

4.4.2 Integration time: uncertainties and blurring

The main source of uncertainties in the imaging problem is the one associated with the

limited number of time samples to estimate the visibility. As we have seen in section

the estimate p is proportional to

p=p+p/Vn, (4.4)
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Figure 4.9: 2D[PMSE]images for a range of 85.95 km, where intensity, Doppler, and spec-
tral width are represented as lightness, hue, and saturation, respectively. Red, green,
and blue colors represent negative, zero, and positive Doppler, respectively. Data inver-
sion was done using Capon’s method with integration times of (a) 20s (b) 80s and (c)
320s.

where p is the true value, n is the number of time samples (integrations) used to esti-

mate p, and € = p/+/n is the error associated with estimating the visibility with finite

integration times [Dek+05}[HCO6].

For a large number of integrations (> 1000), we expect a negligible error. However,
in real applications, the number of integrations is restricted by the dynamic nature of
atmospheric targets. Structures in the atmosphere drift as they are imaged. Drifting
structures limit the angular resolution achieved by any method since the resulting im-

age might be blurred.

To avoid image smearing, short integration times should be used. However, the uncer-
tainties might grow significantly causing artifacts in the resulting image. Figure
shows the results inverting [PMSE| data with Capon’'s method for three different inte-
gration times. For an integration time of 20 s, the image exhibits some artifacts which
fluctuate in intensity and position over time (only one frame is shown here). For 80s
of integration, the image is smoother and most of the artifacts are gone, although the
structures are slightly wider than the first case. Finally, the result for 320 s of integration

time is completely smeared.
Given the relatively long temporal correlation ofPMSE|(a few minutes), long integration

times are required even if the data is sampled at high rates. Based on the results pre-

sented in Fig. we decided to use an integration time of 80 s, which is equivalent to
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128 incoherent integrations. The associated uncertainty to this number is 8.83 %, which

is a bit high.

To deal with drifting structures and limited integration times, we will in future explore

tracking techniques such as Kalman Filter when an approximate state model is known

Kal60;(SalO1], or the Expectation-Maximization algorithm [Moo96;[MBLI] to estimate

additionally the state model.

4.5 Experimental results

4.5.1 Comparison of SIMO and MIMO

The results of using Capon and [MaxEnt on actual PMSE|data for[SIMO|and [MIMOJare
shown in Fig. The inversion was performed for every frequency bin and the results

stacked to form the image. Similarly to what we got in the simulations,[MIMO{MaxEnt
outperforms all the other methods. Capon has a poor performance compared to its coun-
terpartMaxEnt for both configurations,[SIMOjand[MIMO} The same kind of results were

observed in the simulations for complex structures. The reason is that Capon tries to re-

duce the sidelobes adaptively, steering them to echo-free zones. Unfortunately, for the
event shown, the illuminated volume is filled with[PMSE|(no echo-free zones), thus the

performance of Capon is poor.

Furthermore, we observe that the improvement from [SIMOHMaxEnt to[MIMO}MaxEnt
is much better than from [SIMO}Capon to[MIMO} Capon. The improvement in angular
resolution of[MIMO} Capon with respect to[SIMO}Capon is about 60 % due to the larger
virtual antenna array. However, for[MaxEnt the improvement from [SIMO to[MIMO)is
much larger. In the case of the better resolution results from the larger vir-
tual antenna array plus the use of statistical uncertainties as described by Hysell and
Chau [HCO6]. These results suggest that[MaxEnt takes better advantage of the addition

of more visibility samples.
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Figure 4.10: 2D [PMSE|images similar to Fig. 4.9 but for different inversion techniques
(Capon,[MaxEnt) and configurations (SIMOJand [MIMO).
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Figure 4.11: Normalized angular power distribution of a specular meteor echo as a func-
tion of (a) range, (b) East-West direction (f,,), and North-South direction (6,). The results
are shown for the four implementations: Capon (blue), [SIMOH{MaxEnt (orange),
[MIMO}Capon (green), and [MIMO}MaxEnt (red). The half-power beam width (HPBW)

associated with each technique is indicated for the x and y direction.

4.5.2 Achieved resolution

Quantifying the image quality and angular resolution achieved when no reference is
available is a really hard task. Qualitatively, the(MIMO}MaxEnt results have the best res-
olution. However, the true image is unknown, and no precise evaluation is possible. To

quantify the performance of any technique, we require to image a known target and then

evaluate its discrepancy with its estimate.

Fortunately, our observations include echoes from specular meteor trails. One example
of these bright and punctual echoes can be observed in Fig.[4.10]at (10.5, —12.5). Specu-
lar meteors have been studied for decades, and their scattering is very well known. Spec-
ular meteor echoes can be considered to be a point target in range and angle. Although
the trail is long along its trajectory, its angular response is narrow since its scattering
mechanism is explained by Fresnel scattering. Meanwhile, in the transverse direction,
the trail extension is very narrow and so its angular response. Specular meteor reflec-
tions are considered to be a mirror-like reflection, and thus they should be observed as

a punctual object and can be used to quantify the image quality.

Figure shows the results of imaging a specular meteor by the four techniques de-
scribed above. For a better visualization of the differences, cuts in range and angle are

plotted. Similar to our simulations, the power was normalized since Capon’s does not
produce meaningful absolute values.
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Technique Angular Spatial Equivalent = Improvement
resolution resolution antenna factor
at 85 km aperture
MAARSY 3.60° 5.33km 76 m -
SIMO|- Capon 1.27° 1.88km 216 m 2.83
MIMO|- Capon  0.88° 1.30 km 312m 4.09
—|MaXEnt 1.05° 1.55km 261 m 3.42
MIMO|-[MaxEnt  0.61° 0.90km  450m 5.90

Table 4.3: Performance of imaging techniques

In an ideal case, no differences are expected in range for the four techniques. However,
we notice a small peak at ~86.5 km for Capon but not for[MaxEnt, either in a[SIMOJor
configuration. This peak is possibly associated with sidelobes of strong echoes
located at other angles in the same range. As mentioned before, Capon’s performance
is reduced considerably in the presence of volume-filling targets as in this case. On the
other hand,l@deals better with sidelobes for both configurations and the artifact

is suppressed significantly.

To quantify the angular resolution achieved in the x and the y direction, the brightness

samples were fitted to a Gaussian function. The resulting standard deviation of the Gaus-

sian, equivalent to thefhalf-power beam width|(HPBW), is indicated in the figure for each

technique. Notice that, among the four techniques, the two using[MIMOJhave better res-
olution. The lower resolution of[SIMOis due to the meteor echo is surrounded by[PMSE]|
is a volume filling target composed of multiple scatters. As seen in the simula-
tions, the larger the number of scatters the lower the algorithm’s performance. These

results suggest that for cases where the number of scatters is large or for complex struc-

tures,[MIMO|is a good alternative.

Table {4.3| summarizes the results obtained by imaging a specular meteor. In addition
to the angular resolution achieved by each technique, a improvement factor is included
using as a reference the theoretical angular resolution of the full[MAARSY array. As ex-
pected, the improvement from[SIMO|and[MIMO|is about 50 %. Surprisingly, the angu-
lar resolution achieved by using]MIMO}{MaxEnt is 0.6°, which is approximately six times
better than the nominal[MAARSY|angular resolution. The spatial resolution at 85 km as-
sociated with 0.6° of angular resolution is 0.9 km. The following section shows thePMSE]

structures identified with this resolution.
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Figure 4.12: 3D [PMSE kilometer-scale structures observed at[MAARSY|corresponding
to[MIMOHMaxEnt. Altitude, North-South, and East-West cuts are shown for three time

frames, one per row. The yellow dashed lines indicate the plane of the sliced images.

4.5.3 Observation of km-scales structures in PMSE

The unprecedented resolution achieved at[MAARSY by combining [MIMO|and [MaxEnt
allows us to observe kilometer-scales structures in |[PMSE|, which have never been ob-

served before by other radars. Since brightness estimation is done in polar coordinates
(0, 0y,7),a cubic spline interpolation was applied to convert it to Cartesian coordinates
(z,vy, 2), assuming the center of the antenna as the origin (x = 0,y = 0,z = 0). Note
that z, y, and z represent the East-West, North-South, and altitude direction, respec-
tively, where positive values correspond to East and North. A cut of the 3D image in alti-
tude, East-West, and North-South direction are shown in Fig. @for three consecutive

time frames.

The altitude cuts at 85.8 km show a wave-like structure with elongated meridionally ori-
ented wavefronts drifting from east to west. From the EW and NS cut, we see that the

structure has a limited extension in altitude about 2 km. The blue and red color (positive
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and negative Doppler) in the NS cut indicate that this structure might be composed of

eddies. Similar structures at larger scales have been observed by airglow imagers, which

are known to be associated with gravity wave breaking [Hec03}[Hec+07].

Radar imaging provides 4D radar measurements that allow to study the evolution of
these complex structures in time. Figure shows the time evolution of the selected
eventinaltitude, NS,and EW direction. Background winds estimated from(specular me
[teor radars|(SMRs) and from[PMSE|Doppler measurements are represented as arrows in

the plot, in which their slope (distance/meters) depict the wind magnitude. mean
winds were obtained combining meteor detections from Andenes and Tromso in Norway
and following the technique described in [HFVOI; [Hal+05]; |Cha+17]. Mean winds from
[PMSE|measurements were obtained using the same procedure described in [Urc+19a].

As expected,[PMSE]is composed of structures at multiple scales. Some of them spatially
uniform like the one around 00:20 UTC, and others more dynamic like the wave-like
structure seen around 00:56 UTC with a wavelength of about 8 km. In the EW direc-
tion, this wavy structure is drifting at the same pace as the background mean wind, in
direction and magnitude. In the NS direction, the elongated structures are apparently
also drifting with the background but it is difficult to confirm it since the illuminated

volume is spatially limited.

Surprisingly, we found other events were kilometer-scalePMSE|structures were not drift-
ing with the background. These events are of great interest since they might be associ-
ated to small-scale gravity waves, which are known to have their own velocity and di-
rection independent of the background wind. One example of this kind of structures
is shown in Fig. 4.14, Compared to the first case, this structure has an altitude extent
of ~3 km, between 82 km to 85 km. Moreover, in the EW direction, the wavefronts are
propagating in the opposite direction to the background zonal wind. Whereas the back-
ground is going from east to west, the wavefronts are propagating from west to east. The
approximate distance between wavefronts in the EW direction, i.e., the wavelength, is
~12km. Since its relatively small wavelength, this structure might be classified as an at-
mospheric instability. Nevertheless, its opposite direction of propagation suggests that
it might be a propagating gravity wave. Further analysis of the two events is required
to classify them properly and to realize the physical mechanism behind them. Those in-
vestigations are out of the scope of the present work. However, a complete analysis of a

KHI event from data resulting from this work has recently been published by Chau et.al
[Cha+20].
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(a) RTDI (x = 4km, y = Okm)
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Figure 4.13: Time evolution of] structures as a function of (a) altitude , (b)
NS location, and (c) EW location for the same event shown in Fig. 4.12. Zonal (110) and
meridional (vg) mean wind values estimated from [specular meteor radars|(SMRs) and
[PMSE|are represented by arrows. The dashed horizontal lines indicate the planes of al-
titude, NS, and EW cuts shown in the previous figure. Similarly, the dashed vertical line
indicate the time.
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Figure 4.14: Same as Fig. [4.13] but for a[PMSE]structure propagatig against the back-
ground wind.
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Chapter

On mesoscale spatio-temporal dynamics

In this chapter
5.1 Introduction
5.2  Existing specular meteor radars to measure MLT winds
5.3  Multistatic specular meteor radars based on MIMO

5.4 Montecarlo simulations

5.5 Experimental results

5.6 Conclusions

5.1 Introduction

In the previous chapter,[MIMOJand radar imaging techniques were combined to observe
kilometer-scale dynamics using PMSEs|as tracers. Specifically, a large aperture radar
with a high spatial resolution was employed to illuminate relatively small volumes. On
the other hand, when the objective is to measure mesoscale dynamics, large aperture

antennas are not efficient because of their limited illuminated volume. Instead nearly
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isotropic antennas or multi-stations are required to observe large volumes and the dy-
namics within. Quasi isotropic antennas or single antennas posses low antenna gains
and echoes such as[PMSEs|are usually not detectable by these systems. For mesoscale
dynamics, stronger tracers and all-sky radars are needed [HFVO1].

Another good tracer of the[MLT dynamics are specular meteor trail echoes. When a me-
teor enters the Earth’'s atmosphere it heats up and ablates leaving an ionized plasma trail
along its trajectory. Meteor trails survive in the mesosphere hundred of miliseconds and
during their lifetime they drift with the neutral wind. When the radar line-of-sight is
approximately perpendicular to the trail, the scattered signal is strong and low-power

radars are able to detect these echoes. This perpendicular point is also known as spec-

ular point. [Specular meteor radars|(SMRs) are small and low power systems capable of

measuring the backscattered signal from meteor trails. systems only measure a
projection of the trail velocity (radial velocity). By using several of these radial velocity
measurements from distinct view angles, the background wind can be estimated. Since
the 1950s, [SMRs|have been used to characterize the atmospheric dynamics in the[MLT

region [MVP50;RLE53].

Typically, mean wind estimation requires several meteor detections within a specific vol-
ume and time, and moreover assumes horizontal homogeneity [HFVOI;[HRCO4]. The
reliability of wind estimates depends highly on the number of detected meteors per vol-
ume and on the meteor location accuracy. Indeed, there are many thousands of meteors
entering the Earth’s atmosphere per minute. Nevertheless, only a few of them satisfy the
specular condition and can be detected by a given[SMR] A reduced number of detections

limits the quality of the estimation and the resolvable scales.

Recently, Stober and Chau, and Vierinen et al. [SCI15;([Vie+16] proposed the use of multi-
static meteor radars (radar networks) to increase the number of meteor detections and
thus to improve the time, altitude, and horizontal resolution of wind estimates. Specif-
ically, they have shown that a significant increase in meteor detections admits to relax
the horizontal homogeneity assumption allowing to derive horizontal wind fields 3D
winds). The first multi-static radar network proposed by Stober and Chau, and Chau et
al. [SCI5; uses spatial and frequency diversity. It consists of multiple trans-

mitters (Tx stations) and multiple receivers (Rx stations) widely separated from each

other, in which the Rx stations possess interferometric capabilities for
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(AOA) estimation. Its main advantage lies in that it can be implemented with commer-
cial radars working at different frequencies, keeping the data analysis the same. Nev-
ertheless, the complexity comes by requiring a broad bandwidth as the number of Txs
increases, complicating also the receiving side. Later, proposed a radar network
with multiple transmitting and multiple receiving stations, for which waveform diver-
sity was used to separate the contribution of Tx stations. In this kind of network, each Tx
station transmits a different pseudorandom code sequence but at the same frequency,

i.e., uses spread-spectrum. This allows to interconnect a receiver to all the Tx stations.

In the[MIMO|community, these kinds of radars are also known as non-coherent|MIMO
radars [HBCO8|. They are named non-coherent since the scattered echoes at one receiv-
ing station coming from two distinct transmitting stations are not correlated. Even if

two distinct transmit-receive links observe the same target, their scattered signals will be

uncorrelated since the observed|radar cross—section (RCS) will be different (from a dif-
ferent view angle). Non-coherent[MIMO]radars have been widely discussed in the con-
text of multistatic radars, where the transmit and receive antennas are widely separated
from each other. The main difference between conventional multi-static and[MIMO]sys-
tems lies in the use of multiple transmit antennas radiating independent signals for
which increases significantly the number of independent transmit-receive links

and the number of measurements compared to multistatic radars using only one trans-

mitter.

In this chapter, the limitations of existing radar networks are investigated and a novel
and scalable radar network is proposed based on the combination of non-coherent and
coherent[MIMO]with waveform diversity. The proposed approach significantly simpli-
fies the deployment of radar networks, increase the number of meteor detections, and
improve the quality of meteor measurements. Thus, improving the quality and reso-
lution of wind estimates. The network is based on multiple transmitting stations com-
bined with multiple receiving stations widely separated, i.e., using non-coherentMIMO}
in which each station has multiple transmit/receive antennas closely separated, i.e., us-
ing coherent [MIMO] In our proposal, the non-coherent approach helps to in-
crease the number of meteor detections due to the high number of independent transmit-
receive links. Whereas the coherent(MIMO|approach allows to add interferometric capa-
bility to both the Tx and Rx side, improving the meteors’ location estimation. Moreover,
[MIMOJwith waveform diversity permits every station to work at the same frequency and

to reuse the spectrum, allowing interoperability between all the stations. To avoid any
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kind of confusion, hereafter we refer to non-coherent|MIMO|as multi-static radars and

to coherentMIMO|as simply|[MIMO|

Even though the great advantage of multi-static radars combined withMIMOJusing wave-
form diversity, multiple Txs transmitting different waveforms at the same frequency
might degrade the performance of the system since the transmitted waveforms are not
totally independent. The larger the number of transmitters, the higher the resulting
cross-interference between all the Txs. In order to minimize the cross-interference be-
tween Tx stations, we require a proper recovery algorithm to decouple the return signal

due to each transmit antenna.

Different approaches have been proposed in the past to recover signals in interference

environments. For example, the linear[least squares estimation (LSE) has been used in

[MIMOJ]communications systems for its simplicity and tolerable performance. Its main
limitation is that it is only applicable to overdetermined problems. Some studies us-
ing [LSE] to recover signals in[MIMO] systems with more Rxs than Txs can be found in
[Wan+07;|AF14]. On the other hand, Vierinen et.al proposed the use of the[max

[imum likelihood estimator/(MLE) for multistatic[SMR|networks with more Txs than Rxs.

In this case, was used to find the same solution as theweighted least squares esti-|

(WLSE). As it was stated before, [LSE]is only applicable for overdetermined prob-
lems. In [Vie+16], they introduced a trick and solved the problem for one Tx at a time

to make the problem overdetermined, considering the contribution from other Txs as

noise. Since the transmitted waveforms are not totally independent, this works in net-
works with a small number of transmitters or if the echoes from other transmitters are
weak. Otherwise, the noise floor might increase considerably, reducing the number

of meteor detections. Other approaches have been proposed to overcome the under-

determination problem, such as the [minimum mean squares error estimator (MMSE)

RGV09] but at the price of increasing the computational complexity and requiring prior

knowledge of the noise variance.

In addition to the mulstistatic network based on[MIMO), a novel algorithm is pro-

posed to recover specular meteor signals from radar measurements in interference envi-

roments. The proposed approach is based oncompressed sensing, which adds a sparsity

constraint to our problem to find the best solution. Compared to conventional meth-

ods like matched filter [[Turé60] or[LSE|[AF14], our approach is capable of recovering weak

signals in the presence of strong ones.
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In the following sections, the|specular meteor radar system is briefly described, and the

advantages and disadvantages of preceding multi-static configurations. Then the
proposed network based on[MIMO|and the signal recovery algorithm based on [com ]
[pressed sensing| are fully described. Finally, the advantage of the proposed system is

validated through simulations and experimental results.

5.2 Existing specular meteor radars to measure MLT winds

5.2.1 Specular meteor radar

Meteors entering the atmosphere heat and vaporise forming a trail of ionised gas along
their trajectories. As long as they survive, meteor trails are carried along by the neutral
atmospheric wind. By the aid of radars, meteors’ trail velocities and positions can be de-
termined. Meteors’ trail velocities can be estimated from measurements of one single
receiving antenna. However, measuring meteor’s locations require radars having inter-

ferometric capabilities. Typically, interferometry is implemented in a system with a sin-

gle transmit antenna and multiple receive antennas, i.e., a[single-input multiple-output|

(SIMO) radar. By comparing the phase delays between receive signals the

(AOA) can be estimated. Figure[5.Ishows a typical specular meteor radar with one trans-

mitting element and a receiving array with interferometric capability. To optimize the
meteor radar measurements, standard meteor radar systems use the well known Jones
antenna configuration [JWH98]. This configuration allows to determine both the me-
teor’s Doppler velocity f and thefangle of arrival k = 27/A[0,, 6, 6] with good accu-

racy.

In a meteor radar, the measured Doppler velocity is a projection of the background wind

u = [u, v, w] on the radial direction k. For a meteor trail measurement 7, we get
u-k; =-2nf;. (5.1

By combining several meteor trail measurements and assuming an homogeneous wind
within a volume and time window deductions of the magnitude and direction of the at-

mospheric mean wind can be made at the altitude at which the meteor was observed
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Figure 5.1: Specular meteor radar system with interferometric capability to measure ra-

dial velocity f and k of a meteor trail. Note that the radial velocity is a

projection of the background wind on the radar line-of-sight.
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Figure 5.2: Meteor detections. (a) Bi-static meteor radar system, and (b) distribution of
total meteor detections for one day.
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HFVOI]. Typically, the(least squares estimation|(LSE) is used to obtain a wind estimate.

The is an algorithm that minimizes the discrepancy between the measurements and

the unknown value
u = arg min E u-k; +2nf;), (5.2)
u Z ( ’ Z)

where i stands for the meteor index in a specified volume and time window, and 1 is
the estimated wind. The quality of the estimate depends on the number of meteors per
volume and time. Figure[5.2 shows the distribution of total number of meteor detections
for one day in a volume of 250 km x 250 km x 10 km. For a bistatic system installed in
northern Germany the total number of detections was ~10 kin 24 h, where meteors with
low elevation angles (0, < 60°) are not considered due to their high associated error
provoked by antenna coupling. To obtain an accurate wind estimate, a minimum of ten
meteor measurements in a volume of 250 km x 250 km x 1 km and a time window of 1 h
are typically used. Other important considerations for wind estimations such as outliers
removal or a zero vertical wind assumption are recommended by Hocking et.al. [HFVOI]

and are typically used in standard systems.

A graphical example of estimates of zonal v and meridional v wind obtained with a radar
installed in northern Germany are shown in Fig. Patterns of global-scale oscillations

known as atmospheric tides are visible in the figure, which have been extensively studied

for several authors with different instruments [HT97;|CL69}[Kop+15]. Since their large ex-

tension and long periods, tides are easily studied with low resolution systems. However,

[AGWs|and turbulence processes require systems with high spatio-temporal resolution.

Standard meteor observations are limited to the study of large-scale dynamics owing to
their low resolution in time and space. Wind estimates from monostatic [SMR]are not
able to resolve mesoscale or small-scale dynamics. A higher number of meteor detec-
tions per space and time bin is required to increase the spatio-temporal resolution for

mesoscale studies. This can be achieved by using multitatic networks.

5.2.2 Multistatic specular meteor radars based on SIMO

In order to increase the number of meteor detections, Stober and Chau [SC15] proposed
the addition of receiving stations with interferometric capability to existing[SMRs|. Fig-

ure[5.4](left) shows a sketch of a radar network operating at a given frequency consisting
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Figure 5.3: High resolution zonal u and meridional v winds obtained with a multi-static
system installed in northern Germany.

of one Tx station and two Rx stations, in which each Rx station has interferometric ca-
pability. Stober and Chau have shown that the addition of a new Rx station increases
the number of usable meteor detections by ~70 %. The 30 % loss is mainly caused by
the larger Tx-Rx distance and the low elevation angles of some detected meteors. To ex-

tend the horizontal coverage, new radar systems operating at different frequencies can

be added as shown in Fig. 5.4|(right).

Since between 5 meteordetections to 10 meteordetections are required to estimate the
mean wind in a volume, the increase in the number of detections lead to a better spatio-
temporal resolution and altitude coverage. If the number of detections is significantly
high the horizontal homogeneity assumption can be relaxed (smaller volumes) and the
3D wind field can be estimated. Details of 3D wind field retrieval can be found in [SCI5;
[Cha+17]. Essentially, since the number of meteor detections is high, the same minimiza-
tion problem as in (5.2) is solved but for smaller volumes. In addition, some smoothnes

constraints can be added for neighboring volumes.

Although Stober and Chau [SCI5] implemented two radar networks operating at fre-
quencies separated almost 4 MHz, the separation required is only a few hundred kHz
since the meteor’s bandwidth is less than 100 kHz. Note that each link can be classified
as a (coherent) radar since it is composed by one transmit element and multiple

receiving elements, and the total number of links is directly proportional to the number
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Figure 5.4: Left: Addition of Rx stations to an existing Tx allows to increase the number
of meteor detections (Radar network based on. Right: Addition of radar networks
operating at different frequencies allows to increase the horizontal coverage of meteor
measurements. Red, green, and blue colors indicate that the stations are working at a
specified frequency.

of Rx stations. Hereafter, we refer to this kind of networks as a radar network based on

a|SIMO|configuration employing frequency diversity and spatial diversity.

Implementation of radar networks using frequency diversity is relatively simple since it
can be implemented with commercial meteor radar systems, such as the meteor system
SkiYMET [HFVO1] or ATRA [HRCO4]. Frequency diversity is the simplest way of ensuring
orthogonality if the frequency separation between two transmitters is larger than the
range bandwidth required (~100 kHz). Nevertheless, it requires much more resources
than any other transmit diversity. First, a broader radio spectrum is required, which is
one of the most limited resources. Second, additional receivers are required for each
new transmitter since antennas and digital receivers are usually narrowband, and they
cannot listen to multiple frequencies at the same time. Each new network is completely
isolated from the others, and existing resources like Rx antennas and digital receivers

cannot be reused.

Figure[5.4[right) shows an example of a network consisting of three transmitter stations
and fifteen receiver stations. Even though the high number of Txs and Rxs, the number
of resulting links is limited to fifteen. Moreover, some Rx stations have to be duplicated
at the same location, one for each operating frequency. To increase the number of re-

sulting links using the same amount of resources, among other advantages, Vierinen et.
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al. [Vie+16] proposed a radar network based on[SIMO|working at the same frequency but
in which each transmitter radiates an independent waveform, i.e., a radar network us-

ing waveform diversity and spatial diversity. In the next section, a radar network using

waveform diversity based on (coherent)[ MISO|and [MIMO|was implemented to increase

the number of resulting transmit-receive links and the accuracy of meteor detections.

5.3 Multistatic specular meteor radars based on MIMO

Winds are estimated by combining several meteor radial velocity measurements with
their corresponding location. Radial velocities can be estimated from one single receiv-
ing antenna. However, measuring meteor’s locations require interferometric capabili-
ties. Interferometry can be applied to a radar link employing multiple receive or multiple

transmit antennas closely separated. In the case of a system with a single transmit an-

tenna and multiple receive antennas, i.e., a[single-input multiple-output (SIMO) radar,

we can only estimate the target’s fangle of arrival (AOA), see Fig. [5.5(a). On the other

hand, if a system with a single receive antenna and multiple transmit antennas trans-

mitting independent signals is employed, i.e., ajmultiple—input single—output|(MISO)

radar, we can estimate the target’s fangle of departure| (AOD), see Fig. [5.5(b). When a
[multiple—input multiple—output (MIMO) radar is used, both[AOA and[AOD|can be esti-
mated jointly to improve the accuracy of the target’s location, see Fig. [5.5(c). The reason
of the better accuracy by[MIMOJis that when the position estimation is done only from

one side (Tx or Rx), the measurement error associated to low elevation angles is consid-

erably larger. Instead, when the meteor is observed from both sides only one of them

will suffer of this effect augmenting the accuracy of position estimation.

Former studies only proposed networks based on|SIMO|configurations since estimation
of [AOD]is not possible with standard methods. In this section, a radar network based

on (coherent or co-located)[MISOjandMIMO|configurations using waveform diversity is

proposed. The[AOA and[AOD|can be obtained solving (3:37). Figure[5.6{left) shows a Tx

station with two antenna elements and two Rx stations with one antenna element each.

On the Tx side, each element transmits a different waveform but at the same frequency.
On reception, the reflected signals from each Tx are decoupled (decoded) and they are

processed to estimate the[AOD| Note that in this case, a Tx station plus a Rx station form
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Figure 5.5: A bistatic Tx-Rx link based on (2)[SIMO, (b)[MISO} and (c)[MIMO] and
[MISOJallows estimation of AOA and [AOD) respectively; whilstMIMO]allows estimation
of both [AOA and [AOD), which results in a higher location accuracy. A[MISOJor[MIMOQ|
system make use of multiple transmitters radiating independent signals (in frequency,
waveform, time or polarization), which are represented in red and green.

a (coherent) MISO]link. Figure [5.6[right) shows three networks composed of three Tx
stations and twelve Rx stations, which results in 36 independent Tx-Rx links, three times

higher compared to the network using frequency diversity.

Waveform diversity allow us to use one frequency for all the Tx and Rx stations, mak-
ing the network scalable and increasing the effective number of links compared to net-
works using frequency diversity. Thus, increasing the number of detected meteors. As
explained by Vierienen et.al. [Vie+16], compared to radar networks using frequency di-
versity in which the number of detected meteors is Ny N,;, networks using waveform
diversity allows to increase the number of detections to nNg N, Ny,.. Where N is the
typical number of meteors detected by a monostatic system, N, is the number of re-
ceivers, Ny, is the number of transmitters, and  ~ 0.3—0.8is an efficiency factor, which
depends on the distance between transmitter and receiver. The larger the distance, the

smaller the efficiency.

The number of detections in a radar network using waveform diversity is Ny, times larger
than a typical radar network with only one transmitting station. This difference lies in

the fact that in a radar network using waveform diversity all Tx and Rx stations are in-

terconnected. On the other hand, (coherent)[MISO|and [MIMO]allow us to add interfer-

ometric capability to the Tx side. Particularly,[MISO|permits to move the complexity in

power, number of antennas, and space required only to the Tx side. For networks based
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Figure 5.6: Similar to (5.4). Left: A multistatic[SMR|network using waveform diversity.
The Tx antennas radiate independent waveforms at the same frequency. Scattered sig-
nals are decoupled on the receiving side. Right: Addition of Txs and Rxs operating at the
same frequency allows to increase the horizontal coverage and the number of meteor
detections.

on[MISO| the Rx stations can be composed of a single antenna, which makes its installa-
tion suitable in small places such as gardens, schools, and on houses’ roofs. This small but
important difference allows the installation of these systems at great scale (with many Rx

stations).

To make a quick comparison, the number of antennas required to build the networks
based on[SIMO]and [MISO]shown in Figs. [5.4|right) and [5.6|right), respectively, are 75

compared with 12 for the Rx stations, and 3 compared with 15 for the Tx stations. Thus,

the resulting number of antennas required are 78 compared to 27 for[SIMO|and [MISO|,

respectively. Not only the number of antennas used is less for[MISO|but, more impor-

tantly, the effective number of Tx-Rx links is three times higher.

Furthermore, by using[MIMO|links rather than|MISO} the meteor’s position can be es-
timated from both the Tx and Rx side, augmenting the accuracy of location estimation.
MIMO|does not only increase the accuracy of estimations, it also increases the of

detected meteors due to a higher antenna gain in both transmission and reception. Nev-

ertheless, installation complexity of MIMO|links are similar to[SIMO's.

A summary of radar networks using four different implementations is shown in Table
(2) The one based on|SIMO|using frequency diversity proposed by Stober and Chau
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configuration SIMO SIMO MISO MIMO

diversity frequency waveform waveform waveform
and spatial and spatial and spatial and spatial
diversity diversity diversity diversity

antennas per Tx 1 1 5 5

antennas per Rx 5 5 1 5

Tx array gain +0dB +0dB +6.98dB +6.98dB

Rx array gain +6.98dB +6.98dB +0dB +6.98dB

space per Tx dmxbHm dmxbHm 30mx 30m 30mx 30m

space per Rx 30mx30m 30mx30m Smxbdm 30mx30m

scalable No Yes Yes Yes

example:

Tx stations 3 3 3 3

Rx stations 12 12 12 12

total Tx antennas 3 3 15 15

total Rx antennas 60 60 12 60

total antennas 63 63 27 75

independent Tx-Rx 12 36 36 36

links

pulse type coded pulsed coded coded coded

code type Barker Pseudorandom Pseudorandom Pseudorandom

Tx power (average) 660 W 400 W 2KW 2KW

number of detected CN()NRX CN()NRXNTX CNQNR)(NTX CN()NR)(NTX

meteors

efficiency factor (¢) 0.7 0.7 1.0 1.1 ,

reference [@] || Cha+20} Cha+20;

[Urc+19b] [Urc+19bj

Table 5.1: Performance of implementations

[SC15], (b) the one based on[SIMO|using waveform diversity proposed by Vierinen et.al.
,and the two based on (c)[MISOland (d)[MIMO]described in this work, which have
been recently published in [Cha+20] and [Urc+19b]. Notably, compared to the other im-
plementations, theMISOJconfiguration obtains the largest number of meteor detections

per antenna. It only uses 27 antennas in total. The efficiency factor was estimated from
the experimental results published in [Cha+20] (Table 2: Total counts). The simplicity
and performance of radar networks based on|MISO|allowed us to deploy these systems

in Germany, Argentina, and Peru to study the|[MLT dynamics with high spatio-temporal

resolution at different geographic conditions. Some results are presented in the Section

5.5]

An adverse effect of using [MISO|or [MIMO|with waveform diversity is the augmented
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cross-interference between transmitted signals since the waveforms are not totally inde-
pendent. The total cross-interference in the system grows as the number of transmitters
does. In our example, the number of Tx antennas is fifteen, which results in fifteen dif-
ferent waveforms. Standard decoding techniques don’t decouple and retrieve the Tx-Rx

signals successfully. To deal with the cross-interference in such environments, an ad-

vanced signal processing approach based on|compressed sensing is proposed. Metrics

used to select the proper recovery method are (a) its computational complexity, and (b)

its accuracy to recover weak signals.

5.3.1 Traditional signal recovery algorithms

The signal recovery problem in a[MIMO|radar using waveform diversity was described
in Section 3.6} which is written as

Y = X + N, (5.3)

T
with  x,, = {vle vI ... vITDm} , (5.4)
and @:[Hl Hy, ... Hp}, 5.5)

wherey,. € Cisacolumnvector comprising all measured complex signals at receiving
m, L is the waveform length, v,,,, € C% is a column vector comprising the scattering
amplitudes for all range bins for the Tx-Rx link pm, p = [1,2, ..., P] is the transmitter
index, ® € C/*V is the sensing matrix, N = PR is total number of unknowns equal to
the number of transmitters P times the number of range gates R, and H,, is the matrix
defined by the transmitted waveform p. Note that, the location of the transmitter (closely

or widely separated) does not matter in this equation.

The recovery problem reduces to retrieve the backscattered coefficients for each Tx-Rx
link, i.e., retrieve the column vector x,,,. The ideal solution would be to find the inverse

of the matrix ® such that
Xm =@y, (5.6)

Since ® is not full-rank (. < N), its inverse does not exist. Instead, we require to use

approximations or prior information in form of constrains to solve the problem.
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5.3.1.1 Matched filter estimator

One the most straightforward and fastest algorithms to decode radar data is the[matched)
[flter estimator](MEE) [Tur60]. As its name states,[MFE is a filter which is matched to the
transmitted signal, and therefore, maximizes the The(MFE|can be written as

KMEE _ gy (5.7)

m

where () is the Hermitian transpose operator and XM* is an estimation of x,,.

is known to be an optimal filter since it maximizes the[SNR} whereby its application is
recommended for detection of weak signals. When [MFE is applied to radars,
it maximizes the[SNR|but also it enhances the sidelobes and the cross-interference be-
tween waveforms. Moreover, sidelobes’ amplitude get stronger as the[SNRjand number
of targets increase. In a[MIMO|system with a high number of Tx-Rx links, the applica-
tion of[MFE results in a highly contaminated solution with several artifacts. Therefore,
application of[MFE is not recommended in[MIMO]systems with several transmitters. To

reduce the artifacts (cross-interference), different approaches are required.

5.3.1.2 Least squares estimator

In a system of equations where the matrix ® is of full column rank (L > N), there is no
vector X,,, which satisfies all the noisy observations. One criteria to solve the problem is

to select the solution which minimizes the residual r = ||y,,, — ®x,,||?. This technique

is known as the[least squares estimation|(LSE) and it can be applied to recover x,,, from

(5.5). is known for minimizing the discrepancy between the measurements and the
unknown vector. The problem can be written as

fcg;fE = arg min ||y,, — @me%, (5.8)

Xm

where ||.||2 represents the Euclidean norm. In a well-posed problem (L > N),[LSE|gives
a unique solution in which the cross-interference and sidelobes are reduced. The
solution to is given by

x5F =ty | (5.9)

where & = (&7 ®)~1® is the Moore-Penrose pseudoinverse.
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In anill-posed problem, like the one for our[MIMO|system, ® is not of full column rank
(L < N) and there may be infinitely many[LSE]solutions of x,,, which fity,,,. For those

cases, additional constraints are required to make the solution unique. Vierinen et al.
[Vie+16] got results similar to the using the maximum likelihood estimator.

5.3.1.3 Truncated SVD

A method known to regularize an ill-posed least squares problem is the truncated sin-|
lgular value decomposition|(tSVD). The basic idea behind is to convert the ill-posed

problem shown in to a well-posed problem, in which the solution will be unique and

less sensitive to perturbations [Hang87].

The definition of[singular value decomposition|(SVD) is

& =USVT, (5.10)
S = diag(d1, d2, ..., 0n) (5.11)

where 0; is the i-th singular value of the matrix ®. In the matrix ® is approxi-
mated with another one of lower rank, which ignores the smallest singular values of ®.
The matrix ®;, used in the is defined as the rank-k matrix.

&, = US, VT, (5.12)
Sk = diag(dy, ..., 9, 0, ..., 0), (5.13)

where k < N, and S, is equal to S with the smallest N — & singular values replaced by
zero. In our problem, k is equal to min(L, N). Using this definition, the approximate

inverse of the matrix ® would be

&+ =vstu”, (5.14)
1/6; ifi<k

St = diag{n;}, 7 = . (5.15)
0 ifi >k

The main idea of[tSVD|is to truncate the small singular values, and thus to truncate the
condition number of ® (d; /Jx), which mightintroduce high errors to the solution. Using
tSVD|, we will obtain a unique solution in which the interference is reduced, even if the
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problem is ill-posed. In other disciplines, the[tSVD]is also known as the minimum-norm
least squares solution, since the[tSVD]picks the least squares solution with the smallest
energy ||x,,||?. Such minimization helps to reduce the cross-interference between wave-
forms in a[MIMO]system. Nevertheless, it also minimizes the energy of the weak echos,
which might be hidden in the noise.

5.3.1.4 Regularized least squares estimator

To find a balance between the maximum-norm (matched filter estimator) and the minimum-

norm (truncated singular value decomposition), an additional regularization term can

be added to the minimization problem

X o0 = arg min ||y, — ®xpml|3 + Allxm |3, (5.16)

Xm
where \ > Oisthe regularizer, which represents the trade-off between the minimization
of the residual and the total energy in x,,,. The analytical solution to (5.16) can be written
as
XRSE = (@ 4+ A1) ey, . (5.17)

Equation is known as the|regularized least squares estimation|(RLSE) or Ridge re-
gression [HK70]. Notice that, when A = 0, the[RLSE|solution is the same as the ordinary
m in which the total energy in x,,, is minimized. On the other hand, when A tends to
infinite, RLSE]has a similar solution as the[MFE] in which the total energy in x,, is max-
imized. The selection of A is crucial to have a good balance between both minimizers in

(5.16). Typically, the best A is found by cross-validation algorithms [Jam+09}[TT09]. This

additional step might result in a high demand in computational power, and not always

the selected ) is the best.

Similar results to[RLSE|can be found using the|minimum mean squares error estimator]
(IMMSE), for which A = ﬁ Kay93]. Nevertheless, neither|RLSE‘nor|MMSE|reduces the
cross-interference significantly if the matrix ® is ill-conditioned. In the field of MIMO

communications, [successive interference cancellation|(SIC) approaches have been em-
ployed to improve the performance of linear detectors like]MFE or[MMSE|[Wol+98;WWL03;
[RGV09]. [SIC|approaches are quite similar to the CLEAN algorithm used in radio astron-
omy ,inwhich stars and planets are considered to be point objects that are found
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through successive point source cancellation. The application of CLEAN for punctual
and sparse objects can be considered the most basic implementation of theorthogonal
[matching pursuit (OMP) algorithm [CW11], which is used injcompressed sensing]to solve

sparse problems.

5.3.2 Signal recovery based on compressed sensing

[Compressed sensing (CS), also known as sparse recovery [Don0O6a}[CRTO6a] was previ-
ously described in Section[2.5.2.1, Compared to the Nyquist theorem, which claims that
an arbitrary signal must be sampled at twice its bandwidth for exact recovery,[CS]states

that a signal can be recovered even from a very limited number of measurements under
two conditions: (a) the signal is K -sparse in some domain, i.e., the number of non-zero

values in the unknown vector is less than K’; and (b) the sensing matrix satisfies the

[stricted isometry property| (RIP) [CTO5], which requires that any K columns of ® are

approximately orthogonal.

In case of a specular meteorMIMOJradars using waveform diversity, both the K -sparsity
andcondition are satisfied. Firstly, specular meteor echoes can be considered to be
sparse point targets. Although, the meteor trail is long along its trajectory, its angu-
lar response is narrow since its scattering mechanism is explained by Fresnel scatter-
ing. In the direction transverse to the trail, its extension is narrow and so its angular
response. Consequently, specular meteor reflections can be considered as punctual ob-
jects in range and angle. Moreover, since the specular condition is satisfied only for few
meteors, the number of detections is very low, so they are sparse. Although specular me-
teors are sparse in range and angle, only sparsity in range is exploited to avoid inversion

of large matrices.

Secondly, by selecting proper waveforms, as described in Section3.6| the matrix ® can
satisfy the RIPcondition. Further details to improve the waveform design in specular
meteor[MIMO|radars are described later. For now, it is assumed that the matrix ® sat-
isfies the[RIP|condition.
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Under the two conditions described above, |CS|aims to recover the sparsest solution by

adding a constraint to (5.5)

)Z,CTLS = arg min ||y,, — (I’XmH%,
Xm
subject to ||x, [0 < K, (5.18)

where ||x,,||o is the lo-norm, which counts the number of non-zero values in the vector
X. Equation (5.18) recovers the solution x5 with the smallest possible number of non-

zeros which fits with the datay,,,.

Although the lp-norm minimization problem seems to be an easy problem, recovery of
the unknown vector requires an exhaustive search over all subsets of columns of ®, re-
sulting in C% possible support sets. Thereby, the ly-norm problem is computationally
intractable. To find an approximate solution, studies by Donoho and Candes [Don0éb;
have shown that the /yp-norm problem can be relaxed and reformulated to a
more computationally graceful problem, the /1-norm. The I1 -norm is also known as(ba-|
[sis pursuit](BP) [CDS98], and it is the most prompted approach to solve (5.I8) because of
its reduced complexity O(N?3) compared to the lo-norm O(C¥) . Since

[1-problem is a convex optimization problem, it can be solved via interior point methods

such as gradient-based algorithms. Even though fast algorithms have been introduced
to solve theproblem and to reduce its complexity to O(L?N %) WEV13], this is still

not applicable when facing real-time analysis for large data like in the specular meteor

MIMO|radar case.

Numerous researchers have been working in developing more efficient algorithms for
sparse signal estimation. Among all of them, greedy algorithms are the most practi-
cal and fastest to solve (5.18). Greedy algorithms are iterative algorithms which make
a locally optimal selection at each iteration with the intent to find the global optimum
at the end of the algorithm [Bi+16]. A good example of these algorithms is the
lorthogonal matching pursuit|(OMP) algorithm and its variations such as
[GOMP [WKS12),[ROMP [NV09],[StOMP [Don+12)), and[CoSaMP| [NT09]. Although[OMP|
requires more measurements (K log(V), [TG07]) than[BP|(K log(N/K), [Don06a)) to

achieve the same accuracy, the low computational cost o makes it feasible for real-

time applications. In this work, a variation of|StOMP is proposed to recover MIMO

data.
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5.3.2.1 Stagewise orthogonal matching pursuit

[Stagewise orthogonal matching pursuit|(StOMP) is a greedy method for finding the spars-
est solution of underdetermined systems of linear equations [Don+12]. Compared to

earlier methods like[BPjand StOMP is significantly faster on large-scale problems.
Since|StOMPis based on first the algorithm is described. is aniterative

greedy algorithm which starts identifying the column of ® (scaled) which maximizes the

correlation with the measurements. Then the index of this column is added to a list of
selected columns. Next, the contribution of the selected (scaled) columns are subtracted
from the measurements generating a measurement residual for the next iteration. The
steps above are repeated s times until the residual is minimum. In[OMP], the number of

iterations s must be known in advance, i.e., it requires prior knowledge of the sparsity.

Even though has a low complexity O(2N Ls + 3Ls?) [WKS12], some studies have
made some modifications to improve its computational efficiency and recovery perfor-
mance. For example, Wang et.al. [WKS12] describes the[generalized orthogonal match-|

[ing pursuit| (GOMP) method, where more than one indices are identified at each itera-

tion. In this way,[GOMP decreases the number of required iterations and reduces the
algorithm complexity to O(2N Ls), with s being the number of iterations. Similarly,
Donoho et.al. [Don+12] proposed [StOMP, where multiple indices higher than a thresh-

old are selected at each iteration and the number of iterations has not to be known in

advanced. Unlike GOMP, [StOMP uses a residual threshold € as a stooping condition.
StOMP steps are summarized in Table

In[StOMP, the selection of the[SNR]threshold n and the stopping condition € are directly
related, and they both depend on the orthogonality of the sensing matrix ® and the spar-
sity K of x,,,. The better the orthogonality and sparsity, the lower n and €. A small value
of n allows to select more columns per iteration and reduces the number of total itera-
tions. However, as a consequence, the number of false detections (bad selections) might
increase. This effect is caused by the use of[MFE in the first step of[StOMP. As explained
above, the use of[MFE enhances the sidelobes which might be confused as real echoes by
Typically, n is a high value and few columns are selected per iteration in[StOMP,

which increases the processing time.
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Input measurements at receiver m,y,, € CF

sensing matrix ® € CL*V
thresholdn € R
stopping conditione € R

Initialize iteration counts =0
residual vector p = y,,

support )y = ()

Iteration While (e < 1| p[|3)
Identify a subset ®,. (indices) of ® which satisfies
R={r:|x(r)]*> > no?},
where x = ®" p, and o2 is the variance of x (noise floor).
Merge the new subset with the previous support
Q=01 U R.
Compute a better approximation of x supported by €2,
% = (@l ol ) By,
Subtract the contribution of the selected columns and update the
residual for the next iteration
r=y,, — @gsfc,

s =s+1.

Output the estimated signal at receiver m, X,, = X

Table 5.2: StOMP algorithm

5.3.2.2 Fast stagewise orthogonal matching pursuit

To reduce the number of iterations and to increase the performance of[StOMP. A mod-
ification employing the in the first iteration instead of[MFEis proposed. Unlike
[tSVDJallows us to identify correctly the highest non-zero values in the first itera-
tion (strongest echoes, @ > 15dB), which finally introduce the highest errors. Once
the strongest echoes are identified, and their contributions have been subtracted from
the measurements, @is employed to enhance the smaller non-zero values (medium
echoes, > 6 dB), making them detectable. The modified [StOMP, which is shown in
Table[5.3] allows to find the sparsest solution using only two iterations, one for the strong

and the other for the medium echoes. Thereby it is named as|fast stagewise orthogonall

[matching pursuit|(FaStOMP).

132



CHAPTER 5. ON MESOSCALE SPATIO-TEMPORAL DYNAMICS

Input measurements at receiver m,y,, € CF

sensing matrix ® € CL*V
thresholdn € R
stopping conditione € R

Initialize iteration counts =0
residual vector p = y,,

support )y = ()

Iteration While (s < 2)
Identify a subset ®, (indices) of ® which satisfies
R={r:|x(r)]*> > no?},
where X = {<I>+p fors =0
&7 pfors >0
and o2 is the variance of x (noise floor).
Merge the new subset with the previous support
Qs =01 U R.
Compute a better approximation of x supported by €2,
%= (2 of )0l ¥,
Subtract the contribution of the selected columns and update the
residual for the next iteration
r=y,, — @ggi,

s = s+1.

Output  the estimated signal at receiver m, x,,, = X

Table 5.3: FAStOMP algorithm

In practice, is good at recovering strong and medium echoes, and to reduce
the interference between waveforms. Nevertheless, we noticed that the smallest non-
zero values (weak echoes,[SNR|~ 0) were not recovered even using‘@. This occurs
since the[SNR of these echoes are comparable to the noise and their distinction from it
is highly complicated. To make them detectable we require either to increase their[SNR|
or to improve their detectability. To do so, a technique similar to the Joint and Block
Sparsity is used [EKB10;[Xua+17]. Essentially, a third iteration is added to[FaStOMP in
which the [SNR of the smallest echoes are improved. In the third iteration, the contri-
bution of strong and medium echoes have been already subtracted from the measure-
ments and only weak echoes remain on the residual. To increase the[SNR] the estimated

values can be coherently integrated along time since meteor echoes last for at least a few
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ms (1" samples) in the same range. For which the identification step can be replaced by

|Xjoint (1, 1) |2 > no?, with

T/2

fcjoint(rv t) = T Z )AC(T, t+ to). (5.19)
t():—T/2

Furthermore, the identification step in[FaStOMP)can be further improved when coher-
entMIMOJis employed. For coherent[MIMO]configurations, radar echoes coming from
different transmitters will be located at the same range bin and the signal can be inco-
herently integrated along the Tx-Rx channels, improving the detectability of the weak
echoes

M P
. . 1 )
[Vmp(r, 8)? = |9 (r, )2 = P SN R, ). (5.20)

m=1p=1

12> no?

For such cases, the identification step can be replaced by |v(r)

Figure[5.7jsummarizes the steps of the[StOMP algorithm. Notice that, although the[SNR|
threshold is 6 dB for the three cases (a) strong, (b) medium, and (c) weak echoes, the
power of selected echoes at each iteration are not. For the first iteration, only indices of
strong echoes are selected since the estimated noise level is relatively high due to the
strong sidelobes. In the second iteration, given that the strong echoes have been re-
moved, we expect small sidelobes which are comparable to the noise level, so only indices
for which theis higher than 6 dB are selected. In the last iteration, the noise level is
reduced by integrating the signal incoherently, which allows to select the indices of weak
echoes with[SNRslower than 6 dB. The threshold of 6 dB was selected since it represents

4 standarddeviations, i.e., a confidence level of selecting non-noise indices of 99.9 %.

Hereafter, when we refer [StOMP or [FaStOMP] they both include the third stage with

coherent and incoherent integrations. In which the threshold isn = \/%.

5.3.3 Sensing matrix design

Exact recovery of a K -sparse vector X, requires the sensing matrix ® to fulfill certain

conditions. Such conditions can be expressed as|restricted isometry property (RIP) in

134



CHAPTER 5. ON MESOSCALE SPATIO-TEMPORAL DYNAMICS

Initialize
parameters

use truncated LSE to obtain a

. use MFE to obtain a solution
solution

integrate the data coherently
in time and incoherently in
channels

select the indices of strong
meteor echoes, threshold=6

subtract the contribution of select the indices of weak
strong echoes from the meteor echoes,
measurements threshold=6/SQRT(MP)

use the selected indices (strong,
medium and weak) and invert
the problem using LSE

Figure 5.7: Flow chart summarizing th§StOMP algorithm used to recover specular me-
teor echoes in a radar network with multiple transmitters radars). The red, yel-
low, green boxes represent the identification and estimation of strong, medium, and
weak meteor echoes, respectively.

[CTO5], as[uniform uncertainty principle| (UPP) in [CTO6], as |exact recovery condition
(ERC) [Tro04], or as[mutual incoherence condition|(MIC) in [DHO6]. In practice, only

and are feasible in real problems.

To optimize the sensing matrix design, themutual incoherence condition|is defined as

a metric
tmax(P) = max |<I>f<I>q|, (5.21)
PF#q

where ®,, is the p-th column of ® and fumax represents the largest off-diagonal element
of the gram matrix G = ®®. In some sense, measures how independent the
columns in ® are. When fimay is zero, the columns ® are fully independent. Tropp

proved that the maximum sparsity of a system K. is bounded by its value

1 1
2 Hmax

This equation indicates that the system of equations shown in (5.5) with a given can
be solved by compressed sensing only if the number of non-zero values in x,,, is less than
Kmax. Other authors suggested an averaged mutual coherence fi,yg instead of fimax. The

average value is more adequate in our problem since the distribution of the non-zero
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values are equally probable along x,,,. Thus, the sensing matrix design problem reduces
to finding a matrix ® which minimizes the mutual coherence fi4,4(®). As described in
section the matrix ® is a function of the transmitted waveforms. To optimize ®, we

have to select a proper set of waveforms w;, which minimize fiay¢(®).

Similar to , pseudorandom binary phase-coded sequences are employed as wave-
forms. Although they are not fully independent, they maximize the transmit energy, are
easy to be generated, and have good orthogonality properties [BM16]. Other authors
have also suggested the use of other quasi-orthogonal codes such as the Gold and Frank
codes [Fraoé], however, they are not used here since pseudo-random sequences
are more flexible. In our case, the transmitted signal (waveform) is divided in L bauds
where each of them has a constant amplitude equal to 1 (jw,| = 1), and a binary phase
(0 or ). The phase values for each baud are selected randomly from a given seed number
as described in Section[3.3.2. To optimize the sensing matrix design ®, a set of seeds

which minimizes fia5(®) are selected.

When multiple closely separated transmitters are employed, i.e., coherentMISOJor[MIMO)
the sensing matrix can be further optimized. As mentioned above,[MIC|measures how
large the off-diagonal elements of the gram matrix G are, which can be seen as a mea-
sure of how strong the cross-interference between two columns of ® is. As shown in
(2.36), a column of @ represents a shifted version w,,(7) of the waveform wy,. Partic-
ularly, we are interested in minimizing the cross-interference of every possible combi-

nation of the columns (w,(71), W, (2)) forp # p’ since each combination is equally

probable. In case of[MISO|or[MIMO)], a target which is detected at a given range bin by

one Tx channel, i.e., |v,,1(7)| # 0, it is always detected at the same range bin by the
other Tx channels, i.e., [V, (7)| # 0 for p = [2,..., P]. Therefore, the probability of
having cross-interference due to the combination (w,(7), wy (7)) is 100 %, for which

the artifacts created by this combination must be further minimized.

Since the average interference between waveforms along lag 7 is the same as the one

along lag 0, see Fig. the problem reduces to minimize the amplitude of 1, =

w{,{ wy. For the experiments and simulations presented in this work, the average co-

herence f1,vg and the coherence at zero lag between waveforms i, are used as metrics

to select the set of waveforms.

seeds = arg min {|jag(®) — io] + 1ty (B) — g}, 5.2
P (seeds)
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where 110 and p; are the desired coherence values and are selected based on the maxi-
mum number of non-zero values Kp,,x expected in x,,, and ® is function of the wave-
forms which depend on the selected seeds. Considering a coherent[MIMO] radar with
five transmit elements and five meteor echoes per unit time in average, Kn.x = 25,
and using [tavg = 2¢~2. Since we desire to reduce the cross-interference between
waveforms at zero lag even more, the mutual coherence y,,, = 2e2 is selected to be
one order of magnitude lower. Once the two parameters are defined, an iterative search

is used to find the proper seeds which satisfy the given conditions.

5.4 Montecarlo simulations

Preliminary results of the proposed algorithm based onfcompressed sensing](CS) applied

to a multi-static meteor radar system installed in northern Germany have recently been
published by Chau et.al. [Cha+18]. Since[CS]is fundamentally based on probabilities and
boundary conditions, it is challenging to prove its success only based on experimental re-
sults. Consequently, some simulations are performed to support the proposed approach

and to delimitate it before exploring the experimental results.

The simulated system, similar to the]MIMOJlink used in [Cha+18], consists of one Tx sta-
tion with five transmitting antennas and one receiving station with five receiving anten-
nas. In the simulations, each transmitting antenna radiates a different waveform. The
waveforms are optimally selected using the conditions described in section For
which, an iterative search, which satisfies (5.23), was implemented in Python to find the
most adequate seeds. The sequence of pseudo-random binary numbers were produced
using the numpy.random library. The seeds that produce quasi independent waveforms
were the sequences with seeds [1,97, 173, 1885, 8928|.

To evaluate the advantage of our recovery algorithm, it was compared with two of the
most common approaches like|]MFE and The forward model simulated is the one
described in (5.5), which was simulated under three different scenarios (a) variable|SNR

(b) variable sparsity (number of meteors) and (c) variable waveform length. In all three

2

= was equal to 1 and the signal power of the simulated meteors

cases, the noise variance o

2

Os

was relative to the noise (SNR= o2 /02). Since the simulated system was a coherent
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MIMO|system, the meteor range gates were randomly selected, however, they were kept
atthe same range bin for all the Rx and Tx channels, i.e., [V ()| = |V (r)| forp, p’ =
[,..,P.

In our simulations, once the ground truth x,,, was defined, y,,, was obtained by and

adding a Gaussian noise. Using [MFE} [tSVD)} and [FaStOMP, we get estimates X, from

the measurementsy,,. Inall the cases, the sparsity K (unknown in real systems) defined
as the number of simulated meteors times the number of transmitters was only used to

corroborate the success of the recovery algorithm.

To compare the performance of the three algorithms, a relative error was chosen as a

metric and it is defined as

K
[ (k) — % (K)
A :§ , (5.24)
T kWP

where x,,, (k) is the k-th non-zero value of x,,, . The typical mean-square-error is not used

since the three algorithms|MFE, [tSVD)| and [StOMP try to minimize it and the resulting

(error) value is almost the same for any case. Instead, a weighted error is used since the
primary objective is the total error independent of the signal amplitude. To avoid statis-
tical fluctuations, the simulation was repeated for each case 200 times (realizations) and

the error associated with them was averaged out.

Figures[5.8, 5.9 and show the performance of the recovery algorithms under the
three selected scenarios: (a) variable @, (b) variable sparsity, and (c) variable wave-
form length, respectively. Since the relative error defined in does not consider er-
rors coming from the zero elements (possible artifacts), the number of false-detections
is included in the plots, i.e., the number of elements in %X,,, which should have been zero
but were not due to the algorithm being used. In our definition, false-detections are
those values for which the power is higher than the noise level by a given amount. Being
conservative a threshold of 402 is selected, for which o2 is the noise variance estimated
from x,,,. Itis important to notice that the artifacts or sidelobes also affect the noise level

estiamtion.

In our simulations, the|[StOMP algorithm does not include the coherent integration step
described in (5.19) since only one time sample is simulated. However, it includes the inco-
herent integration step shown in (5.20). The number of incoherent integrations selected

for all the simulations were five.
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(a) signal recovery of two meteors with the same SNR
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Figure 5.8: Performance comparison of recovery techniques as a function ofSNR| Every
simulation run contains two meteor targets with (a) both having the same SNR and (b)
having a SNR difference indicated in the plot, with the weakest one fixed to —10 dB. The
colored bars indicate the average number of false detections for each technique. During
the simulation M, N, and K were set to 1000, 2000, and 10 respectively.
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Figure 5.9: Same as Fig. Recovery performance as a function of sparsity. In ev-
ery simulation run, the[SNRJand the range bin of simulated meteors were randomly as-
signed. Only colored bars for[StOMP and [FaStOMP are included. M, N, and[SNR} 4z
were set to 1000, 2000, and 25, respectively.
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Figure 5.10: Same as Fig. Recovery performance as a function of the waveform
length. N, K, and[SNR,,,,, were set to 1500, 100, and 25, respectively.
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Figure[5.8 shows the results for[MFE} [tSVD},[StOMP as a function of[SNR. For this sim-
ulation, only two meteor echoes are considered, i.e., K = 10, a waveform length of
L = 1000, and a number of range bins of R = 300. Figure a) shows the results in
the presence of two meteor echoes with the same [SNR| whereas, Fig. [5.8(b) shows the
results for the same meteors but having a[SNR|difference. For the first case, clearly most
of the algorithms have a good performance for[SNRs|higher than —15 dB. Nevertheless,
for[MFE and [tSVD), the number of false echoes increases as the meteors’[SNR do. This
effect is highly related to the sidelobes’ amplitude. In case of[StOMP, the performance
improves as the[SNR increases. The reason is that as higher the[SNR| the easier it is to

identify, and thus easier to remove the sidelobes.

Surprisingly, [StOMP’s results in Fig. [5.8(a) are lower than[MFE]s even for low[SNRs|val-
ues. is known for being a linear filter which maximize the[SNR. The question is why

[StOMP is better than[MFE|even for weak echoes. The reason is the ability of the[StOMP|
implementation to reduce the noise variance and to improve the detectability after inte-
grating the signal incoherently. When no integration is used in[StOMP, its performance
is similar to[MFE!. [FaStOMP was not included in this case since its performance under
these conditions is similar to[StOMP.

In the second case shown in Fig. [5.8(b), in which the two meteors have different[SNRs]
One of them was fixed to —10 dB and the other one fluctuated between —10 dB to 30 dB.
As expected, as soon as the difference is higher than 10 dB, thehas a better
performance than[MFE} almost 20 % better. This indicates that[tSVDJreduces the inter-
ference due to strong signals better. In case of [StOMP, the error is negligible for this

simple scenario.

The previous simulation was a simple case and it was selected to highlight the differ-
ences between the recovery algorithms. In the following simulation, with radar param-
eters similar to the first one, the performance of the algorithms are evaluated in a more
complicated scenario, namely, a system with many meteor detections. In the recovery
problem, the number of meteors detections is equivalent to the sparsity or number of
non-zero values in the vector x,,. The question here is what the maximum sparsity K
for which exact recovery is guaranteed is. According to (5.22), the theoretical maximum
sparsity Kmax is 26 for the selected seeds considering a waveform length of 1000, which

1s not so accurate.
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The performance of the algorithms as a function of sparsity are shown in Fig. 5.9} For this
simulation, the index of the non-zero values (range bins) and theof them were ran-
domly selected. The[SNR range was similar to the previous case, from —10 dB to 30 dB.
Observing the results, clearly, the performance of[MFE|and [tSVD]decrease quickly with
increasing K. Not only the error but also the number of false detections increases. The
number of false detections were not included for[MFE and tSVD|because they were ex-
tremely high (> 50).

Onthe other hand, the results of the algorithms based on[compressed sensing(CS) prove

that they work successfully even when the sparsity is about 250. When the sparsity isless

than 150, there is no difference between(StOMP and|[FaStOMP. Considering a maximum

error of 5 % as acceptable, the maximum sparsities for[StOMP and[FaStOMP are 255 and

340, respectively, which compared to the number of measurements (waveform length)
is one third (340 ~ 1000/3). This means that the number of measurements has to be at

least three times the number of non-zero values (unknowns).

Another important point of these results is the improvement from[StOMP to|[FaStOMP.
It shows that using instead ofMFE in the firstiteration helps to choose correctly the

highest non-zero values and remove their effects from the measurements. The number

of false echoes for[StOMP and [FaStOMP are below 5, which indicates they are working

properly under the conditions descrideb here.

A similar analysis was implemented to determine the minimum waveform length re-
quired for exact recovery. In this simulation, a maximum number of meteors equal to
20 is considered, i.e., K = 100, and a maximum number of ranges equal to R = 300.
Figure5.10]shows the results of this simulation. Considering the same relative error of
5 %, the waveform lengths required to recover up to 20 meteor echoes in a]MIMO|radar
with five transmmiting antennas are 395 and 350 for|[StOMP and[FaStOMP, respectively,

corroborating our previous finding that the waveform length L should be at least three
times larger than the sparsity K. In a network with five transmitting antennas,
a waveform length of 300 might be used since, under normal conditions, less than 20

meteors per time unit are expected.
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Figure 5.11: Meteor map distribution of specular meteor detections during 1 d of obser-
vation by a radar network deployed in northern Germany. The magenta marks represent
the location of transmitting stations and the green marks the location of receiving sta-
tions. Circles indicate an antenna arrays (interferometry capabilities), whereas triangles
indicate single antennas.
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5.5 Experimental results

Having shown the success of the proposed system and recovery algorithm, a multi-static
radar network was deployed in 2018 in northern Germany. The radar network based on
[MIMO]using waveform diversity, consisted of two Tx stations and five Rx stations oper-
ating at 32.5 MHz as shown in Fig. The first Tx station is a pulsed radar located in
Juliusruh, Germany (54.6° E, 13.3° N) and it is indicated with a magenta triangle in the
figure. More details of this radar system can be found in @]. The second Tx station is
a transmitter, it consisted of five transmit antennas located in Kithlungsborn, Ger-
many (54.11°F,11.76° N) and it is indicated with a magenta circle in the figure. Each
transmit antenna radiated a continuous waveform with 400 W of power. The waveform
length and the number of range gates used were 1000 and 350, respectively. This net-
work is the same as the one used by Chau et.al. [Cha+20]. Only two receiving stations,

which are indicated with a green circle had interferometric capability.

Figure[5.12Jshows the[range time intensity](RTI) plot for one of the]MIMOJlinks (Kiihlungsborn-
Neustrelitz) after applying (2)[MFE, (b)[tSVD), and (c)[FaStOMP using coherent and inco-

herent integration. In this case, the number of coherent (along time samples) and in-
coherent (along Tx and Rx channels) integrations were 16 and 25, respectively. Since
@only recovers non-zero values, the noise level was estimated from the residual
and added to the data synthetically. By looking at the[MFE results, we observe its suc-
cess to recover weak echoes. However, it fails in the presence of strong airplanes or me-
teor echoes. As mentioned before, [MFE enhances the sidelobes and cross-interference
between transmit waveforms, which does not allow to distinguish between real echoes
and artifacts. On the other hand, thereduces the cross-interference for the strong
echoes but as a consequence, the weak echoes are missing. Moreover, in case of very
strong echoes, we can still see some sidelobes. This is due that the sensing matrix is
ill-conditioned. Finally,[FaStOMP recovers properly strong and weak echoes, and more

importantly the sidelobes are strongly reduced.

The |StOMP method described above assumes the presence of sparse specular meteor
detections (non-zero values). However, distinct atmospheric targets like non-specular
meteors, E-region irregularities, airplanes, and ground clutter are generally included in

the radar data. For those cases, the non-zero values might be not restricted to one range
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Figure 5.12: Comparison of recovery techniques with data acquired in a meteor radar
network deployed in northern Germany. (a) [matched filter estimator| (MFE) (b) [trun-
[cated singular value decomposition|({tSVD) (c)|fast stagewise orthogonal matching pur-

(FaStOMP)
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(c) Sparse recovery: 2018-11-06 20:16:20
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Figure 5.13: A fireball spread along several ranges recovered by|StOMP.

only, and instead, they might be spread in several ranges. As the simulations show, even
in those cases, the[StOMP algorithm should work properly as long as the number of non-
zero values is less than one-third of the number of measurements. Figure[5.13/shows an
example of a fireball detected by the proposed algorithm where the target is spread along
50 ranges. A transform domain, where these non-point-targets are more sparse, might
be added to the recovery problem to further improve the recovery of these type of echoes.

However, it is not the focus of this work.

The resulting number of meteor detections compared to a standard [SMR]was at least
seven times larger. As mentioned at the beginning of this work, the primary objective is
to help in understanding the atmospheric dynamics in the[MLT region. Although esti-
mation of atmospheric parameters are out of the scope of this thesis, it is important to
mention the benefits and advantages of this large set of meteor detections regarding its

capability to determine atmospheric parameters unambiguously in time and space.

5.5.1 3D wind field

Thanks to the increased number of meteor detections, one can relax the assumption of

horizontal homogenity and estimate the wind field for smaller volumes as was explained
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Figure 5.14: Wind field estimates on December 11th, 2019 for selected heights (left) 85 km,
(mid), 89 km, and (right) 93 km. The normalized meteor counts are indicated as con-
tours. The mean horizontal wind is indicated with a green arrow [Courtesy: Jorge Chaul].

by Stober and Chau [SC15]. An example of the wind field obtained with a radar network
system installed in Peru named|spread—spectrum interferometer meteor system observ-|
[ing network|(SIMONe) is shown in Fig. The data retrieval is an extension of the al-
gorithm described by Harding et.al. [HMMIS5]. Essentially, since the number of meteor

detections is high, the same minimization problem of (5.2) is solved but for smaller vol-

umes. In addition, some smootheness constraints are added for neighboring volumes.

5.5.2 Second order statistics

Another important advantage of having a large number of detections is the capability to
estimate the three-dimensional mesospheric wind field correlation function from spec-
ular meteor trail echoes. As described by Vierinen et.al. [Vie+19], each meteor echo pro-
vides a measurement of a one-dimensional projection of the wind velocity vector at a
randomly sampled point in space and time. Using pairs of such measurements the cor-
relation function of the wind with different spatial and temporal lags can be estimated.
For example, having the correlation function at different time lags allows us to estimate
the power spectrum using the Wiener-Khinchin theorem [Wie30], which can be used to

retrieve the kinetic energy spectrum.

Figure shows the estimated temporal autocorrelation functions for the horizontal
wind components using the technique described in [Vie+19] for 6 days of data. The left
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Figure 5.15: Power spectral density derived from the full autocorrelation function of ra-
dial meteor measurements. No windowing or zero padding is used to calculate the spec-
tra. [Courtesy: Harikrishna Charuvil].

plot shows the 100-km horizontal scale autocorrelation function. The right plot shows
the spectrum calculated from the autocorrelation using the Wiener-Khinchin theorem.
Clearly, we can see the 12-h and 24-h tide, and the energy cascade from large scales to

small scales.

Another example of the capability and advantage of the proposed network can be found
in the easiness to install this system in other places to study the at different geo-

graphic regions, such the systems installed in Peru and Argentina.

5.6 Conclusions

This chapter introduces a new radar network based on[MIMO|systems using waveform
diversity to increase considerably the number of meteor detections with a few Tx and Rx
stations and thus to allow the estimation of spatio-temporal physical parameters such

the wind field in 4D and the kinetic spectrum at different temporal and spatial scales.
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Since in[MIMO|systems using waveform diversity, the transmitters interfere each other,
and conventional approaches like MFE or tSVD do not decouple well the signals coming

from different transmitters. This chapter proposes a recovery algorithm based on[com

[pressed sensing (CS) to overcome the undetermination of the problem. The proposed

approach takes advantage of the sparse nature of the meteor echoes to regularize the

problem by choosing the sparsest solution which matches the measurements.

The algorithm selected to find the sparsest solution was a variation of the[stagewise or-

fthogonal matching pursuit| (StOMP) given its high performance and simplicity.

wise orthogonal matching pursuit (StOMP) is highly recommended than its counterpart

due to its reduced complexity. Although it is known that[StOMP re-

quires a larger number of measurements than [BP|to recover a signal with the same ac-

curacy, its computational cost makes it much more attractive for real-time applications.

Including the truncated [tSVD|to [StOMP, i.e., [FaStOMP) the meteor signal was recov-

ered from the radar measurements using only three iterations. One each for the strong,
medium, and weak echoes. Since the weak echoes were not distinguishable from the
noise, coherent integration in time was applied to improve the SNR in the last iteration.
Moreover, for coherentconﬁgurations, further improvements were achieved in-

tegrating the weak echoes incoherently along the Tx and Rx channels.

The reduced complexity of the proposed sparse recovery approach makes it applicable
even for large data sets. To have a rough idea of the computational time, the implemen-
tation was tested in two different scenarios: (a) alink consisting of 5 Tx channels
and 1 Rx channel, and (b) alink consisting of 5 Tx channels and 5 Rx channels, i.e.,
25 channels in total. For the first case, a Core i5 PC with 8GB of RAM was used to process
the[MIMO|radar data, for which the processing time was around 2 s for 60 s of data. In
the second case, a Core i7 PC with 16GB of RAM was used, getting 12 s to process 60 s of
data. In both cases, the radar data was acquired continuously at a sample rate of 100kHz
and the algorithm was implemented in Python using Intel’s optimized version of numpy
and scipy libraries [Int]. Even though the new python libraries allow us to use more than

one core, our implementation made use only of one core at a time.

Additionally, the CS approach can help to reduce or compress the meteor radar data.
Since|[FaStOMP only recovers echoes above a threshold, most of the data contains zeros
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and can be compressed using conventional compression filters. In this application, the
HDFS5 file format with gzip compression was used to save the decoded data. By doing
this, the hard drive space required for decoded data was reduced almost 60 times com-
pared to data obtained applying conventional algorithms. Furthermore, standard me-
teor analysis involves decoding and meteor detection. However, by employing CS, the

two steps was joined in one.

Another future task is to consider the waveform errors in the problem. Along with this
work, an ideal transmitted waveform was assumed, which is not the case in the real
world. The synthesized signal passes through limited bandwidth filters, amplifiers, and
antennas before being irradiated, which introduces imperfections to the transmitted
signal. Our model, i.e., the matrix ® in (5.5), does not consider these imperfections.
It could be problematic in the presence of high[SNR echoes given that the waveform im-
perfections mightintroduce high errors in the solution, creating false echoes or artifacts.
In our simulations, see Fig. this was not observed given that the waveform imper-
fections were not taken into account. However, this problem was observed in a quasi-
monostatic link where the transmitter and the receiver station were only 5km apart, ob-
serving a strong ground clutter with an[SNR|of 60dB, for which the sidelobes (due to
waveform imperfections) were not removed completely even using[CS]. In the future, er-
rors in the matrix ® can be considered in the equation and the total least squares esti-
mator algorithm can be applied instead of the ordinary[tSVD|in our [FaStOMP

implementation.
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Summary and conclusions

A comprehensive understanding of the processes in the atmosphere at their different

spatio-temporal scales would require global and continuous observations at high spatio-

temporal resolution. Measurements at|mesosphere and lower termosphere| (MLT) alti-

tudes are hard to obtain routinely because current instruments and remote sensing tech-
niques only provide scarce or local observations. An important investment in observa-
tional infrastructure could dramatically improve the understanding of the complex

dynamics. However, such deployment is prohibitively costly.

This work proposes the use of[MIMO]techniques to improve the capability of current at-
mospheric radars, with a special focus on observations of the MLT]region. To show the
advantage of systems over conventional techniques, Chapter 2 describes basic
concepts regarding atmospheric radars and their limitations, such as the signal model,
the scattering mechanisms, and state-of-the-art algorithms to estimate radar param-
eters. One of the main limitations of existing atmospheric radar systems is their lim-
ited spatial resolution in the horizontal direction, which restricts the characterization
of small-scale and mesoscale dynamics. The spatial resolution in a radar is limited by

the antenna size. To increase the spatial resolution, a larger antenna is required.

Chapter[3|introduces the]MIMOJtechnique, which is used to improve the performance of
atmospheric radars, namely, the spatial resolution and observational coverage. MIMO
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employs multiple transmitting antennas to illuminate the same target and multiple re-
ceiving antennas to getindependent measurements. In the case of existing radars,[MIMOQ|
is done by dividing the available transmitting antenna array into sub-arrays and splitting
the total transmitting power among the subarrays. Depending on the transmit diversity
used,[MIMO]might cause either a reduction in the transmitted power (time diversity) or
a cross-interference between transmitted signals (waveform diversity). The calculations
show that time diversity can only be applied to observe strong radar targets with long
correlation times. Whereas, waveform diversity is recommended to be used in modern
systems with capability to generate multiple transmit waveforms. A waveform design
technique based on pseudo-random codes is proposed to reduce the cross-interference
between transmitted signals due to its performance and scalability (independent of the
number of transmitters). In general, waveform diversity should be used over time diver-

sity, but it requires modern hardware and bi-static configurations.

Chapter [4] shows results of the first implementation to image in 4D us-
ing the[MAARSY radar. The transmit diversity employed was time diversity sincePMSE]
are very strong radar echoes with relatively long correlation times. This configuration
lowered the time resolution and the transmitted power per antenna but it allowed to im-
prove the radar image’s spatial resolution and accuracy by a factor of 2. Additionally, the
MaxEnt algorithm was employed to improve the image resolution even more. The com-
bination of MIMOJand MaxEnt resulted in[PMSE/measurements with an unprecedented
angular resolution, six times better than the nominal[MAARSY angular resolution, i.e.,

0.6°. Such results allowed for the first time to resolve km-scale structures from [PMSE]

observations [Cha+20].

Another important factor that limits the spatial resolution is associated to the dynamic
nature of the structures being imaged. Drifting structures limit the spatial resolution
achieved by any method. To deal with drifting structures, I am exploring tracking tech-
niques based on Kalman Filter and the Expectation-Maximization algorithm. The results

will be published in an additional manuscript.

Characterization of winds in the region over a wide range of spatial scales is cru-
cial to understand the complex dynamics in the atmosphere. Typically, specular meteor
radars consisting of one transmitting antenna and five receiving antennas in an interfer-

ometric configuration are used for this purpose. Chapter[5]describes a novel technology
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for detecting meteor trail echoes using both multiple transmitters and multiple receivers
in an interferometric configuration. Compared to conventional meteor radar
networks, the advantage of this novel MIMO|network is the significantly higher num-
ber of Tx-Rx links, which results in more accurate and larger meteor detections per day.
For the first time, a unique dataset consisting in more than 120k meteor detections in
a day were collected using this multistatic meteor radar. Compared to the 10k
meteor detections obtained with standard specular meteor radars, the 120k detections
allowed to resolve the[MLT dynamics over a wide range of spatial scales, 50 km to 500 km
[Vie+19]. Although the larger number of transmitting stations operating at the same fre-
quency in the multistatic(]MIMO]meteor radar increases the total number of Tx-Rx links,
and thus, the number of meteor detections, they interfere each other degrading the sig-
nal to interference ratio. An advanced algorithm based on compressed sensing was pro-
posed to get rid of the cross-interference between transmitted signals and to decouple

the reflected signals originated at different transmitters properly.

A multistatic meteor radar employing [MIMO|can be seen as the|global position system|

(GPS) satellite system where a number of transmitting stations can be deployed across to
a region, country, or continent. And the receiving systems can be added later according
to the needs. The success of the [GPS network lies in that the receivers are cheap and
easy to install. Currently, there are thousands of [GPS receivers on the ground and on

low-orbiting satellites.

Similarly, the main advantage of the proposed multistaticMISO|meteor network is that
this system is scalable. We could start deploying in a continental region a few transmit-
ting stations consisting of five antennas each and a few receiving stations consisting of
one antenna each. Later, more receiving stations can be added increasing the number of
measurements multiplicatively. With an efficient, cheap, and simple receiving system,
the network might be extended over the whole continent. It was proved that the required
receiving antenna for this system could be installed in small places like gardens, roofs,
courtyards, etc., without affecting the environment. We now require to develop a cheap
receiving system. The transmitting and receiving stations might be seen as a mimic of
the GPS satellites transmitters and the ground based receivers of a GPS system, respec-

tively, with a similar impact regarding observations of the atmosphere.

A natural next step of this work is the deployment of the proposed multistatic radar sys-

tem to study the [MLT in regional or continental scales. Although this is an ambitious
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plan and it is out of the scope of this thesis, the Haystack observatory has recently
got a proposal accepted to build a distributed MIMO|meteor radar network based on the

results of this work in the US [National Science Foundation, award number 1933005].
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Zusammenfassung und Fazit

Ein umfassendes Verstindnis der Prozesse in der Atmosphdre auf ihren verschiedenen
raumlich-zeitlichen Skalen wiirde globale und kontinuierliche Beobachtungen erfordern.
Es ist schwierig, regelmaflig Messwerte zur oberen Atmosphire zu erlangen, da die ak-
tuell verfiigbaren Fernerkundungstechniken wenige oder nurlokale Beobachtungen liefern.
Eine Investition in die Beobachtungsinfrastruktur, die das Verstindnis der komplexen
Dynamik der MLT-Region drastisch verbessern konnte, ist zwar wichtig, jedoch duflerst

kostspielig.

In dieser Ausarbeitung wird der Vorschlag gemacht, anhand von MIMO-Techniken die
Fihigkeit von Atmosphirenradargeriten zu verbessern, die MLT-Region zu erkunden.
Um den Vorteil von MIMO-Systemen gegeniiber konventionellen Radargeraten aufzuzeigen,
beginnt Kapitel 2 mit einer Beschreibung der wesentlichen Konzepte, auf deren Basis
Atmosphirenradargerdte arbeiten, und der damit einhergehenden Einschrinkungen.
Da wiren zum Beispiel das Signalmodel, die Streuungsmechanismen und speziell en-
twickelte Algorithmen zur Schitzung der Radarparameter. Die grofdte Einschrinkung
konventioneller Radargerdte ist ihre begrenzte raumliche Auflosung, bedingt durch die
Grofie der Antenne. Um die raumliche Auflosung zu erhohen, miissten wir gréfRere An-
tennen herstellen. Kapital 3 stellt die MIMO-Technik vor, die genutzt wird, um die Leis-

tung von Atmosphirenradargeriten zu verbessern, indem sie riumliche Auflésung und
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Reichweite erhoht. MIMO verwendet mehrere Sendeantennen zur Ausleuchtung dessel-

ben Ziels und mehrere Empfangsantennen zum Empfangen voneinander unabhingiger
Messwerte. Bei den existierenden Radargerdten wird MIMO eingesetzt, indem die zur
Verfiigung stehende Sendeantennengruppe in Untergruppen eingeteilt wird und die gesamte
Ubertragungsenergie zwischen diesen Untergruppen aufgeteilt wird. In Abhingigkeit
vonderverwendeten Sendediversitit kann MIMO entweder eine Reduzierung der iibertra-
genen Energie (Zeitdiversitit) oder eine Kreuzinterferenz zwischen den iibertragenen
Signalen (Schwingungsverlaufsdiversitit) verursachen. Berechnungen zeigen, dass Zeit-
diversitdt nur zur Beobachtung von starken Radarzielen mit langen Korrelationszeiten
verwendet werden kann. Schwingungsverlaufsdiversitit hingegen empfiehltsich in mod-
ernen Systemen mit der Fihigkeit, bei der Ubertragung mehrere verschiedene Schwingungsverliufe
zu generieren. Eine Schwingungsverlaufsgestaltungstechnik auf der Basis von Pseu-
dozufallscodes soll aufgrund ihrer Leistungsfihigkeit und Skalierbarkeit die Kreuzinter-
ferenzen zwischen den iibertragenen Signalen (unabhingigvon der Zahl der Ubertriger)
reduzieren. Grundsitzlich ist eine Nutzung der Schwingungsverlaufsdiversitit der Nutzung
von Zeitdiversitit vorzuziehen. Dabei sind jedoch mehr moderne Hardware und bis-
tatische Konfigurationen notwendig. Kapitel 4 zeigt die Ergebnisse des ersten Einsatzes

von MIMO zur bildlichen Darstellung von PMSE in 3D unter Nutzung des MAARSY-
Radars. Die dort verwendete Sendediversitit war Zeitdiversitit, da PMSE sehr starke
Radarechos mit relativ langen Korrelationszeiten sind. Diese Konfiguration reduzierte

die zeitliche Auflgsung und die pro Antenne iibertragene Energie, liefdjedoch eine Verbesserung
der raumlichen Auflgsung des Radarbilds und der Genauigkeit um den Faktor 2 zu. Zu-
demwurde der MaxEnt-Algorithmus verwendet, um die Bildauflgsung weiter zuverbessern.
Die Kombination von MIMO und MaxEnt resultierte in PMSE-Messergebnissen mit beispiel-
loser Winkelauflosung, sechsmal besser als die Nominalwinkelauflosung des MAARSY-
Radars. Durch diese Ergebnisse konnten zum ersten Mal Strukturen in Kilometerdi-
mensionen aus PMSE-Beobachtungen aufgelost werden. Die Charakterisierung der Winde

in der MLT-Region iiber eine grofle Spanne raumlicher Skalen ist entscheidend fiir das
Verstindnis der komplexen Dynamik der Atmosphire. Typischerweise werden zu diesem
Zweck spiegelnde Meteorradare verwendet, die aus einer Sendeantenne und fiinf Emp-
fangsantennenin einer interferometrischen Konfiguration bestehen. Kapitel 5 beschreibt

eine neuartige Technologie zum Detektieren von Meteorschweif-Echos, die sowohl mehrere
Sendeantennen als auch mehrere Empfangsantennen in interferometrischer Konfigura-
tionverwendet. Der Vorteil dieser Konfiguration im Vergleich zu konventionellen Meteorradar-
Netzwerken ist die deutlich hohere Zahl von Tx-Rx-Verbindungen mit dem Ergebnis genauerer

und hoherer Meteordetektionen pro Tag. Unter Nutzung dieses multistatischen MIMO-
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Meteorradars wurde erstmalig ein einzigartiger Datensatz von Messergebnissen aus mehr
als 120.000 Meteordetektionen pro Tag gesammelt. Verglichen mit den 10.000 Mete-
ordetektionen, die man mit standardmafligen Spiegelmeteorradargeriten erhilt, lief3en
diese 120.000 Detektionen die Auflosung der Energiespektren auf eine grofie Bandbre-
ite raumlicher Mafdstabsebenen zu. Obwohl die Vielzahl der Sendestationen bei MIMO
die Gesamtzahl der Tx-Rx-Verbindungen erhoht, wird die Signal-Interferenz-Ratio ver-
mindert. Es wird ein fortgeschrittener Algorithmus auf der Basis komprimierter Er-
fassung prisentiert, der die reflektierten Signale, die von unterschiedlichen Sendern
stammen, entkoppelt und so die Kreuzinterferenzen zwischen den iibertragenen Sig-
nalen deutlich reduziert. Ein multistatischer Meteorradar unter Anwendung von MIMO
kann als ein GPS-Satellitensystem betrachtet werden, bei dem mehrere Sendestationen
iiber eine Region, ein Land oder einen Kontinent hinweg stationiert werden kdnnen.
Die Empfingersysteme konnen spiter nach Bedarf hinzugefiigt werden. Der Erfolg des
GPS-Netzwerkes liegt darin, dass die Empfinger billig und leicht zu installieren sind.
Derzeitig gibt es Tausende GPS-Empfinger auf dem Boden oder auftieffliegenden Satel-
liten. Das ist auch der Hauptvorteil des vorgeschlagenen Meteor-MISO-Systems, das
aus fiinf Sendeantennen und nur einer Empfingerantenne besteht. Es wurde nachgewiesen,
dass die Empfangsantenne kleinriumig in Girten, auf Dachern, in Innenhéfen usw. in-
stalliert werden kann, ohne die Umgebung zu beeintrachtigen. Ein folgerichtiger nichster
Schritt dieser Arbeit ist der Einsatz des vorgeschlagenen multistatischen Radarsystems,
um die MLT in regionalen oder kontinentalen Maf3stiben zu studieren. Mag dies auch
ein ambitionierter Plan sein, der den Rahmen dieser Ausarbeitung sprengen wiirde, so
ist doch anzumerken, dass kiirzlich ein Vorschlag des MIT Haystack Observatory akzep-
tiert wurde, ein verteiltes MIMO-Meteorradar-Netzwerk auf der Basis dieser Arbeit in
den USA zu bauen.
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Symbol notation

Name

scalar

vector

matrix
function
vector element
matrix element
index
conjugate
transpose
Hermitian
expectation
convolution
cross-correlation
LO-norm
LI-norm

L2-norm

Description

italic

bold lower case

bold upper case

continuous or discrete function

element i of a vector x

element 4,j of a matrix X

index from1to I

the conjugate of a complex number x

the transpose of a real matrix X

the conjugate transpose of a complex matrix X
the expected value of a random variable x
convolution of vector x and y
cross-correlation between vector x and y
the number of non-zero elements in X
the sum of absolute values of X

the sum of squared values of X



Acronyms

AGW
AOA
AOD
Arecibo

BP

CDS
CoSaMP

Cs
Cw

DBF
DFT

EE]
EISCAT

EM
ERC

atmospheric gravity waves.
angle of arrival.
angle of departure.

Arecibo incoherent scatter radar.

basis pursuit.

continuous Doppler sounding.

compressive sampling orthogonal matching pur-
suit.

compressed sensing.

continuous wave.

digital beamforming.

discrete Fourier transform.

equatorial electrojet.

european incoherent scatter scientific associa-
tion.

electromagnetic.

exact recovery condition.



Acronyms

FaStOMP
FDI

FFT
FMCW
foE

foF2

GOMP
GPS

HPBW

IDFT
IPP
ISR

Jicamarca

KAIRA

KHI

LARS
LASSO
LSE

MAARSY
MAP
MaxEnt
MF

MFE
MIC
MIMO
MISO
MIT
MLE

fast stagewise orthogonal matching pursuit.
frequency domain interferometry.

fast Fourier transform.
frequency-modulated continuous wave.
E-layer critical frequency.

F2-layer critical frequency.

generalized orthogonal matching pursuit.

global position system.

half-power beam width.

inverse discrete Fourier transform.
inter-pulse period.

incoherent scatter radar.

Jicamarca incoherent scatter radar.

Kilpisjarvi atmospheric imaging receiver Ar-
ray—System.

Kelvin—Helmbholtz instability.

least angle regression.
least absolute shrinkage and selection operator.

least squares estimation.

middle atmosphere Alomar radar system.
maximum a posteriori estimator.
maximum entropy.

medium frequency.

matched filter estimator.

mutual incoherence condition.
multiple—input multiple—output.
multiple—input single—output.
Massachusetts Institute of Technology.

maximum likelihood estimator.

163



Acronyms

MLT
MMARIA

MMSE
MST
MU

NLC

OFDM
OMP

Pansy
PMSE
PMWE
PRF
PRI
PSLR
PW

RCS
RF
RIM
RIP
RLSE
ROMP
RTDI
RTI

SIC
SIMO
SIMONe

SMR
SNR
StOMP

mesosphere and lower termosphere.
multi-static, multi—frequency agile radar for in-
vestigations of the atmosphere.

minimum mean squares error estimator.
mesosphere, stratosphere, and termosphere.

middle and up per atmosphere radar.

noctilucent clouds.

orthogonal frequency-division multiplexing.

orthogonal matching pursuit.

Pansy.

polar mesospheric summer echoes.
polar mesospheric winter echoes.
pulse-repetition frequency.
pulse-repetition interval.
peak-to-sidelobe ratio.

pulse-width.

radar cross—section.

radio frequency.

range imaging.

restricted isometry property.

regularized least squares estimation.
regularized orthogonal matching pursuit.
range time Doppler intensity.

range time intensity.

successive interference cancellation.
single-input multiple-output.

spread—spectrum interferometer meteor system
observing network.

specular meteor radar.

signal-to-noise ratio.

stagewise orthogonal matching pursuit.
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Acronyms

SVD

TLSE
tSVD

UHF
UPP

VHF

WLSE
WSS

singular value decomposition.

total least squares estimator.

truncated singular value decomposition.

ultra high frequency.

uniform uncertainty principle.

very high frequency.

weighted least squares estimator.

wide—sense stationary.

165



List of Figures

Layers of Earth’'s atmosphere (Exosphere is not shown). Typical neutral

temperature and density profiles for daytime solar medium conditions

are drawn in red and green, respectively. Sources of the energy budget

in the mesosphere are the solar radiation and upward propagating at-

mospheric waves. Continuous in-situ measurements are available for all

the layers except for the mesosphere. . . . . . . ... ... .......

[1.2

Simplified vertical and horizontal kinetic energy spectrum at mesospheric

altitudes where regimes dominated by Rossby waves, gravity waves, and

Kolmogorov turbulence are ideally well identified [Vie+19]. The X-axis

represents the spatial frequency or so called wavenumber. A log-scale

is used for representing the Y-axis but no units are shown intentionally.

Vertical scales measured by rockets and horizontal scales measured by

radars (MAARSY|and [MMARIA) are indicated with a blue and orange

boxes, respectively. Proposed radar techniques based on MIMO (MAARSY-

MIMO and[SIMONe) to study smaller and larger scales are also indicated

b1

Radar block diagram. The black circle represents the radar target. . . . .

[2.2  |[Radar cross—section|of a perfectly conducting metal sphere as a function

of the relative frequency. The x-axis represents the relative frequency,

defined as the number of wavelengths in the circumference (f,..; = 2mwa/\).

The y-axis is the|[RCS relative to the projected area of the sphere (o/ma?).

[Adapted from Wikimedia Commons, the free media repository] | . . . .

2.3

Bragg scattering from a periodic structure (a) destructive interference

(b) constructive interference, for which the Bragg condition is fulfilled

A=2d)] . . o e

18

[2.4 Propagating radar wave scattered in a target at the farfield. . . . . . . . 20

B3

Typicalradarpulse| . . . . . . . ... ... ... ... . ... ..

23



LIST OF FIGURES

[2.6 Radar samples organized in the fast and slow time domain. Notice that

the fast-time and slow-time interval are equal to the receiver’s sampling

|
|
time ¢, and the |PRI| T, respectively. Fast-time samples represent the |
|

range bins and ¢, represents the range resolution. Three targets are shown,

two (orange and green) coexisting at the same range and one (blue) alone. 25

[2.7  Pulse coded signal (a) waveform or code, (b) phase-modulated|RF signal, |

[ and (c) autocorrelation function of the waveform|. . . . . . . . ... .. 28

[2.8 Doppler processing by taking the[DFT of the slow-time data from a range |

| bin. Targets coexisting at the same range (green and orange) can be sep- |

| arated perfectly in the Doppler domain [adapted from Christos Ilioudis, |

| University of Strathelyde].] . . . . . . .. .. ... ... L. 34

[2.9 Phased antenna array. Constructive interference of two (or more) radiat- |

| ing sources focus the energy in the direction 6. Notice that the direction |

| 6 depends on the separation of the antennas d and the phase difference |

[2.10 Antennaarray. Signals at receive antennas are stored and processed dig- |

| itally. Notice that for a target at the far field 7 + o1, 7, and 7 + 05 can |

| be considered parallel vectors.| . . . . . . ... ... ... ....... 39

[2.11 Doppler and direction estimation by taking the 2D{DFT of the slow-time |

| and antenna (spatial) samples, respectively) . . . ... ... ... ... 40

[3.1 A bi-static radar system (a) in a|SIMO|configuration, and (b) in a[MIMO| |

| configuration. Unlike[SIMO}[MIMOJilluminates the target employing in- |

( dependent/orthogonal signals, which are indicated in red and green. . . 51

[3.2 Angular resolution of a radar (Af) and its dependency on the antenna |

| size (d) and the radar wavelength (V)| . . . . . .. ... ... ... ... 53

[3.3 Time diagram of a pulsed[MIMO|radar with two transmitters using time |

| diversity. Notice that the time difference between transmitters At de- |

| pends on the radar pulse width 7 and the target’s extension L.| . . . . . . 56

[3.4 Time diagram of a continuous wave|MIMO|radar with two transmitters |

( using waveform diversity. . . . . . . . ... ..o 60

[3.5 Autoand cross-correlation functions of two waveforms P and () of length |

| 50. Notice that the correlation values are normalized to the code length. |

( The mean cross-correlation value is 0.12 (side-lobe gain).| . . . ... .. 61

167



LIST OF FIGURES

[3.6 Mean cross-correlation of two pseudo-random binary codes P and () as |

( a function of their length. Fully orthogonal codes should have zero cross- |

| correlation. Notice that after a length of 200 bits the improvement is less |
| than 12102 per 100bits. . . . . . . . . . oot 62

.7 Time diagram of a continuous wave[MIMO|radar using optimal diversity.| 62

[3.8 Comparison of the cross-correlation of two waveforms P and () using |

| code and optimal diversity (code+frequency).| . . . ... ... ... .. 63

[3.9 AJMIMO]Jradar (top) and its resulting virtual array (bottom). The first row |

radar wi T I

| and third row show the layout considering only one Tx. The fourth row |

| shows the equivalent array which is a combination of the two indepen- |

( dentlayouts., . . . . . . ... 66

| tennas closelyseparated.| . . . . . ... ... ... ... ... ... .. 66

.11 (a) AMIMO[antenna array with 7 Tx antennas and 7 Rx antennas, (b) The |

| resulting]MIMO]virtual antenna array consisting of 49 antennas. . . . . 69

[3.12 Bistatic radar configurations to estimate target’s location (a)[SIMOto es- |
( timate|AOA, (b)[MISO|to estimate[AOD), and (c)[MIMO|to estimate both |

[3.13  Angular resolution comparison between|SIMO|and|[MIMO| (a) Transmit

and receive array (b) Visibility samples considering only one transmit-

sponding visibility. (d) Resulting virtual array by using[MIMO]| (e) Vis-

|
|
ter and the receive array, i.e.,|[SIMO] (c) Point spread function the corre- |
|
|

ibility samples corresponding to the virtual array, i.e.,[MIMO] (f) Point

spread function for[MIMOL . . . . . . . ... ... ... ... ..... 78

[3.14 Same as Fig. [3.13/but for two arbitrary arrays. The first row shows the

| antenna array, the resulting visibility, and the instrument function of an

( array which contains non-redundant visibility samples. The second row |

| shows an array with the same visibility samples but in which some of

168



LIST OF FIGURES

k.1

Simplified vertical and horizontal kinetic energy spectrum at mesospheric

altitudes where regimes dominated by Rossby waves, gravity waves, and

Kolmogorov turbulence are well identified. Similar to [Vie+19]. Vertical

scales observed by rockets and horizontal scales resolved by theMAARSY

and [MMARIA|radars are indicated with a blue and orange box, respec-

tively. Horizontal scales resolved by the proposed radar technique based

on|MIMO|(MAARSYIMIMO|and[SIMONe) are alsoshown.] . . . . . . ..

85

k.2

Maximum achievable angular resolution by an antenna array. Notice

that the angular resolution A6 is limited by the antenna aperture d.| . . .

3

[Range time intensity|(RTI) plot ofPMSE|observed with the]MAARSY ver-

ticalbeam. . . . . . . . e,

4.4

Sketch of the]MAARSY|antenna array. The core array consists of 55 identi-

cal hexagons from A01 to F'11 containing 7 Yagi antennas each. A group

of 7 adjacent hexagons can form an anemone as indicated by the colored

areas, which can act as one antenna to transmit or receive. [Courtesy:

Ralph Latteck].| . . . . . . . . . . . ... . . ..

s

[MAARSY|antenna configuration for[SIMO (a, b, ¢) and[MIMO|(d, e, {).

(2) The receiving array consisting of fifteen hexagons is shown in grey

and the transmitting array consisting of three anemones is colored. (b)

Visibility samples for|SIMO|in which the redundant baselines are color-

coded. (c) Resulting point spread function of[SIMO! (d) Resulting virtual

array by using [MIMO (e) Visibility samples for[MIMO| (f) Point spread

function of[MIMO| The point spread function was calculated using both

6

Results of simulated radar data employing three inversion methods for

[SIMOland|MIMO|configurations.| . . . . . ... ... .........

k.7

Comparison of inversion methods as a function of the[SNR for the[SIMO|

and[MIMO|configuration. The metric selected is the correlation with Truth.| 99

8

Same as Fig. |4.7/but with an image composed of multiple blobs. In this

case, the performance is evaluated as a function of the blob width.|. . . .

k.9

2D|PMSE|images for a range of 85.95 km, where intensity, Doppler, and

spectral width are represented as lightness, hue, and saturation, respec-

tively. Red, green, and blue colors represent negative, zero, and positive

Doppler, respectively. Data inversion was done using Capon’s method

with integration times of () 20s (b) 80sand (¢) 320s. . . . . . . .. ..

169



LIST OF FIGURES

k.10

2D [PMSE|images similar to Fig. |4.9 but for different inversion tech-

niques (Capon,[MaxEnt) and configurations (SIMO[and[MIMO). . . . . .

11

Normalized angular power distribution of a specular meteor echo as a

function of (a) range, (b) East-West direction (,.), and North-South di-

rection (6,). The results are shown for the four implementations:[SIMO}

Capon (blue),|[SIMOH{MaxEnt (orange),[MIMOfCapon (green), and|MIMOF

[MaxEnt (red). Thelhalf-power beam width|(HPBW) associated with each

technique is indicated for the xand y direction.| . . . . ... ... ...

3D|PMSE|kilometer-scale structures observed at[MAARSY|correspond-

ing to[MIMOHMaxEnt. Altitude, North-South, and East-West cuts are

shown for three time frames, one per row. The yellow dashed lines indi-

cate the plane of the sliced images.| . . . . . . ... ... ... ... ..

108

k.13

Time evolution of [PMSE|structures as a function of (a) altitude (RTDI),

(b) NSlocation, and (c) EW location for the same event shown in Fig.[4.12.

Zonal (119) and meridional (vp) mean wind values estimated from[spec-

ular meteor radars|(SMRs) and [PMSE|are represented by arrows. The

dashed horizontal lines indicate the planes of altitude, NS, and EW cuts

shown in the previous figure. Similarly, the dashed vertical line indicate

thetimel . . . . . . . . .o

.14

Same as Fig. |4.13/but for a|PMSE|structure propagatig against the back-

groundwind. . . . . . ...

[5.1

Specular meteor radar system with interferometric capability to mea-

sure radial velocity f andfangle of arrival k of a meteor trail. Note that

the radial velocity is a projection of the background wind on the radar

line-of-sight.|. . . . . .. . . ... .. ...

117

[5.2

Meteor detections. (a) Bi-static meteor radar system, and (b) distribu-

tion of total meteor detections foroneday,. . . . . . . ... ... ...

117

53

High resolution zonal u and meridional v winds obtained with a multi-

static system installed in northern Germany.|. . . . . .. ... ... ..

119

4

Left: Addition of Rx stations to an existing Tx allows to increase the num-

ber of meteor detections (Radar network based on[SIMO). Right: Addi-

tion of radar networks operating at different frequencies allows to in-

crease the horizontal coverage of meteor measurements. Red, green,

and blue colors indicate that the stations are working at a specified fre-

QUENCY. .+« v v o e e e e e e e e e e e e e e

170

120



LIST OF FIGURES

[5.5

A bistatic Tx-Rx link based on (2)[SIMO], (b)IMISO}, and (c)[MIMOL [SIMO|

and[MISOfallows estimation of|JAOA and|AOD), respectively; whilstMIMO]

cation accuracy. A[MISO/or|[MIMO|system make use of multiple trans-

|
|
allows estimation of both |JAOA and |AOD)}, which results in a higher lo- |
|
|

mitters radiating independent signals (in frequency, waveform, time or

polarization), which are represented inred and green.| . . . . . .. . .. 122

[5.6

Similar to (5.4). Left: A multistatic[SMR|network using waveform diver-

sity. The Tx antennas radiate independent waveforms at the same fre-

|
|
quency. Scattered signals are decoupled on the receiving side. Right: |
|

Addition of Txs and Rxs operating at the same frequency allows to in-

crease the horizontal coverage and the number of meteor detections.| . . 123

5.7

Flow chart summarizing thgStOMP algorithm used to recover specular |

meteor echoes in a radar network with multiple transmitters (MIMO|radars). |

The red, yellow, green boxes represent the identification and estimation |

of strong, medium, and weak meteor echoes, respectively,| . . . . . . .. 135

5.8

Performance comparison of recovery techniques as a function of [SNR.

Every simulation run contains two meteor targets with (a) both having

the weakest one fixed to —10 dB. The colored bars indicate the average

|
|
the same SNR and (b) having a SNR difference indicated in the plot, with |
|
|

number of false detections for each technique. During the simulation

M, N, and K were set to 1000, 2000, and 10 respectively.| . . . . . . . . 139

5.9

Same as Fig. [5.8. Recovery performance as a function of sparsity. In |

every simulation run, the[SNR|and the range bin of simulated meteors |

were randomly assigned. Only colored bars for[StOMP and|FaStOMP|are |

included. M, N, and|SNR;,,,, were set to 1000, 2000, and 25, respectively.|140

[.10

Same as Fig. [5.9, Recovery performance as a function of the waveform |

length. N, K, and|SNR},,,, were set to 1500, 100, and 25, respectively,| . . 140

[5.11

Meteor map distribution of specular meteor detections during 1 d of ob-

servation by a radar network deployed in northern Germany. The ma-

marks the location of receiving stations. Circles indicate an antenna ar-

genta marks represent the location of transmitting stations and the green |

rays (interferometry capabilities), whereas triangles indicate single an-

LeNNAS.) . . . . o e e e e e e e e e e e e e e e 143

171



LIST OF FIGURES

[5.12 Comparison of recovery techniques with data acquired in a meteor radar

( network deployed in northern Germany. (a)jmatched filter estimator|(MFE) |

| (b)[truncated singular value decomposition (tSVD) (c)|fast stagewise or- |

| thogonal matching pursuiff(FaStOMP) |. . . . . . . . . .. . ... ... 145

[5.13 A fireball spread along several ranges recovered by|StOMP.| . . . . . .. 146
[5.14 Wind field estimates on December 11th, 2019 for selected heights (left) |

| 85 km, (mid), 89 km, and (right) 93 km. The normalized meteor counts |

| green arrow [Courtesy: Jorge Chau]. . . . . . ... ... ... ..... 147

[5.15 Power spectral density derived from the full autocorrelation function of |

| radial meteor measurements. No windowing or zero padding is used to |

( calculate the spectra. [Courtesy: Harikrishna Charuvil]| . . . . . . . .. 148

172



List of Tables

[3.1 Angularand spatial resolution of some of the biggest atmospheric radars
intheworld| . .. ... ... ... ... 54
[B.2 Advantages and disadvantages of transmit diversities| . . . . . . . . .. 57
K.1 Antenna aperture required to measure horizontal scales at 80km altitude| 86
4.2  Radar parameters used forPMSE[observations. . . . . . . ... .. .. 102
#.3  Performance of imaging techniques| . . . . . ... ... ... ..... 107
[5.1 Performance of implementations . . . . ... ............. 124
[.2 StOMPalgorithm| . . . ... ... ... ................ 132
[5.3 FaStOMPalgorithm| . . . . . . . . ... ... ............. 133




Bibliography

[AF14]

[Alt98]

[Bar49]

[BD19]

[Ber57]

M. L. Ammari and P. Fortier. “Analysis of MIMO receiver using generalized
least squares method in colored environments”. In: Journal of Computer Net-
works and Communications 2014 (2014), pp. 1-6. ISSN:2090-7141. DOI:
[2014/720546| URL:[http://www.hindawi.com/journals/jcnc/2014/|

[720546/ (cit. on pp. 72} f15).

D. R. Altschuler. “The national astronomy and ionosphere center’s (NAIC)

Arecibo observatory in Puerto Rico”. In: AIP Conference Proceedings. Vol. 444.
1. AIP, 1998, pp. 563—570. DOI:[10 . 1063 /1 . 56603. URL:[https: //aip.
[scitation.org/doi/abs/10.1063/1.56603|(cit. on pp.[14}[17,[87).

E. Barlow. “Doppler radar”. In: Proceedings of the IRE 37.4 (Apr. 1949), pp. 340—
355. ISSN: 0096-8390. DOI:[10 . 1109/ JRPROC . 1949 . 231638 URL:[Attp ;|
|//ieeexplore.ieee.org/document/1697989/ (cit. on p.[34).

R. Bassett and J. Deride. “Maximum a posteriori estimators as a limit of
Bayes estimators”. In: Mathematical Programming 174.1-2 (Mar. 2019), pp. 129—
144. ISSN: 14364646. DOI1:[10.1007/510107-018-1241-0|(cit. on p.[72).

F. B. Berger. “The nature of Doppler velocity measurement”. In: IRE Transac-
tions on Aeronautical and Navigational Electronics ANE-4.3 (Sept. 1957), pp. 103
112. ISSN: 0096-1639. DoI:[10 . 1109 /TANE3 . 1957 . 4201534] URL:[attp :]
|//ieeexplore.ieee.org/document/4201534/ (cit. on p.[34).



https://doi.org/10.1155/2014/720546
https://doi.org/10.1155/2014/720546
http://www.hindawi.com/journals/jcnc/2014/720546/
http://www.hindawi.com/journals/jcnc/2014/720546/
https://doi.org/10.1063/1.56603
https://aip.scitation.org/doi/abs/10.1063/1.56603
https://aip.scitation.org/doi/abs/10.1063/1.56603
https://doi.org/10.1109/JRPROC.1949.231638
http://ieeexplore.ieee.org/document/1697989/
http://ieeexplore.ieee.org/document/1697989/
https://doi.org/10.1007/s10107-018-1241-0
https://doi.org/10.1109/TANE3.1957.4201534
http://ieeexplore.ieee.org/document/4201534/
http://ieeexplore.ieee.org/document/4201534/

BIBLIOGRAPHY

[BFO3] D. W. Bliss and K. W. Forsythe. “Multiple-input multiple-output (MIMO)
radar and imaging: degrees of freedom and resolution”. In: The Thrity-Seventh
Asilomar Conference on Signals, Systems & Computers, 2003. Vol. 1. IEEE, 2003,
pp- 54—59. 1SBN: 0-7803-8104-1. DOI:|10.1109/ACSSC. 2003 . 1291865| URL:
http://ieeexplore.ieee.org/document/1291865/(cit. on pp.[2,[50}
(68).

[Bi+16] H. Bi, C. Zhao, H. Bi, Y. Liu, and N. Li. “Performance evaluation of greedy

reconstruction algorithms in compressed sensing”. In: 2016 9th International
Congress on Image and Signal Processing, BioMedical Engineering and Informat-
ics (CISP-BMEI). 2016, pp. 1322-1327. DOI1:[10 . 1109 /CISP-BMEI . 2016 .

7852921 (cit. on p.[130).

[Bj0696] A. Bjorck. Numerical methods for least squares problems. Society for Industrial
and Applied Mathematics, Jan.1996. 1SBN: 978-0-89871-360-2. DOI:|10 . 1137
[1.9781611971484| URL:[http://epubs . siam. org/doi/book/10.]
[1137/1.9781611971484(cit. on p.[72).

[BM16] S. D. Blunt and E. L. Mokole. “Overview of radar waveform diversity”. In:
IEEE Aerospace and Electronic Systems Magazine 31.11 (Nov. 2016), pp. 2—42.. ISSN:
0885-8985. DOL:[T0. 1109/MAES . 2016 . 160071 URL{ittp: //iecexplorel
lieee.org/document/7771665/|(cit. on p.[I36).

[BPOO] H. Bolcskei and A. A. J. Paulraj. “Space-frequency coded broadband OFDM
systems”. In: 2000 IEEE Wireless Communications and Networking Conference.
Vol. 1. IEEE, 2000, pp. 1-6. ISBN: 0-7803-6596-8. DOI:[10 . 1109 / WCNC |
[2000.904589| URL:http://ieeexplore.ieee.org/document/904589/
(cit. on pp.[55,[63).

[BR84] B. B. Balsley and A. C. Riddle. “Monthly mean values of the mesospheric
wind field over Poker Flat, Alaska”. In: Journal of the Atmospheric Sciences 41.15
(Aug.1984), pp. 2368—2380. ISSN: 0022-4928. DOI:10 . 1175/1520-0469 (1984)
[041<2368:MMVOTM>2.0.C0; 2| URL:[http://journals.ametsoc.org/|
[doi/abs/10.1175/1520-0469%281984%29041%3C2368%3AMMVOTM Y|

3E2.0.C0%3B2|(cit. on p.[90).

[BSW73] K. A. Browning, J. R. Starr, and A. ]. Whyman. “The structure of an inver-

sion above a convective boundary layer as observed using high-power pulsed
Doppler radar”. In: Boundary-Layer Meteorology 4.1-4 (Apr. 1973), pp. 91-111.

ISSN:0006-8314. DOI:[10. 1007 /BF02265226. URL:fhttp: //link.springelr.
[com/10.1007/BF02265226(cit. on p.[50).

175


https://doi.org/10.1109/ACSSC.2003.1291865
http://ieeexplore.ieee.org/document/1291865/
https://doi.org/10.1109/CISP-BMEI.2016.7852921
https://doi.org/10.1109/CISP-BMEI.2016.7852921
https://doi.org/10.1137/1.9781611971484
https://doi.org/10.1137/1.9781611971484
http://epubs.siam.org/doi/book/10.1137/1.9781611971484
http://epubs.siam.org/doi/book/10.1137/1.9781611971484
https://doi.org/10.1109/MAES.2016.160071
http://ieeexplore.ieee.org/document/7771665/
http://ieeexplore.ieee.org/document/7771665/
https://doi.org/10.1109/WCNC.2000.904589
https://doi.org/10.1109/WCNC.2000.904589
http://ieeexplore.ieee.org/document/904589/
http://journals.ametsoc.org/doi/abs/10.1175/1520-0469%281984%29041%3C2368%3AMMVOTM%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0469%281984%29041%3C2368%3AMMVOTM%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/abs/10.1175/1520-0469%281984%29041%3C2368%3AMMVOTM%3E2.0.CO%3B2
https://doi.org/10.1007/BF02265226
http://link.springer.com/10.1007/BF02265226
http://link.springer.com/10.1007/BF02265226

BIBLIOGRAPHY

[Cap69]  ]. Capon. “High-resolution frequency-wavenumber spectrum analysis”. In:
Proceedings of the IEEE 57.8 (1969), pp. 1408—-1418. 1SSN: 0018-9219. DOI:(10 .
(1109/PROC.1969.7278| URL:http://ieeexplore.ieee.org/document/

1449208/|(cit. on p.[44).

[CDS98]  S. S. Chen, D. L. Donoho, and M. A. Saunders. “Atomic decomposition by
basis pursuit”. In: SIAM Journal on Scientific Computing 20.1 (Jan. 1998), pp. 33—
61. ISSN: 1064-8275. DOI:[10 . 1137 /51064827596304010] URL:[attp : //]
lepubs . siam.org/doi/10.1137/S1064827596304010(cit. on p.[130).

[Cha+08] ]J.L.Chau, D. L. Hysell, K. M. Kuyeng, and F. R. Galindo. “Phase calibration
approaches for radar interferometry and imaging configurations: Equato-
rial Spread F results”. In: Annales Geophysicae 26 (2008), pp. 2333—2343 (cit.

on p.[76).
[Cha+14] ]. L. Chau, T. Renkwitz, G. Stober, and R. Latteck. “MAARSY multiple re-

ceiver phase calibration using radio sources”. In: Journal of Atmospheric and
Solar-Terrestrial Physics 118 (2014), pp. 55-63 (cit. on p.[102).

[Cha+17] J. L. Chau, G. Stober, C. M. Hall, M. Tsutsumi, F. I. Laskar, and P. Hoff-
mann. “Polar mesospheric horizontal divergence and relative vorticity mea-
surements using multiple specular meteor radars”. In: Radio Science (2017).
ISSN: 1944-799X. DOI:[10 . 1002 /2016RS006225|. URL:[attp://dx . doi .

lorg/10.1002/2016RS006225)(cit. on pp.[109} [113} [119).
[Cha+18] J. L. Chau, D. McKay, J. Vierinen, C. La Hoz, T. Ulich, M. S. Lehtinen, and

R. Latteck. “Multi-static spatial and angular studies of polar mesospheric
summer echoes combining MAARSY and KAIRA”. In: Atmospheric Chemistry
and Physics 18.13 (2018), pp. 9547-9560. DOI:{10. 5194 /acp-18-9547-2018|
URL:[https://www.atmos- chem-phys.net/18/9547/2018/ (cit. on

p-[132).
[Cha+19] J. L. Chau, J. M. Urco, J. Vierinen, R. Volz, M. Clahsen, N. Pfeffer, and J.

Trautner. “Novel specular meteor radar systems using coherent MIMO tech-

niques to study the mesosphere and lower thermosphere”. In: Atmospheric
Measurement Techniques 12.4 (Apr. 2019), pp. 2113-2127. ISSN: 1867-8548. DOI:
[10.5194 /amt - 12-2113-2019| URL:[https : / /www . atmos - meas -|
[tech.net/12/2113/2019/|(cit. on p.[g).

[Cha+20] ].L.Chau,]J. M. Urco, V. Avsarkisov, J. Vierinen, R. Latteck, C. M. Hall, and M.

Tsutsumi. “Four-dimensional quantification of Kelvin-Helmholtz instabili-

176


https://doi.org/10.1109/PROC.1969.7278
https://doi.org/10.1109/PROC.1969.7278
http://ieeexplore.ieee.org/document/1449208/
http://ieeexplore.ieee.org/document/1449208/
https://doi.org/10.1137/S1064827596304010
http://epubs.siam.org/doi/10.1137/S1064827596304010
http://epubs.siam.org/doi/10.1137/S1064827596304010
https://doi.org/10.1002/2016RS006225
http://dx.doi.org/10.1002/2016RS006225
http://dx.doi.org/10.1002/2016RS006225
https://doi.org/10.5194/acp-18-9547-2018
https://www.atmos-chem-phys.net/18/9547/2018/
https://doi.org/10.5194/amt-12-2113-2019
https://www.atmos-meas-tech.net/12/2113/2019/
https://www.atmos-meas-tech.net/12/2113/2019/

BIBLIOGRAPHY

[Che+16]

[Che+20]

[Chels5]

[Che18]

[CHMO09]

[Chu72]

[CL69]

ties in the polar summer mesosphere using volumetric radar imaging”. In:
Geophysical Research Letters 47.1 (Jan. 2020). ISSN: 0094-8276. DOI:(10 . 1029/
[2019GL086081| URL:[https://agupubs.onlinelibrary.wiley.com/

[doi/abs/10.1029/2019GL086081(cit. on pp.[109} [124] [144] [152).
J. Chen, Y. Chu, C. Su, H. Hashiguchi, and Y. Li. “Range imaging of E-region

field-aligned irregularities by using a multifrequency technique: validation
and initial results”. In: IEEE Transactions on Geoscience and Remote Sensing 54.7
(2016), pp. 3739-3749 (cit. on p.31).

G. Chen, Y. Li, S. Zhang, B. Ning, W. Gong, A. Yoshikawa, K. Hozumi, T.
Tsugawa, and Z. Wang. “Multi-instrument observations of the atmospheric
and ionospheric response to the 2013 sudden stratospheric warming over
eastern Asia region”. In: IEEE Transactions on Geoscience and Remote Sensing
58.2 (Feb. 2020), pp. 1232-1243. 1SSN: 0196-2892. DOI: (10 . 1109 / TGRS .|
[2019 . 2944677. URL: [https : / / ieeexplore . ieee . org / document /|

8880604/|(cit. on p.[I).

H. Cheng. “Efficient sparse representation and modeling”. In: Advances in

Computer Vision and Pattern Recognition. Vol. 59. Springer-Verlag London Ltd,
2015, pp. 117-151. DOI:[10. 1007 /978-1-4471-6714-3{\ _}5| URL:|http:|
[//1link . springer.com/10.1007/978-1-4471-6714-3_5 (cit. on
p.[130).

V. S. Chernyak. Fundamentals of multisite radar systems. 15th editi. Amsterdam:
Routledge, May 2018. ISBN: 9780203755228. DOI:[10 . 1201/9780203755228|
URL:[https://www.taylorfrancis.com/books/9781351446426|(cit.
on p.[51).

R. Calderbank, S. D. Howard, and B. Moran. “Waveform diversity in radar

signal processing: A focus on the use and control of degrees of freedom”. In:
IEEE Signal Processing Magazine 26.1 (2009), pp. 32—41. ISSN: 10535888. DOI:
[L0. 1109/MSP . 2008 . 930414 (cit. on p.[71).

D. Chu. “Polyphase codes with good periodic correlation properties”. In: IEEE
Transactions on Information Theory 18.4 (July 1972), pp. 531-532. ISSN: 0018-9448.
DOI1:{10.1109/TIT.1972.1054840. URL:|http: //ieeexplore. iecee .|
[org/document/1054840/ (cit. on p.[59).

S.ChapmanandR. S. Lindzen. Atmospherictides. Dordrecht: Springer Nether-
lands, 1969. 1sBN: 978-94-010-3401-2. DOI:[10. 1007/978-94-010-3399-2.

177


https://doi.org/10.1029/2019GL086081
https://doi.org/10.1029/2019GL086081
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL086081
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL086081
https://doi.org/10.1109/TGRS.2019.2944677
https://doi.org/10.1109/TGRS.2019.2944677
https://ieeexplore.ieee.org/document/8880604/
https://ieeexplore.ieee.org/document/8880604/
http://link.springer.com/10.1007/978-1-4471-6714-3_5
http://link.springer.com/10.1007/978-1-4471-6714-3_5
https://doi.org/10.1201/9780203755228
https://www.taylorfrancis.com/books/9781351446426
https://doi.org/10.1109/MSP.2008.930414
https://doi.org/10.1109/TIT.1972.1054840
http://ieeexplore.ieee.org/document/1054840/
http://ieeexplore.ieee.org/document/1054840/
https://doi.org/10.1007/978-94-010-3399-2

BIBLIOGRAPHY

[Cre+19]

[CRTO6a]

[CRTO6b]

[CTO5]

[CTO6]

[CVO08a]

[CVO8b]

[CW11]

URL:fhttp://1link.springer.com/10.1007/978-94-010-3399-2/(cit.
on p.[l18).
E. Crespo Marques, N. Maciel, L. Naviner, H. Cai, and J. Yang. “A review of

sparse recovery algorithms”. In: IEEE Access 7 (2019), pp. 1300—1322. ISSN:
2169-3536.DO1:|10.1109/ACCESS.2018.2886471| URL:https://ieeexplore.
lieee.org/document/8577023/|(cit. on p.[130).

E.].Candes,]. K. Romberg, and T. Tao. “Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information”. In:
IEEE Transactions on Information Theory 52.2 (Feb. 2006), pp. 489—-509. ISSN:
0018-9448. DO1:[10.1109/TIT. 2005 . 862083|(cit. on pp. |45, [129).

E.J]. Candes, J. K. Romberg, and T. Tao. “Stable signal recovery from incom-
plete and inaccurate measurements”. In: Communications on Pure and Applied
Mathematics 59.8 (Aug. 2006), pp. 1207-1223. 1SSN: 00103640. DOI:{10. 1002/
cpa.20124] URL:https://onlinelibrary.wiley.com/doi/abs/10.|
[1002/cpa. 20124 (cit. on pp. 45, 46} [130).

E.J.CandesandT. Tao. “Decoding by linear programming”. In: IEEE Transac-
tions on Information Theory 51.12 (2005), pp. 4203—-4215. ISSN: 0018-9448. DOI:
[10.1109/TIT.2005.858979(cit. on pp. 45} 46} [129,[135).

E.J. Candes and T. Tao. “Near-optimal signal recovery from random pro-
jections: universal encoding strategies?” In: IEEE Transactions on Information
Theory 52.12 (Dec. 2006), pp. 5406—5425. ISSN: 0018-9448. DOI:|10 . 1109 /
[TIT.2006.885507](cit. on p.[I35).

C.-Y. Chen and P. P. Vaidyanathan. “MIMO radar spacetime adaptive pro-
cessing and signal design”. In: MIMO Radar Signal Processing. Hoboken, NJ,
USA: John Wiley & Sons, Inc., Mar. 2008, pp. 235—281. ISBN: 9780470178980.
DOI:[10.1002/9780470391488 . ch6. URL:[http://doi.wiley.com/10.
[1002/9780470391488 . ché(cit. on p.[3).

C.-Y. Chen and P. P. Vaidyanathan. “Properties of the MIMO radar ambigu-
ity function”. In: ICASSP, IEEE International Conference on Acoustics, Speech and
Signal Processing - Proceedings. 2008, pp. 2309-2312. ISBN: 1424414849. DOI:
[10.1109/ICASSP. 2008 . 4518108|(cit. on p.[71).

T. T. Cai and L. Wang. “Orthogonal matching pursuit for sparse signal re-
covery with noise”. In: IEEE Transactions on Information Theory 57.7 (July 2011),
pp. 4680—4688. ISSN: 0018-9448. DOI:[10.1109/TIT.2011.2146090. URL:

178


http://link.springer.com/10.1007/978-94-010-3399-2
https://doi.org/10.1109/ACCESS.2018.2886471
https://ieeexplore.ieee.org/document/8577023/
https://ieeexplore.ieee.org/document/8577023/
https://doi.org/10.1109/TIT.2005.862083
https://doi.org/10.1002/cpa.20124
https://doi.org/10.1002/cpa.20124
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.20124
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.20124
https://doi.org/10.1109/TIT.2005.858979
https://doi.org/10.1109/TIT.2006.885507
https://doi.org/10.1109/TIT.2006.885507
https://doi.org/10.1002/9780470391488.ch6
http://doi.wiley.com/10.1002/9780470391488.ch6
http://doi.wiley.com/10.1002/9780470391488.ch6
https://doi.org/10.1109/ICASSP.2008.4518108
https://doi.org/10.1109/TIT.2011.2146090

BIBLIOGRAPHY

http://ieeexplore.ieee.org/document/5895106/ (cit. on pp.[129,
130).

[Dek+05]  F. M. Dekking, C. Kraaikamp, H. P. Lopuhad, and L. E. Meester. A modern
introduction to probability and statistics. Springer Texts in Statistics. London:
Springer London, 2005. 1SBN: 978-1-85233-896-1. DOI:{10. 1007 /1-84628-
(168-7. URL:http://link.springer.com/10.1007/1-84628-168-7
(cit. on pp. |47} [103).

[Dem+14] T. D. Demissie, P. J. Espy, N. H. Kleinknecht, M. Hatlen, N. Kaifler, and G.

Baumgarten. “Characteristics and sources of gravity waves observed in noc-

tilucent cloud over Norway”. In: Atmospheric Chemistry and Physics 14.22 (Nov.
2014), pp. 12133-12142. 1SSN: 1680-7324. DOI:[10 . 5194 / acp- 14— 12133 -]
[2014] UrL:fhttps://www . atmos - chem-phys.net/14/12133/2014/

(cit. on p.[85).

[DHO6] D. L. Donoho and X. Huo. “Uncertainty principles and ideal atomic decom-

position”. In: IEEE Transactions on Information Theory 47.7 (Sept. 2006), pp. 2845—
2862. ISSN: 0018-9448. DOI:(10.1109/18.959265. URL:[http://dx.doi.
loxrg/10.1109/18.959265 (cit. on p.[135).

[DLH96]  R.]J.Doviak, R.]. Lataitis, and C. L. Holloway. “Cross correlations and cross
spectra for spaced antenna wind profilers: 1. Theoretical analysis”. In: Radio
Science 31.1(Jan.1996), pp. 157-180. ISSN: 00486604. DOI:{10 . 1029/95RS02318|
URL:fhttp://doi.wiley.com/10.1029/96RS01790%20http://doi .|
[wiley.com/10.1029/95RS02318|(cit. on p.[90).

[Don+12] D. L. Donoho, Y. Tsaig, I. Drori, and J.-L. Starck. “Sparse solution of under-
determined systems of linear equations by stagewise orthogonal matching
pursuit”. In: IEEE Transactions on Information Theory 58.2 (Feb. 2012), pp. 1094
1121. 1SSN: 0018-9448. DOI:{10 . 1109/ TIT . 2011 . 2173241} URL:
|//ieeexplore.ieee.org/document/6145475/ (cit. on pp.|[130,[131).

[Don0é6a] D. L. Donoho. “Compressed sensing”. In: IEEE Transactions on Information
Iheory 52.4 (Apr. 2006), pp. 1289-1306. ISSN: 0018-9448. DOI:(10.1109/TIT.

2006 . 871582|(cit. on pp.[129, [130).

[DonO6b]  D. L. Donoho. “For most large underdetermined systems of linear equations
the minimal LI-norm solution is also the sparsest solution”. In: Communi-
cations on Pure and Applied Mathematics 59.6 (June 2006), pp. 797—829. ISSN:
00103640. DOI:[10. 1002/ cpa. 20132|(cit. on pp. |46} [130).

179


http://ieeexplore.ieee.org/document/5895106/
https://doi.org/10.1007/1-84628-168-7
https://doi.org/10.1007/1-84628-168-7
http://link.springer.com/10.1007/1-84628-168-7
https://doi.org/10.5194/acp-14-12133-2014
https://doi.org/10.5194/acp-14-12133-2014
https://www.atmos-chem-phys.net/14/12133/2014/
https://doi.org/10.1109/18.959265
http://dx.doi.org/10.1109/18.959265
http://dx.doi.org/10.1109/18.959265
https://doi.org/10.1029/95RS02318
http://doi.wiley.com/10.1029/96RS01790%20http://doi.wiley.com/10.1029/95RS02318
http://doi.wiley.com/10.1029/96RS01790%20http://doi.wiley.com/10.1029/95RS02318
https://doi.org/10.1109/TIT.2011.2173241
http://ieeexplore.ieee.org/document/6145475/
http://ieeexplore.ieee.org/document/6145475/
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.1002/cpa.20132

BIBLIOGRAPHY

[DRV15]

[DW14]

[Efr+04]

[EKBI1O]

[EL97]

[Ern+11]

[Ern04]

C. Dahl, I. Rolfes, and M. Vogt. “Comparison of virtual arrays for MIMO
radar applications based on hexagonal configurations”. In: European Microwave
Week 2015: "Freedom Through Microwaves”, EuMW 2015 - Conference Proceedings;
2015 45th European Microwave Conference Proceedings, EuMC. Institute of Elec-

trical and Electronics Engineers Inc., Dec. 2015, pp. 1439—1442. ISBN: 9782874870392..

DOI:(10.1109/EuMC. 2015 . 7346044 (cit. on pp.[68, [81).

W. Dan and R. Wang. “Robustness of orthogonal matching pursuit under
restricted isometry property”. In: Science China Mathematics 57.3 (Mar. 2014),
pp. 627—-634. 1SSN: 1674-7283. DOI:[10 . 1007 /s11425-013-4655- 4. URL:
[https://doi.org/10.1007/s11425-013-4655-4%20http://1link.]
[springer.com/10.1007/s11425-013-4655-4 (cit. on p. }45).

B. Efron, T. Hastie, I. M. Johnstone, R. Tibshirani, H. Ishwaran, K. Knight,
J. M. Loubes, P. Massart, D. Madigan, G. Ridgeway, S. Rosset, J. L. Zhu, R. A.
Stine, B. A. Turlach, and S. Weisberg. “Least angle regression”. In: Annals
OfStatistiCS 32.2 (Apr. 2004), pp. 407—499. 1SSN: 00905364. DOI1:|10 . 1214/
[009053604000000067 (cit. on p.[72).

Y. C. Eldar, P. Kuppinger, and H. Bolcskei. “Block-sparse signals: Uncertainty
relations and efficient recovery”. In: IEEE Transactions on Signal Processing 58.6
(2010), pp. 3042—3054. 1SSN:1053-587X. DOI:[10.1109/TSP. 2010 . 2044837

(cit. on p.[133).

L. ElGhaouiand H. Lebret. “Robust solutions to least-squares problems with

uncertaindata”. In: SIAM Journal on Matrix Analysis and Applications 18.4 (1997),
pp. 1035-1064. 1ISSN: 08954798. DOI:[10. 1137/S0895479896298130 (cit. on

p.[72).
M. Ern, P. Preusse, J. C. Gille, C. L. Hepplewhite, M. G. Mlynczak, J. M. Rus-

sell, and M. Riese. “Implications for atmospheric dynamics derived from

global observations of gravity wave momentum flux in stratosphere and meso-
sphere”. In: Journal of Geophysical Research 116.D19 (Oct. 2011), p. D19107. ISSN:
0148-0227. DOI:[10 . 1029/2011JD015821} URL:Attp: //doi.wiley.com/
[10.1029/2011JD015821/(cit. on p.|[85).

M. Ern. “Absolute values of gravity wave momentum flux derived from satel-
lite data”. In: Journal of Geophysical Research 109.D20 (2004), p. D20103. ISSN:
0148-0227. DOI:[10.. 1029/2004JD004752] URL:fhttp://doi.wiley.com/,
[£0. 1029/2004JD004752)(cit. on p.[85).

180


https://doi.org/10.1109/EuMC.2015.7346044
https://doi.org/10.1007/s11425-013-4655-4
https://doi.org/10.1007/s11425-013-4655-4%20http://link.springer.com/10.1007/s11425-013-4655-4
https://doi.org/10.1007/s11425-013-4655-4%20http://link.springer.com/10.1007/s11425-013-4655-4
https://doi.org/10.1214/009053604000000067
https://doi.org/10.1214/009053604000000067
https://doi.org/10.1109/TSP.2010.2044837
https://doi.org/10.1137/S0895479896298130
https://doi.org/10.1029/2011JD015821
http://doi.wiley.com/10.1029/2011JD015821
http://doi.wiley.com/10.1029/2011JD015821
https://doi.org/10.1029/2004JD004752
http://doi.wiley.com/10.1029/2004JD004752
http://doi.wiley.com/10.1029/2004JD004752

BIBLIOGRAPHY

[FBOS] K. W. Forsythe and D. W. Bliss. “MIMO radar: concepts, performance en-
hancements, and applications”. In: MIMO Radar Signal Processing. John Wi-
ley and Sons, Ltd, Mar. 2008. Chap. 2, pp. 65-121. ISBN: 9780470391488. DOI:
[10.1002/9780470391488. ch2| UrL:fhttps://onlinelibrary.wiley.]
lcom/doi/abs/10.1002/9780470391488 . ch2(cit. on p.[52).

[FG98] G. Foschini and M. J. Gans. “On limits of wireless communications in a fad-
ing environment when using multiple antennas”. In: Wireless Personal Com-
munications 6 (1998), pp. 311-335 (cit. on pp.[8, 49).

[FHO5] D. T. Farley and T. Hagfors. Incoherent scatter theory ... 2005 (cit. on p. .

[FHW83] K. Folkestad, T. Hagfors, and S. Westerlund. “EISCAT: An updated descrip-
tion of technical characteristics and operational capabilities”. In: Radio Sci-
ence18.6 (Nov.1983), pp. 867—879. 1SSN: 00486604. DOI1:[10. 1029/RS0181006p00867|
URL:fhttps: //agupubs . onlinelibrary.wiley.com/doi/abs/10.
(1029 /RS0181006p00867 % 20http : // doi . wiley . com/ 10 . 1029 /]
[RS0181006p00867|(cit. on pp. |14} [17).

[Fis+06] E. Fishler, A. Haimovich, R. S. Blum, L. Cimini, D. Chizhik, and R. Valen-
zuela. “Spatial diversity in radars - models and detection performance”. In:
IEEE Transactions on Signal Processing 54.3 (Mar. 2006), pp. 823—838. 1SSN:1053587X.
DOI:(10 . 1109 /TSP . 2005 . 862813. URL:[http: //ieeexplore . ieee.

lorg/document/1597550/ (cit. on pp.[2,[50, 51} [55).

[FL92] A. Fredriksen and N. B. J. Lilensten. “Incoherent scatter plasma lines at an-

gles with the magnetic field”. In: Journal of Geophysical Research 97 (1992), pp. 16921~
16933 (cit. on p.[19).

[Fraoé] R. Frank. “Polyphase codes with good nonperiodic correlation properties”.
In: IEEE Transactions on Information Theory 9.1 (Sept. 2006), pp. 43—45. ISSN:
0018-9448. pOI:(10.1109/TIT. 1963 . 1057798| URL:[http://dx.doi .|
lorg/10.1109/TIT.1963.1057798|(cit. on pp.[59}[136).

[Frio7] B. Friedlander. “Waveform design for MIMO radars”. In: IEEE Transactions on
Aerospace and Electronic Systems 43.3 (July 2007), pp. 1227-1238. 1SSN: 00189251.
DOI:[10.1109/TAES . 2007 . 4383615 (cit. on pp. [33}[71).

[Fril1] B. Friedlander. “On the role of waveform diversity in MIMO radar”. In: 2011
Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and
Computers (ASILOMAR). IEEE, Nov. 2011, pp. 1501-1505. ISBN: 978-1-4673-

181


https://doi.org/10.1002/9780470391488.ch2
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470391488.ch2
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470391488.ch2
https://doi.org/10.1029/RS018i006p00867
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/RS018i006p00867%20http://doi.wiley.com/10.1029/RS018i006p00867
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/RS018i006p00867%20http://doi.wiley.com/10.1029/RS018i006p00867
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/RS018i006p00867%20http://doi.wiley.com/10.1029/RS018i006p00867
https://doi.org/10.1109/TSP.2005.862813
http://ieeexplore.ieee.org/document/1597550/
http://ieeexplore.ieee.org/document/1597550/
https://doi.org/10.1109/TIT.1963.1057798
http://dx.doi.org/10.1109/TIT.1963.1057798
http://dx.doi.org/10.1109/TIT.1963.1057798
https://doi.org/10.1109/TAES.2007.4383615

BIBLIOGRAPHY

[GBGSI]

[GDP12]

[GHBO9]

[GHBI10]

[GL80]

[God+10]

[Gole1]

0323-1.D01:/10.1109/ACSSC.2011.6190268| URL:http://ieeexplore.
lieee.org/document/6190268/|(cit. on p.[71).

K. S. Gage, B. B. Balsley, and J. L. Green. “Fresnel scattering model for the
specular echoes observed by VHF radar”. In: Radio Science 16.6 (Nov. 1981),
pp. 1447-1453. 1SSN: 00486604. DOI: (10 . 1029 / RS016i006p01447| URL:
http://doi.wiley.com/10.1029/RS016i006p01447](cit. on p.[17).

F. Gini, A. De Maio, and L. Patton. Waveform design and diversity for advanced
radar systems. Ed. by F. Gini, A. De Maio, and L. Patton. The Institution of En-
gineering and Technology, Michael Faraday House, Six Hills Way, Stevenage
SG12AY, UK: IET, Jan. 2012, pp. 1-553. ISBN: 9781849192651. DOI:
[PBRAO22E] URL:[https://digital-1library.theiet.org/content/]
[pooks/ra/pbra022e (cit. on pp. 3} [71).

H. Godrich, A. Haimovich, and R. S. Blum. “A MIMO radar system approach
to target tracking”. In: Conference Record - Asilomar Conference on Signals, Sys-
tems and Computers. 2009, pp. 1186-1190. ISBN: 9781424458271. DOI:
[ACSSC.2009.5470001 (cit. on p. j3).

H.Godrich, A. Haimovich, and R. S. Blum. “Targetlocalization accuracy gain
in MIMO radar-based systems”. In: IEEE Transactions on Information Theory
56.6 (June 2010), pp. 2783—-2803. ISSN: 00189448. DOI:[10.1109/TIT.2010. |

[2046246 (cit. on p.3).

G. H. Golub and C. F. van Loan. “An analysis of the total least squares prob-
lemy”. In: SIAM Journal on Numerical Analysis 17.6 (Dec.1980), pp. 883—893. ISSN:
0036-1429. pOIL:[T0. 1137/0717073. URL:[ittps : //dol . org/10. 1137/

(0717073 (cit. on p.[150).

H. Godrich, V. M. Chiriac, A. Haimovich, and R. S. Blum. “Target tracking in

MIMO radar systems: Techniques and performance analysis”. In: IEEE Na-
tional Radar Conference - Proceedings. 2010, pp. 1111-1116. ISBN: 9781424458127.
DOI:[10.1109/RADAR . 2010 . 5494453|(cit. on p.[3).

M. Golay. “Complementary series”. In: IEEE Transactions on Information The-
ory 7.2 (Apr. 1961), pp. 82—87. ISSN: 0018-9448. DOI:[10 . 1109/TIT. 1961 .|
(1057620, URL:[http://ieeexplore. ieee . org/document / 1057620/

(cit. on p.[101).

182


https://doi.org/10.1109/ACSSC.2011.6190268
http://ieeexplore.ieee.org/document/6190268/
http://ieeexplore.ieee.org/document/6190268/
https://doi.org/10.1029/RS016i006p01447
http://doi.wiley.com/10.1029/RS016i006p01447
https://doi.org/10.1049/PBRA022E
https://doi.org/10.1049/PBRA022E
https://digital-library.theiet.org/content/books/ra/pbra022e
https://digital-library.theiet.org/content/books/ra/pbra022e
https://doi.org/10.1109/ACSSC.2009.5470001
https://doi.org/10.1109/ACSSC.2009.5470001
https://doi.org/10.1109/TIT.2010.2046246
https://doi.org/10.1109/TIT.2010.2046246
https://doi.org/10.1137/0717073
https://doi.org/10.1137/0717073
https://doi.org/10.1137/0717073
https://doi.org/10.1109/RADAR.2010.5494453
https://doi.org/10.1109/TIT.1961.1057620
https://doi.org/10.1109/TIT.1961.1057620
http://ieeexplore.ieee.org/document/1057620/

BIBLIOGRAPHY

[Gol67]

[Gom14]

[Gre59]

[GSC19]

[Hal+05]

[Han87]

[Har72]

[Hau94]

[HBCO08]

R. Gold. “Optimal binary sequences for spread spectrum multiplexing”. In:

IEEE Transactions on Information Theory 13.4 (Oct. 1967), pp. 619—621. 1SSN: 0018-
9448. DOI:|10. 1109/ TIT. 1967 . 1054048 URL:[http: //ieeexplore .|

lieee.org/document/1054048/|(cit. on pp.[59}[136).

0. Gomez. “MIMO radar with colocated antennas: Theoretical investigation,
simulations and development of an experimental platform”. PhD thesis. 2014.
DOI:(10.13140/RG.2.1.2082.8322 (cit. on p.[3).

T.N.E. Greville. “The Pseudoinverse of a Rectangular or Singular Matrix and
Its Application to the Solution of Systems of Linear Equations”. In: SIAM
Review 1.1 (Jan. 1959), pp. 38—43. ISSN: 0036-1445. poI:[10.1137/1001003.
URL:http://epubs . siam.org/doi/10.1137/1001003(cit. on p.[72).

N. Gudadze, G. Stober, and J. L. Chau. “Can VHF radars at polar latitudes
measure mean vertical winds in the presence of PMSE?” In: Atmospheric Chem-
istry and Physics 19.7 (Apr. 2019), pp. 4485—4497. 1SSN: 1680-7324. DOI: |10 .

[5194 /acp-19-4485-2019| URL:|https : //www . atmos — chem- phys .

[net/19/4485/2019/|(cit. on pp. (88} [90).

C. M. Hall, T. Aso, M. Tsutsumi, S. Nozawa, A. H. Manson, and C. E. Meek.

“A comparison of mesosphere and lower thermosphere neutral winds as de-

termined by meteor and medium-frequency radar at 70°N”. In: Radio Science
40 (2005) (cit. on p.|109).

P. C. Hansen. “The truncated SVD as a method for regularization”. In: BIT
27.4 (Dec. 1987), pp. 534—553. ISSN: 0006-3835. DOI:[10. 1007/BF01937276.
URL:[https : //doi.org/10.1007 /BF019372767%20http: //link.
[springer.com/10.1007/BF01937276](cit. on pp.[72} [127).

H. F. Harmuth. Transmission of information by orthogonal functions. 2nd edi-
tio. Springer-Verlag Berlin Heidelberg, 1972, p. 394. ISBN: 978-3-642-61974-8.
DpOI:[10.1007/978-3-642-61974-8|(cit. on p.[59).

R. Haupt. “Thinned arrays using genetic algorithms”. In: IEEE Transactions on
Antennas and Propagation 42.7 (July 1994), pp. 993—999. 1SSN: 0018-926X. DOI:
[10.1109/8.299602] URL:[http://ieeexplore.ieee.org/document/

[299602/ (cit. on pp. s, BL 3.

A. Haimovich, R. S. Blum, and L. Cimini. “MIMO radar with widely sep-

arated antennas”. In: IEEE Signal Processing Magazine 25.1 (2008), pp. 116—

183


https://doi.org/10.1109/TIT.1967.1054048
http://ieeexplore.ieee.org/document/1054048/
http://ieeexplore.ieee.org/document/1054048/
https://doi.org/10.13140/RG.2.1.2082.8322
https://doi.org/10.1137/1001003
http://epubs.siam.org/doi/10.1137/1001003
https://doi.org/10.5194/acp-19-4485-2019
https://doi.org/10.5194/acp-19-4485-2019
https://www.atmos-chem-phys.net/19/4485/2019/
https://www.atmos-chem-phys.net/19/4485/2019/
https://doi.org/10.1007/BF01937276
https://doi.org/10.1007/BF01937276%20http://link.springer.com/10.1007/BF01937276
https://doi.org/10.1007/BF01937276%20http://link.springer.com/10.1007/BF01937276
https://doi.org/10.1007/978-3-642-61974-8
https://doi.org/10.1109/8.299602
http://ieeexplore.ieee.org/document/299602/
http://ieeexplore.ieee.org/document/299602/

BIBLIOGRAPHY

129. 1sSN: 1053-5888. Do1: (10 . 1109 /MSP . 2008 . 4408448] URL: [http :]
|//ieeexplore.ieee.org/document/4408448/|(cit. on p.[114).

[HCO#] D. L. Hysell and J. L. Chau. “Optimal aperture synthesis radar imaging”. In:
Radio Science 41.2 (Apr. 2006), n/a—n/a. 1SSN:00486604. DOI:[10 . 1029/2005RS003383|
URL:[http://doi.wiley.com/10.1029/2005RS003383|(cit. on pp.
45, 47, 07, [103, [104).
[HCM13] D.L.Hysell,]. L. Chau, and M. A. Milla. “The Jicamarca phased-array radar”.
In: 2013 IEEE International Symposium on Phased Array Systems and Technology.
IEEE, Oct. 2013, pp. 669—675. ISBN: 978-1-4673-1127-4. DOI1:[10. 1109/ARRAY |
(2013 . 6731910] URL:|http : / / ieeexplore . ieee . org/document /

[6731910/cit. on pp. 14} &)

[Hec+07] J.H.Hecht, A.Z. Liu, R. L. Walterscheid, S.J. Franke, R.]. Rudy, M. J. Taylor,

and P. D. Pautet. “Characteristics of short- period wavelike features near 87

km altitude from airglow and lidar observations over Maui”. In: Geophys. Res.
Atmos. 112 (2007) (cit. on p.[109).

[Hec03]  J.H.Hecht. “Instability layers and airglow imaging”. In: Reviews of Geophysics
42.1 (2003). por: (10 . 1029 / 2003RG000131. URL: [ittps : / / agupubs .|
[onlinelibrary.wiley.com/doi/abs/10.1029/2003RG0O00131|(cit.
on pp. (84, [L09).

[HF95] U.-P. Hoppe and D. C. Fritts. “High-resolution measurements of vertical ve-

locity with the European incoherent scatter VHF radar: 1. Motion field char-
acteristics and measurement biases”. In: Journal of Geophysical Research100.D8
(1995), p. 16813. IsSN: 0148-0227. DOI:[10 . 1029/ 95JD01466. URL: [http :
[//doi.wiley.com/10.1029/95JD01466|(cit. on p.[90).

[HFVO1] ~ W. K. Hocking, B. Fuller, and B. Vandepeer. “Real-time determination of
meteor-related parameters utilizing modern digital technology”. In: Jour-
nal of Atmospheric and Solar-Terrestrial Physics 63.2-3 (Jan. 2001), pp. 155-169.
ISSN: 13646826. DOI:[10 . 1016 /S1364-6826 (00) 00138- 3| URL:[https :
|/ /1linkinghub.elsevier.com/retrieve/pii/S1364682600001383

(cit. on pp. 52} 109} 13} 18, 120).

[Hin+93]  C. O. Hines, G. W. Adams, ]J. W. Brosnahan, F. T. Djuth, M. P. Sulzer, C. A.

Tepley, and J. S. Van Baelen. “Multi-instrument observations of mesospheric

motions over Arecibo: comparisons and interpretations”. In: Journal of At-

mospheric and Terrestrial Physics 55.3 (Mar. 1993), pp. 241-287. ISSN: 00219169.

184


https://doi.org/10.1109/MSP.2008.4408448
http://ieeexplore.ieee.org/document/4408448/
http://ieeexplore.ieee.org/document/4408448/
https://doi.org/10.1029/2005RS003383
http://doi.wiley.com/10.1029/2005RS003383
https://doi.org/10.1109/ARRAY.2013.6731910
https://doi.org/10.1109/ARRAY.2013.6731910
http://ieeexplore.ieee.org/document/6731910/
http://ieeexplore.ieee.org/document/6731910/
https://doi.org/10.1029/2003RG000131
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2003RG000131
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2003RG000131
https://doi.org/10.1029/95JD01466
http://doi.wiley.com/10.1029/95JD01466
http://doi.wiley.com/10.1029/95JD01466
https://doi.org/10.1016/S1364-6826(00)00138-3
https://linkinghub.elsevier.com/retrieve/pii/S1364682600001383
https://linkinghub.elsevier.com/retrieve/pii/S1364682600001383

BIBLIOGRAPHY

DOI:[10.1016/0021-9169(93) 90069-B. URL:[https ://linkinghub .|
lelsevier.com/retrieve/pii/002191699390069B|(cit. on p.[I).

[HK70] A. E. Hoerl and R. W. Kennard. “Ridge regression: biased estimation for
nonorthogonal problems”. In: Technometrics 12.1 (1970), pp. 55-67. DOI:[10 .
[L080/00401706 . 1970 . 10488634 (cit. on p.[128).

[HK90] R. T. Hoctor and S. A. Kassam. “The unifying role of the coarray in aperture
synthesis for coherent and incoherent imaging”. In: Proceedings of the IEEE
78.4 (1990), pp. 735-752. ISSN: 15582256. DOI:[10 . 1109 /5 . 54811/ (cit. on
p-[64).

[HLO7] J. Hoffner and F. J. Litbken. “Potassium lidar temperatures and densities in

the mesopause region at Spitsbergen (78°N)”. In: Journal of Geophysical Re-
search112.D20 (Oct. 2007), p. D20114. 1SSN: 0148-0227. DOI:(10 . 1029/2007 JD0086 12|
URL:fhttp://doi.wiley.com/10.1029/2007JD008612(cit. on p.[84).

[HLI15] Y. Huang and G. Liao. “MIMO SAR GMTI with RPCA based method”. In: Pro-
ceedings of the 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar,
APSAR 2015. Institute of Electrical and Electronics Engineers Inc., Oct. 2015,
pp. 827-830. ISBN: 9781467372961. DOL:[10 . 1109/ APSAR . 2015 . 7306331

(cit. on p.3).
[HM13] B.]. Harding and M. A. Milla. “Radar imaging with compressed sensing”. In:

Radio Science 48.5 (Sept. 2013), pp. 582-588. ISSN: 00486604. DOI:({10.1002/
[rds.20063] URL:http://doi.wiley.com/10.1002/rds.20063|(cit. on

pp- 43} 45} [46} [9¢] [08).

[HMMI15] B.]J. Harding, J. J. Makela, and J. W. Meriwether. “Estimation of mesoscale

thermospheric wind structure using a network of interferometers”. In: Jour-
nal of Geophysical Research-Space Physics 120.5 (May 2015), pp. 3928-3940. ISSN:
21699402. DOI:[10.1002/2015JA021025|(cit. on p. [147).

[HocO5] W. K. Hocking. “A new approach to momentum flux determinations using
SKiYMET meteor radars”. In: Annales Geophysicae 23.7 (Oct. 2005), pp. 2433-
2439. ISSN: 1432-0576. DOI:{10. 5194 /angeo-23-2433-2005. URL:[http:
[/ /v . ann-geophys .net/23/2433/2005/|(cit. on pp. (84, [88).

[Hoc83] W. K. Hocking. “On the extraction of atmospheric turbulence parameters
from radar backscatter Doppler spectra—I. Theory”. In: Journal of Atmospheric
and Terrestrial Physics 45.2-3 (Feb. 1983), pp. 89-102. ISSN: 00219169. DOI:(10.

185



https://doi.org/10.1016/0021-9169(93)90069-B
https://linkinghub.elsevier.com/retrieve/pii/002191699390069B
https://linkinghub.elsevier.com/retrieve/pii/002191699390069B
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1080/00401706.1970.10488634
https://doi.org/10.1109/5.54811
https://doi.org/10.1029/2007JD008612
http://doi.wiley.com/10.1029/2007JD008612
https://doi.org/10.1109/APSAR.2015.7306331
https://doi.org/10.1002/rds.20063
https://doi.org/10.1002/rds.20063
http://doi.wiley.com/10.1002/rds.20063
https://doi.org/10.1002/2015JA021025
https://doi.org/10.5194/angeo-23-2433-2005
http://www.ann-geophys.net/23/2433/2005/
http://www.ann-geophys.net/23/2433/2005/
https://doi.org/10.1016/S0021-9169(83)80013-0
https://doi.org/10.1016/S0021-9169(83)80013-0

BIBLIOGRAPHY

[1016/S0021-9169(83)80013-0| URL:https://linkinghub.elsevier.
[com/retrieve/pii/S0021916983800130|(cit. on pp.[20}[52).

[Hoc85]  W. K. Hocking. “Measurement of turbulent energy dissipation rates in the
middle atmosphere by radar techniques: A review”. In: Radio Science 20.6
(1985), pp. 1403-1422. DOL:|10 . 1029 /RS0201006p01403| URL:|https : / /|
[agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/RS0201006p01403|

(cit. on pp. ¢} 20} [52).

[Hof+10]  P. Hoffmann, E. Becker, W. Singer, and M. Placke. “Seasonal variation of

mesospheric waves at northern middle and high latitudes”. In: Journal of At-
mospheric and Solar-Terrestrial Physics 72.14-15 (Sept. 2010), pp. 1068—1079. ISSN:
13646826. DOI:[10.1016/] . jastp.2010.07.002|(cit. on p.(84).

[Hof18] J. Hoftner. VAHCOLI - Leibniz-Institut fiir Atmosphdrenphysik, Kiihlungsborn. 2018.
URL:[https://www.iap-kborn.de/aktuelles/nachrichten/archiv/|
[2018/20180118vahcoli/ (cit. on p.[2).

[Hog74]  J. A. Hogbom. “Aperture synthesis with a non-regular distribution of inter-

ferometer baselines”. In: Astronomy and Astrophysics Supplement 15 (June 1974),
p. 417 (cit. on p.[128).
[Hol+97]  C. L. Holloway, R. J. Doviak, S. A. Cohn, R. J. Lataitis, and J. S. Van Baelen.

“Cross correlations and cross spectra for spaced antenna wind profilers: 2.
Algorithms to estimate wind and turbulence”. In: European Journal of Radiol-
0gy 32.3 (May 1997), pp. 967-982.. IsSN: 0720048X (cit. on p.[90).

[HRC04] D.A. Holdsworth, I. M. Reid, and M. A. Cervera. “Buckland Park all-sky in-
terferometric meteor radar”. In: Radio Science 39.5 (Sept. 2004). ISSN: 00486604
DOI:{10.1029/2003RS003014] URL:https://agupubs.onlinelibrary.
[wiley.com/doi/abs/10.1029/2003RS003014](cit. on pp.|113,[120).

[HRC86] W. K. Hocking, R. Riister, and P. Czechowsky. “Absolute reflectivities and
aspect sensitivities of VHF radio wave scatterers measured with the SOUSY
radar”. In: Journal of Atmospheric and Terrestrial Physics 48.2 (Feb.1986), pp. 131-
144. 1SSN: 00219169. DO1:[10. 1016/0021-9169(86) 9007 7-2| URL: it tps ;|
|/ /linkinghub . elsevier . com/retrieve/pii/0021916986900772|

(cit. on p.[89).

[HT97] W. K. Hocking and T. Thayaparan. “Simultaneous and colocated observation

of winds and tides by MF and meteor radars over London, Canada (43°N,
81°W), during 1994-1996”. In: Radio Science 32.2 (Mar. 1997), pp. 833—865. ISSN:

186


https://doi.org/10.1016/S0021-9169(83)80013-0
https://doi.org/10.1016/S0021-9169(83)80013-0
https://linkinghub.elsevier.com/retrieve/pii/S0021916983800130
https://linkinghub.elsevier.com/retrieve/pii/S0021916983800130
https://doi.org/10.1029/RS020i006p01403
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/RS020i006p01403
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/RS020i006p01403
https://doi.org/10.1016/j.jastp.2010.07.002
https://www.iap-kborn.de/aktuelles/nachrichten/archiv/2018/20180118vahcoli/
https://www.iap-kborn.de/aktuelles/nachrichten/archiv/2018/20180118vahcoli/
https://doi.org/10.1029/2003RS003014
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2003RS003014
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2003RS003014
https://doi.org/10.1016/0021-9169(86)90077-2
https://linkinghub.elsevier.com/retrieve/pii/0021916986900772
https://linkinghub.elsevier.com/retrieve/pii/0021916986900772

BIBLIOGRAPHY

[HT]97]

[Hua+11]

[Hys96]

[Int]

[Jam+09]

[Jefo9]

[JHO3]

[JLZ12]

[JWH98]

00486604. DOI:[10. 1029/96RS03467| URL:[http: //doi.wiley.com/10.
[1029/96RS03467 (cit. on p. [118).

W. K. Hocking, T. Thayaparan, and J. Jones. “Meteor decay times and their
use in determining a diagnostic mesospheric temperature-pressure param-
eter: Methodology and one year of data”. In: Geophysical Research Letters 24
(1997), pp. 2977-2980 (cit. on p.[52).

Y. Huang, P. V. Brennan, D. Patrick, I. Weller, P. Roberts, and K. Hughes.
“FMCW based MIMO imaging radar for maritime navigation”. In: Progress
In Electromagnetics Research 115 (2011), pp. 327—342. ISSN: 1559-8985. DOI:|10.

[2528/PIER11021509. URL:[http://www. jpier.org/PIER/pier.php?
[paper=11021509 (cit. on p. [52).

D. L. Hysell. “Radar imaging of equatorial F region irregularities with max-
imum entropy interferometry”. In: Radio Science 31 (1996), pp. 1567-1578 (cit.
on p.[44).

Intel. Intel distribution for Python. URL:|https : //software . intel . com/|
len-us/distribution-for-python(cit. on p.[149).

G. James, D. Witten, T. Hastie, and R. Tibshirani. An introduction to statistical
learning. Vol. 7. Springer, 2009 (cit. on p.[128).

Jeftrey. Phased-array radar design: application of radar fundamentals. Radar, Sonar
and; Navigation. Institution of Engineering and Technology, Jan. 2009. ISBN:
9781891121692. DOI:|10.1049/SBRAO18E] URL:https://digital-library.
[theiet.org/content/books/ra/sbra018e (cit. on p.[39).

G.O.Jonesand U.-P. Hoppe. “High-resolution vertical velocity studies within
PMSE using EISCAT”. In: European Rocket and Balloon Programmes and Related
Research. Ed. by B. Warmbein. 530. 2003, pp. 309—314. ISBN: 92-9092-840-9.
URL:[https://ui.adsabs.harvard.edu/abs/2003ESASP.530. .309J]

(cit. on p.[88).

T.Jin,]. Lou, and Z. Zhou. “Extraction of landmine features using a forward-

looking ground-penetrating radar with MIMO array”. In: IEEE Geoscience
and Remote Sensing Society (2012) (cit. on pp. [3}[52).

J. Jones, A. R. Webster, and W. K. Hocking. “An improved interferometer
design for use with meteor radars”. In: Radio Science 33.1 (Jan. 1998), pp. 55—
65. ISSN: 00486604. DOI:{10 . 1029/97RS03050] URL:[https: //agupubs.|

187



https://doi.org/10.1029/96RS03467
http://doi.wiley.com/10.1029/96RS03467
http://doi.wiley.com/10.1029/96RS03467
https://doi.org/10.2528/PIER11021509
https://doi.org/10.2528/PIER11021509
http://www.jpier.org/PIER/pier.php?paper=11021509
http://www.jpier.org/PIER/pier.php?paper=11021509
https://software.intel.com/en-us/distribution-for-python
https://software.intel.com/en-us/distribution-for-python
https://doi.org/10.1049/SBRA018E
https://digital-library.theiet.org/content/books/ra/sbra018e
https://digital-library.theiet.org/content/books/ra/sbra018e
https://ui.adsabs.harvard.edu/abs/2003ESASP.530..309J
https://doi.org/10.1029/97RS03050
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/97RS03050
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/97RS03050

BIBLIOGRAPHY

[Kale0]

[Kat+19]

[Kay09]

[Kay93]

[KC18]

[KD10]

[Ker+19]

[onlinelibrary.wiley.com/doi/abs/10.1029/97RS03050 (cit. on
p-[L16).

R. E. Kalman. “A new approach to linear filtering and prediction problems”.
In: Journal of Basic Engineering 82.1 (Mar. 1960), pp. 35—45. ISSN: 0021-9223.
DOI:{10.1115/1.3662552. URL:[https: //asmedigitalcollection .|
asme . org/fluidsengineering/article/82/1/35/397706/A-New-|
[Approach-to-Linear-Filtering-and-Prediction|(cit. on p.[104).

Z.T. Katamzi-Joseph, A. L. Aruliah, K. Oksavik, J. B. Habarulema, K. Kau-
ristie, and M. J. Kosch. “Multi-instrument observations of large-scale atmo-
spheric gravity waves/traveling ionospheric disturbances associated with en-
hanced auroral activity over Svalbard”. In: Advances in Space Research 63.1 (Jan.
2019), pp. 270-281. 1sSN: 02731177. DOI: [10 . 1016/ j . asr . 2018 . 08 .|
[042] URL: |https : / /linkinghub . elsevier . com/ retrieve / pii /|
[80273117718306707 (cit. on p.[1).

S. M. Kay. “Waveform design for multistatic radar detection”. In: IEEE Trans-
actions on Aerospace and Electronic Systems 45.3 (July 2009), pp. 1153-1166. ISSN:
00189251. DOI:[10. 1109/TAES . 2009 . 5259190 (cit. on p. [71).

S. M. Kay. Fundamentals of statistical signal processing: estimation theory. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1993. ISBN: 0-13-345711-7 (cit. on

p-[128).

D. Kouba and J. Chum. “Ground-based measurements of ionospheric dy-
namics”. In: Journal of Space Weather and Space Climate 8.2017 (May 2018), A29.
ISSN: 2115-7251. DOI:[10. 1051 /swsc/2018018| URL:https://www.sSwsc—
[journal.org/10.1051/swsc/2018018(cit. on p.[19).

J. Kantorand S. K. Davis. “Airborne GMTI using MIMO techniques”. In: IEEE
National Radar Conference - Proceedings. 2010, pp. 1344—1349. ISBN: 9781424458127.
DOI:[10.1109/RADAR. 2010.5494407|(cit. on p. [3).

J. Kero, D. Kastinen, J. Vierinen, T. Grydeland, C. Heinselman, J. Markkanen,
and A. Tjulin. “EISCAT 3D: The next generation international atmosphere
and geospace research radar”. In: Ist NEO and Debris Detection Conference. Ed.
by T. Flohrer, R. Jehn, and F. Schmitz. ESA Space Safety Programme Office,

2019. URL:[www . space-track. orgl(cit. on p.[2).

188


https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/97RS03050
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/97RS03050
https://doi.org/10.1115/1.3662552
https://asmedigitalcollection.asme.org/fluidsengineering/article/82/1/35/397706/A-New-Approach-to-Linear-Filtering-and-Prediction
https://asmedigitalcollection.asme.org/fluidsengineering/article/82/1/35/397706/A-New-Approach-to-Linear-Filtering-and-Prediction
https://asmedigitalcollection.asme.org/fluidsengineering/article/82/1/35/397706/A-New-Approach-to-Linear-Filtering-and-Prediction
https://doi.org/10.1016/j.asr.2018.08.042
https://doi.org/10.1016/j.asr.2018.08.042
https://linkinghub.elsevier.com/retrieve/pii/S0273117718306707
https://linkinghub.elsevier.com/retrieve/pii/S0273117718306707
https://doi.org/10.1109/TAES.2009.5259190
https://doi.org/10.1051/swsc/2018018
https://www.swsc-journal.org/10.1051/swsc/2018018
https://www.swsc-journal.org/10.1051/swsc/2018018
https://doi.org/10.1109/RADAR.2010.5494407
www.space-track.org

BIBLIOGRAPHY

[Kir+10]  S. Kirkwood, E. Belova, K. Satheesan, T. Narayana Rao, T. Rajendra Prasad,
and K. S. Satheesh. “Fresnel scatter revisited — comparison of 50 MHz radar
and radiosondes in the Arctic, the Tropics and Antarctica”. In: Annales Geo-
physicae 28.10 (Oct. 2010), pp. 1993-2005. ISSN: 1432-0576. DOI:(10 . 5194 /
[angeo-28-1993-2010. URL:[https://www . ann- geophys .net/28/
[1993/2010/7%20https : //angeo . copernicus . org/articles/ 28/

1993/2010/(cit. on p.[17).

[Kop+15] M. Kopp, M. Gerding, J. Hoftner, and F. . Liibken. “Tidal signatures in tem-

peratures derived from daylight lidar soundings above Kithlungsborn (54°N,
12°E)”. In: Journal of Atmospheric and Solar-Terrestrial Physics 127 (May 2015),

pp. 37-50. I1SSN: 13646826. DOI:[10 . 1016/ j . jastp.2014.09. 002} URL:
lhttps://linkinghub.elsevier.com/retrieve/pii/S1364682614002077
(cit. on p.[118).

[KS91] E. Kudeki and F. Siiriicii. “Radar interferometric imaging of field-aligned

plasmairregularities in the equatorial electrojet”. In: Geophysical Research Let-
ters 18 (1991), pp. 4144 (cit. on p. |43).

[KV96] H. Krim and M. Viberg. “Two decades of array signal processing research:
the parametric approach”. In: IEEE Signal Processing Magazine13.4 (1996), pp. 67—
94 (cit. on p.[38).

[Lat+12a]  R. Latteck, W. Singer, M. Rapp, T. Renkwitz, and G. Stober. “Horizontally
resolved structures of radar backscatter from polar mesospheric layers”. In:
Advances in Radio Science 10 (Sept. 2012), pp. 285-290. ISSN: 1684-9973. DOI:
[10.5194 /ars-10-285-2012] URL:|https://www.adv-radio-sci.|
[net/10/285/2012/|(cit. on p.[2).

[Lat+12b]  R. Latteck, W. Singer, M. Rapp, B. Vandepeer, T. Renkwitz, M. Zecha, and
G. Stober. “MAARSY: The new MST radar on Andgya-system description and
first results”. In: Radio Science 47.1 (Feb. 2012), n/a—n/a. ISSN: 00486604. DOI:
[10. 1029 /2011RS004775] URL:[Attp : //doi . wiley . com/ 10 . 1029/

[2011RS0047 78] cir. on pp. )14} 55 1.

[LB17] R. Latteck and J. Bremer. “Long-term variations of polar mesospheric sum-

mer echoes observed at Andgya (69°N)”. In: Journal of Atmospheric and Solar-

Terrestrial Physics 163 (2017), pp. 31-37. ISSN: 1364-6826. DOI:

[org/10.1016/5.jastp.2017.07.005 URL:http://www.sciencediredt.
[com/science/article/pii/S1364682617300846](cit. on p.[9]).

189


https://doi.org/10.5194/angeo-28-1993-2010
https://doi.org/10.5194/angeo-28-1993-2010
https://www.ann-geophys.net/28/1993/2010/%20https://angeo.copernicus.org/articles/28/1993/2010/
https://www.ann-geophys.net/28/1993/2010/%20https://angeo.copernicus.org/articles/28/1993/2010/
https://www.ann-geophys.net/28/1993/2010/%20https://angeo.copernicus.org/articles/28/1993/2010/
https://doi.org/10.1016/j.jastp.2014.09.002
https://linkinghub.elsevier.com/retrieve/pii/S1364682614002077
https://doi.org/10.5194/ars-10-285-2012
https://www.adv-radio-sci.net/10/285/2012/
https://www.adv-radio-sci.net/10/285/2012/
https://doi.org/10.1029/2011RS004775
http://doi.wiley.com/10.1029/2011RS004775
http://doi.wiley.com/10.1029/2011RS004775
https://doi.org/https://doi.org/10.1016/j.jastp.2017.07.005
https://doi.org/https://doi.org/10.1016/j.jastp.2017.07.005
http://www.sciencedirect.com/science/article/pii/S1364682617300846
http://www.sciencedirect.com/science/article/pii/S1364682617300846

BIBLIOGRAPHY

[Leh+07] N. H. Lehmann, E. Fishler, A. Haimovich, R. S. Blum, D. Chizhik, L. Ci-
mini, and R. Valenzuela. “Evaluation of transmit diversity in MIMO-radar
direction finding”. In: IEEE Transactions on Signal Processing 55.5 (May 2007),
pp. 2215-2225. ISSN: 1053-587X. DOI:[10 . 1109 /TSP . 2007 . 893220. URL:
https://ieeexplore.ieee.org/document /4156404/|(cit. on pp.[51,
55).

[Li+08] J. Li, L. Xu, P. Stoica, K. W. Forsythe, and D. W. Bliss. “Range compression

and waveform optimization for MIMO Radar: A Cramer—Rao bound based
study”. In: IEEE Transactions on Signal Processing 56.1 (Jan. 2008), pp. 218-
232. 1SSN: 1053-587X. poI1:[10 . 1109 /TSP . 2007 . 901653] URL:fhttp: //]
[ieeexplore.ieee.org/document/4359542/(cit. on pp.[64} [71).

[Li+16] Q. Li, M. Rapp, A. Schron, A. Schneider, and G. Stober. “Derivation of turbu-
lent energy dissipation rate with the middle atmosphere Alomar radar sys-
tem (MAARSY) and radiosondes at Andoya, Norway”. In: Annales Geophysicae
34.12 (2016), pp. 1209-1229. ISSN: 0992-7689. URLfnt tp: //nbn-resolving
[de/urn/resolver.pl?urn=nbn:de:bvb: 19-epub-37387-9|(cit. on
p.[52).

[LK81] B. Lewis and F. Kretschmer. “A new class of polyphase pulse compression

codes and techniques”. In: IEEE Transactions on Aerospace and Electronic Sys-
tems AES-17.3 (May 1981), pp. 364—372. 1SSN: 0018-9251. DOI:[10. 1109/TAES .
(1981.309063| URL:http://ieeexplore.ieee.org/document/4102505/|
(cit. on p.[30).

[LMO5] E. Le Pennec and S. Mallat. “Bandelet image approximation and compres-
sion”. In: Multiscale Modeling & Simulation 4.3 (Jan. 2005), pp. 992—-1039. ISSN:
1540-3459. pOL:[T0. 1137/040619454) URL:[ittps : //doi.org/10.1137/
[0406194547%20http: //epubs.siam. org/doi/10.1137/040619454]

(cit. on p.|45).
[LSO7] J. Li and P. Stoica. “MIMO radar with colocated antennas”. In: IEEE Signal

Processing Magazine 24.5 (Sept. 2007), pp. 106—-114. ISSN: 1053-5888. DOI:(10.
(1109 / MSP . 2007 . 904812| URL: |http : / / ieeexplore . ieee . org/

[document/4350230/ (cit. on pp.[2, 3} 50} 51).

[LS15] R. Latteck and I. Strelnikova. “Extended observations of polar mesosphere

winter echoes over Andgya (69°N) using MAARSY”. In: Journal of Geophysi-
cal Research: Atmospheres 120.16 (Aug. 2015), pp. 8216—8226. ISSN: 2169-897X.

190


https://doi.org/10.1109/TSP.2007.893220
https://ieeexplore.ieee.org/document/4156404/
https://doi.org/10.1109/TSP.2007.901653
http://ieeexplore.ieee.org/document/4359542/
http://ieeexplore.ieee.org/document/4359542/
http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-37387-9
http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-37387-9
https://doi.org/10.1109/TAES.1981.309063
https://doi.org/10.1109/TAES.1981.309063
http://ieeexplore.ieee.org/document/4102505/
https://doi.org/10.1137/040619454
https://doi.org/10.1137/040619454%20http://epubs.siam.org/doi/10.1137/040619454
https://doi.org/10.1137/040619454%20http://epubs.siam.org/doi/10.1137/040619454
https://doi.org/10.1109/MSP.2007.904812
https://doi.org/10.1109/MSP.2007.904812
http://ieeexplore.ieee.org/document/4350230/
http://ieeexplore.ieee.org/document/4350230/

BIBLIOGRAPHY

[LTO3]

[Liib+87]

[Lib99]

[Luc+06]

[Mal47]

[Mao+17]

[Mas+10]

por:[T0. 1002/2015JD023291] URL:[Attp : //dx . doi . org/10. 1002/

[2015JD023291|(cit. on p.(88).

Lizhong Zheng and D. Tse. “Diversity and multiplexing: a fundamental trade-

off in multiple-antenna channels”. In: [EEE Transactions on Information Theory
49.5 (May 2003), pp. 1073-1096. 1SSN: 0018-9448. DOI:[10.1109/TIT.2003.
810646| URL:[http : //ieeexplore . ieee . org/document /1197843/|
(cit. on pp.[8,}49).

F.]. Lubken, U.von Zahn, E. V. Thrane, T. A. Blix, G. A. Kokin, and S. V. Pa-
chomov. “In situ measurements of turbulent energy dissipation rates and
eddy diffusion coefficients during MAP/WINE”. In: Journal of Atmospheric and
Terrestrial Physics 49.7 (1987), pp. 763—775. 1SSN: 0021-9169. DOI:
[doi.org/10.1016/0021 - 9169(87) 90018 - 3. URL: [attp : / / www .|
[sciencedirect.com/science/article/pii/0021916987900183(cit.

on p.[g).
F.]. Libken. “Thermal structure of the Arctic summer mesosphere”. In: Jour-
nal of Geophysical Research Atmospheres (1999). 1SSN: 01480227. DOI:{10. 1029/

1999JD900076|(cit. on p.[90).

H. Luce, G. Hassenpflug, M. Yamamoto, and S. Fukao. “High-resolution ver-

tical imaging of the troposphere and lower stratosphere using the new MU
radar system”. In: Annales Geophysicae 24.3 (May 2006), pp. 791-805. ISSN:
1432-0576. DOI1:|10.5194/angeo-24-791-2006. URL:[http://www.ann—
l[geophys .net/24/791/2006/(cit. on p.[14).

L. R. Malling. “Radio Doppler effect for aircraft speed measurements”. In:
Proceedings of the IRE 35.11 (1947), pp. 1357-1360. ISSN: 2162-6634. DOI: |10 .
[L109/JRPROC. 1947 . 233900) (cit. on p.[34).

X.Mao, D.]J. Love, J. V. Rispoli, and T. M.. Talavage. “Multiple-input multiple-
output (MIMO) MRI: An efficient pulse design algorithm to combine parallel
excitation and parallel imaging”. In: ICASSB, IEEE International Conference on
Acoustics, Speech and Signal Processing - Proceedings. Institute of Electrical and
Electronics Engineers Inc., June 2017, pp. 909—-913. ISBN: 9781509041176. DOI:
[10.1109/ICASSP. 2017 .7952288](cit. on p.[3).

X. P. Masbernat, M. G. Amin, F. Ahmad, and C. Ioana. “An MIMO-MTI ap-
proach for through-the-wall radar imaging applications”. In: 2010 Interna-
tional Waveform Diversity and Design Conference. IEEE, Aug. 2010, pp. 000188-

191


https://doi.org/10.1002/2015JD023291
http://dx.doi.org/10.1002/2015JD023291
http://dx.doi.org/10.1002/2015JD023291
https://doi.org/10.1109/TIT.2003.810646
https://doi.org/10.1109/TIT.2003.810646
http://ieeexplore.ieee.org/document/1197843/
https://doi.org/https://doi.org/10.1016/0021-9169(87)90018-3
https://doi.org/https://doi.org/10.1016/0021-9169(87)90018-3
http://www.sciencedirect.com/science/article/pii/0021916987900183
http://www.sciencedirect.com/science/article/pii/0021916987900183
https://doi.org/10.1029/1999JD900076
https://doi.org/10.1029/1999JD900076
https://doi.org/10.5194/angeo-24-791-2006
http://www.ann-geophys.net/24/791/2006/
http://www.ann-geophys.net/24/791/2006/
https://doi.org/10.1109/JRPROC.1947.233900
https://doi.org/10.1109/JRPROC.1947.233900
https://doi.org/10.1109/ICASSP.2017.7952288

BIBLIOGRAPHY

[MBLI11]

[McK+15]

[MCK96]

[MHLO7]

[Mo0096]

[Mor+13]

[MS76]

000192. ISBN: 978-1-4244-8202-3. DOI:(10. 1109/WDD. 2010 . 5592466 URL:
[http://ieeexplore.ieee.org/document/5592466/(cit. on pp.[3}[52).

B.Matuz, F. L. Blasco, and G. Liva. “On the application of the Baum-Welch al-
gorithm for modeling the land mobile satellite channel”. In: 2011 IEEE Global
Telecommunications Conference - GLOBECOM 2011. IEEE, Dec. 2011, pp. 1-5.

ISBN: 978-1-4244-9268-8. DOI: (10 . 1109 / GLOCOM . 2011 . 6133807, URL:
[http://ieeexplore.ieee.org/document/6133807/|(cit. on p.[104).

D. McKay, J. Vierinen, I. I. Virtanen, R. Fallows, M. Postila, T. Ulich, O. Wuck-
nitz, M. Brentjens, N. Ebbendorf, C. Enell, M. Gerbers, T. Grit, P. Gruppen,
A. Kero, T. linatti, M. S. Lehtinen, H. Meulman, M. Norden, M. Orispdi, T.
Raita, ]. P. de Reijer, L. Roininen, A. Schoenmakers, K. Stuurwold, and E. Tu-
runen. “KAIRA: The Kilpisjarvi atmospheric imaging receiver array-system
overview and first results”. In: IEEE Transactions on Geoscience and Remote Sens-
ing 53.3 (2015), pp. 1440-1451. ISSN: 1558-0644 (cit. on p..

A. Mudukutore, V. Chandrasekar, and R.]. Keeler. “Weather radars with pulse
compression using complementary codes: simulation and evaluation”. In:
International Geoscience and Remote Sensing Symposium (IGARSS). Vol. 1. IEEE,
1996, pp. 574-576. DOI:|10.1109/igarss . 1996 . 516407|(cit. on p.[10I).

A. Meta, P. Hoogeboom, and L. P. Ligthart. “Signal processing for FMCW
SAR”. In:IEEE Transactions on Geoscience and Remote Sensing 45.11(2007), pp. 3519-

3532 (cit. on p. [31).
T. Moon. “The expectation-maximization algorithm”. In: IEEE Signal Process-

ing Magazine13.6 (1996), pp. 47—60. 1SSN:10535888. DOI:{10. 1109/79 . 543975
URL:http://ieeexplore.ieee.org/document/543975/|(cit. on p.[104).

A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Pa-
pathanassiou. “A tutorial on synthetic aperture radar”. In: IEEE Geoscience
and Remote Sensing Magazine 1.1 (Mar. 2013), pp. 6—43. ISSN: 2168-6831. DOI:
(10.1109/MGRS.2013.2248301. URL:[http://ieeexplore.ieee.org/
[document/6504845/(cit. on pp.[52} [73).

F. J. MacWilliams and N. J. A. Sloane. “Pseudo-random sequences and ar-
rays”. In: Proceedings of the IEEE 64.12 (1976), pp. 1715-1729. 1SSN: 1558-2256.
poOI:[10.1109/PROC. 1976.10411](cit. on p.[59).

192


https://doi.org/10.1109/WDD.2010.5592466
http://ieeexplore.ieee.org/document/5592466/
https://doi.org/10.1109/GLOCOM.2011.6133807
http://ieeexplore.ieee.org/document/6133807/
https://doi.org/10.1109/igarss.1996.516407
https://doi.org/10.1109/79.543975
http://ieeexplore.ieee.org/document/543975/
https://doi.org/10.1109/MGRS.2013.2248301
http://ieeexplore.ieee.org/document/6504845/
http://ieeexplore.ieee.org/document/6504845/
https://doi.org/10.1109/PROC.1976.10411

BIBLIOGRAPHY

[MVP50] L. Manning, O. Villard, and A. Peterson. “Meteoric echo study of upper at-
mosphere winds”. In: Proceedings ofthe IRE 38.8 (Aug. 1950), pp. 877—883. ISSN:
0096-8390. DOL:[10. 1109/ JRPROC. 1950 . 234124] URL{Attp: //iecexplofre.
lieee.org/document/1701348/|(cit. on p.[113).

[New+10] G. E. Newstadt, E. Zelnio, L. Gorham, and A. O. Hero. “Detection/tracking
of moving targets with synthetic aperture radars”. In: SPIE Proceedings, Al-
gorithms for Synthetic Aperture Radar Imagery XVII 7699 (2010). URL:
[spie.org/Publications/Proceedings/Paper/10.1117/12.850345]

(cit. on p.[73).

[NTO9] D. Needell and J. A. Tropp. “CoSaMP: Iterative signal recovery from incom-

plete and inaccurate samples”. In: Applied and Computational Harmonic Anal-
ysis 26.3 (May 2009), pp. 301-321. I1SSN: 10635203. DOI:[10. 1016/ j . acha .
[2008.07.002 URL:https://linkinghub.elsevier.com/retrieve/|
[pii/S1063520308000638 (cit. on p. [130).

[NTW99] A. Narula, M. D. Trott, and G. W. Wornell. “Performance limits of coded di-
versity methods for transmitter antenna arrays”. In: IEEE Transactions on In-
formation Theory 45 (1999), pp. 2418-2433. URL:[http://citeseerx . ist .
[psu.edu/viewdoc/summary?doi=10.1.1.32.2610|(cit. on p.[55).

[NVO09] D. Needell and R. Vershynin. “Uniform uncertainty principle and signal re-
covery via regularized orthogonal matching pursuit”. In: Foundations of Com-
putational Mathematics 9.3 (June 2009), pp. 317-334. ISSN: 16153375. DOI:[10 .|
[1007/510208-008-9031-3|(cit. on p.[130).

[Pal+98]  R. D. Palmer, S. Gopalam, T.-Y. Yu, and S. Fukao. “Coherent radar imag-
ing using Capon’s method”. In: Radio Science 33 (1998), pp. 1585-1598 (cit. on
pp- (41} 43} 44},7).

[Pau+11l]  P.D. Pautet, J. Stegman, C. Wrasse, K. Nielsen, H. Takahashi, M. J. Taylor,
K. W. Hoppel, and S. Eckermann. “Analysis of gravity waves structures visi-
ble in noctilucent cloud images”. In: Journal of Atmospheric and Solar-Terrestrial
Physics 73.14-15 (Sept. 2011), pp. 2082-2090. ISSN: 13646826. DOI:[10. 1016/
[j.jastp.2010.06.001. URL:[attps://linkinghub.elsevier. com/|
[retrieve/pii/S136468261000177X](cit. on p.[ss).

[PCO8] T. Park and G. Casella. “The Bayesian Lasso”. In: Journal of the American Sta-
tistical Association 103.482 (June 2008), pp. 681-686. ISSN: 01621459. DOI:(10.
[1198/016214508000000337)(cit. on p.[72).

193


https://doi.org/10.1109/JRPROC.1950.234124
http://ieeexplore.ieee.org/document/1701348/
http://ieeexplore.ieee.org/document/1701348/
http://spie.org/Publications/Proceedings/Paper/10.1117/12.850345
http://spie.org/Publications/Proceedings/Paper/10.1117/12.850345
https://doi.org/10.1016/j.acha.2008.07.002
https://doi.org/10.1016/j.acha.2008.07.002
https://linkinghub.elsevier.com/retrieve/pii/S1063520308000638
https://linkinghub.elsevier.com/retrieve/pii/S1063520308000638
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.2610
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.32.2610
https://doi.org/10.1007/s10208-008-9031-3
https://doi.org/10.1007/s10208-008-9031-3
https://doi.org/10.1016/j.jastp.2010.06.001
https://doi.org/10.1016/j.jastp.2010.06.001
https://linkinghub.elsevier.com/retrieve/pii/S136468261000177X
https://linkinghub.elsevier.com/retrieve/pii/S136468261000177X
https://doi.org/10.1198/016214508000000337
https://doi.org/10.1198/016214508000000337

BIBLIOGRAPHY

[PeylQ]

[Pla+15]

[Poo85]

[Pow70]

[PYC99]

[Qin+17]

[Rap+11]

[Rap03]

[Rei87]

G. Peyre. “Best basis compressed sensing”. In: IEEE Transactions on Signal Pro-

cessing 58.5 (2010), pp. 26132622 (cit. on p.|45).

M. Placke, P. Hoffmann, R. Latteck, and M. Rapp. “Gravity wave momentum
fluxes from MF and meteor radar measurements in the polar MLT region”.
In: Journal of Geophysical Research-Space Physics 120 (2015), pp. 736—750 (cit. on

pp-[6,89).
A.W. V. Poole. “Advanced sounding: 1. The FMCW alternative”. In: Radio Sci-
ence 20.6 (1985), pp. 1609-1616 (cit. on p.@.

M. J. D. Powell. “A hybrid method for nonlinear equations”. In: Numerical
Methods for Nonlinear Algebraic Equations. Ed. by P. Rabinowitz. Gordon and
Breach, 1970 (cit. on p.[45).

R. D. Palmer, T.-Y. Yu, and P. Chilson. “Range imaging using frequency di-
versity”. In: Radio Science 34.6 (1999), pp. 1485-1496 (cit. on p..

W. Qin, F. Zhao, Y. Li, and S. Gu. “A multitarget tracking before detecting
algorithm with MIMO radar”. In: Proceedings of 2017 IEEE 2nd Advanced Infor-
mation Technology, Electronic and Automation Control Conference, IAEAC 2017. In-
stitute of Electrical and Electronics Engineers Inc., Sept. 2017, pp. 825-829.
ISBN: 9781467389778. DOI:[10. 1109/ TAEAC. 2017 . 8054130](cit. on p.[).

M. Rapp, R. Latteck, G. Stober, P. Hoffmann, W. Singer, and M. Zecha. “First
three-dimensional observations of polar mesosphere winter echoes: Resolv-
ing space-time ambiguity”. In: Journal of Geophysical Research: Space Physics
116.A11 (Nov. 2011), n/a—n/a. ISSN: 01480227. DOI:[10. 1029/2011JA016858|
URL:[http://doi.wiley.com/10.1029/2011JA016858|(cit. on p.[2).

M. Rapp. “On the nature of PMSE: Electron diffusion in the vicinity of charged
particles revisited”. In: Journal of Geophysical Research108.D8 (Apr. 2003), p. 8437.
ISSN:0148-0227. DOI:(10.1029/2002JD002857} URL:http://doi.wiley.
[com/10.1029/2002JD002857](cit. on p.[89).

L. M. Reid. “Some aspects of Doppler radar measurements of the mean and
fluctuating components of the wind field in the upper middle atmosphere”.
In: Journal of Atmospheric and Terrestrial Physics 49.5 (1987), pp. 467—484. ISSN:
0021-9169. DO1:[10.1016/0021-9169 (87) 90041 -9|(cit. on p. [50).

194


https://doi.org/10.1109/IAEAC.2017.8054130
https://doi.org/10.1029/2011JA016858
http://doi.wiley.com/10.1029/2011JA016858
https://doi.org/10.1029/2002JD002857
http://doi.wiley.com/10.1029/2002JD002857
http://doi.wiley.com/10.1029/2002JD002857
https://doi.org/10.1016/0021-9169(87)90041-9

BIBLIOGRAPHY

[RGLO8] M. Rauthe, M. Gerding, and F. J. Lilbken. “Seasonal changes in gravity wave
activity measured by lidars at mid-latitudes”. In: Atmospheric Chemistry and
Physics 8.22 (Nov. 2008), pp. 6775-6787. ISSN: 1680-7324. DOI:
[acp-8-6775-2008. URL:[https : //www . atmos - chem-phys .net/8/

6775/2008/ (cit. on p.[84).

[RGV09]  R.Radzokota, E. Golovins, and N. Ventura. “Linear detector performance in
ill-conditioned MIMO OFDM channel”. In: 2009 International Conference on
Ultra Modern Telecommunications & Workshops. IEEE, Oct. 2009, pp. 1-7. ISBN:

978-1-4244-3942-3. po1:(10. 1109 /ICUMT . 2009 . 5345387] URL:[http:

[ieeexplore.ieee.org/document/5345387/(cit. on pp.[115,[128).

[RLO4] M. Rapp and F. J. Litbken. “Polar mesosphere summer echoes (PMSE): Re-

view of observations and current understanding”. In: Atmospheric Chemistry
and Physics 4 (2004), p. 2601 (cit. on pp. (88} [89).

[RL14] B.C.Robertsand M. F. Larsen. “Structure function analysis of chemical tracer
trails in the mesosphere-lower thermosphere region”. In: Journal of Geophys-
ical Research 119 (2014), pp. 6368—6375 (cit. on p.@.

[RLBO3] M. Rapp, F.J. Liibken, and T. A. Blix. “The role of charged ice particles for the
creation of PMSE: A review of recent developments”. In: Advances in Space Re-
search 31.9 (May 2003), pp. 2033—2043. 1SSN: 02731177. DOI:[10. 1016/S0273-]|
[1177(03) 00226-6|(cit. on p.[89).

[RLES53] D. Robertson, D. Liddy, and W. G. Elford. “Measurements of winds in the
upper atmosphere by means of drifting meteor trails I”. In: Journal of Atmo-
spheric and Terrestrial Physics 4.4-5 (Dec. 1953), pp. 255-270. ISSN: 00219169.
po1:[10. 1016/0021-9169(53) 90059~ 2. URL: it tps : //linkinghub .|
lelsevier.com/retrieve/pii/0021916953900592|(cit. on pp.[88}[113).

[Salo1] D. Salmond. “Target tracking: introduction and Kalman tracking filters”. In:
IEE International Seminar Target Tracking: Algorithms and Applications. Vol. 2001.
174 PART I1. IEE, 2001, pp. 2—1. DOI:[10.1049/ic:20010245| URL:fhttps:
|//digital-library.theiet.org/content/conferences/10.1049/|

ic_20010245|(cit. on p.[104).

[Sat+14] K. Sato, M. Tsutsumi, T. Sato, T. Nakamura, A. Sato, Y. Tomikawa, K. Nishimura,

M. Kohma, H. Yamagishi, and T. Yamanouchi. “Program of the Antarctic
Syowa MST/IS radar (PANSY)”. In: journal of Atmospheric and Solar-Terrestrial
Physics 118 (2014), pp. 2-15 (cit. on p.[14).

195


https://doi.org/10.5194/acp-8-6775-2008
https://doi.org/10.5194/acp-8-6775-2008
https://www.atmos-chem-phys.net/8/6775/2008/
https://www.atmos-chem-phys.net/8/6775/2008/
https://doi.org/10.1109/ICUMT.2009.5345387
http://ieeexplore.ieee.org/document/5345387/
http://ieeexplore.ieee.org/document/5345387/
https://doi.org/10.1016/S0273-1177(03)00226-6
https://doi.org/10.1016/S0273-1177(03)00226-6
https://doi.org/10.1016/0021-9169(53)90059-2
https://linkinghub.elsevier.com/retrieve/pii/0021916953900592
https://linkinghub.elsevier.com/retrieve/pii/0021916953900592
https://doi.org/10.1049/ic:20010245
https://digital-library.theiet.org/content/conferences/10.1049/ic_20010245
https://digital-library.theiet.org/content/conferences/10.1049/ic_20010245
https://digital-library.theiet.org/content/conferences/10.1049/ic_20010245

BIBLIOGRAPHY

[SBLI4]

[SC15]

[SC16]

[SFRO8]

[SGY6]

[SL15]

[Smi+13]

H. Sun, F. Brigui, and M. Lesturgie. “Analysis and comparison of MIMO
radar waveforms”. In: 2014 International Radar Conference. IEEE, Oct. 2014,
pp. 1-6. ISBN: 978-1-4799-4195-7. DOI:[10 . 1109 /RADAR . 2014 . 7060251]
URL:[ottp : //ieeexplore . ieee . org /document / 7060251/ (cit. on

p.[71).

G. Stober and J. L. Chau. “A multistatic and multifrequency novel approach

for specular meteor radars to improve wind measurements in the MLT re-
gion”. In: Radio Science 50.5 (May 2015), pp. 431-442. ISSN: 00486604. DOI:
(10 . 1002 / 2014RS005591] URL: [ittp : // dx . doi . org/ 10 . 1002/
[2014RS005591720http://doi.wiley.com/10.1002/2014RS005591|

(cit. on pp. (2 652} 86, 13} 18,19} 124 1 147).

S. Sommer and J. L. Chau. “Patches of polar mesospheric summer echoes

characterized from radar imaging observations with MAARSY”. In: Annales
Geophysicae 34.12 (Dec. 2016), pp. 1231-1241. I1SSN: 1432-0576. DOI:{10.5194/
[angeo-34-1231-2016. URL:fhttps : //www . ann- geophys . net /34/

[1231/2016/ (cit. on pp.[88} 0} p3).

G. San Antonio, D. R. Fuhrmann, and F. C. Robey. “Generalized MIMO radar
ambiguity functions”. In: MIMO Radar Signal Processing. Vol. 1. 1. Hoboken,
NJ, USA:John Wiley & Sons, Inc., Mar. 2008, pp. 123-152. ISBN: 9780470178980.
DOI:[10.1002/9780470391488 . ch3. URL:fhttp://doi.wiley.com/10.
[L002/9780470391488 . ch3|(cit. on p. [71).

E. Spano and O. Ghebrebrhan. “Sequences of complementary codes for the
optimum decoding of truncated ranges and high sidelobe suppression fac-
tors for ST/MST radar systems”. In: IEEE Transactions on Geoscience and Re-
mote Sensing 34.2 (Mar. 1996), pp. 330—345. ISSN: 01962892. DOI:[10 . 1109/
[36.485111| URL:|http://ieeexplore.ieee.org/document/485111/|

(cit. on p.[101).

Y. Shen and S. Li. “Sparse signals recovery from noisy measurements by or-

thogonal matching pursuit”. In: Inverse Problems & Imaging 9 (2015), p. 231.
ISSN:1930-8337. DOI:[10.3934/ipi . 2015.9.231J(cit. on p. 43).

D. S. Smith, L. R. Arlinghaus, T. E. Yankeelov, and E. B. Welch. “Curvelets
as a sparse basis for compressed sensing magnetic resonance imaging”. In:
Medical Imaging 2013: Image Processing. Ed. by S. Ourselin and D. R. Haynor.
Vol. 8669. International Society for Optics and Photonics. SPIE, 2013, pp. 621-

196


https://doi.org/10.1109/RADAR.2014.7060251
http://ieeexplore.ieee.org/document/7060251/
https://doi.org/10.1002/2014RS005591
http://dx.doi.org/10.1002/2014RS005591%20http://doi.wiley.com/10.1002/2014RS005591
http://dx.doi.org/10.1002/2014RS005591%20http://doi.wiley.com/10.1002/2014RS005591
https://doi.org/10.5194/angeo-34-1231-2016
https://doi.org/10.5194/angeo-34-1231-2016
https://www.ann-geophys.net/34/1231/2016/
https://www.ann-geophys.net/34/1231/2016/
https://doi.org/10.1002/9780470391488.ch3
http://doi.wiley.com/10.1002/9780470391488.ch3
http://doi.wiley.com/10.1002/9780470391488.ch3
https://doi.org/10.1109/36.485111
https://doi.org/10.1109/36.485111
http://ieeexplore.ieee.org/document/485111/
https://doi.org/10.3934/ipi.2015.9.231

BIBLIOGRAPHY

627. po1:[T0. 1117/12. 2007032 URL:[ittps ://dol.org/10.1117/12.

[2007032 (cit. on p.}45).

[Som+13] S.Sommer, G. Stober, C. Schult, M. Zecha, and R. Latteck. “Investigation of

horizontal structures at mesospheric altitudes using coherent radar imag-
ing”. In: Advances in Radio Science 11 (July 2013), pp. 319-325. ISSN: 1684-9973.
DOI:{10.5194/ars-11-319-2013| URL:fhttps://www.adv-radio-—
[sci.net/11/319/2013/(cit. on p.[2).

[Stéo9] M. Stéphane. “Sparse representations”. In: A Wavelet Tour of Signal Process-
ing. Ed. by M. Stéphane. Third Edit. Boston: Elsevier, 2009, pp. 1-31. ISBN:
978-0-12-374370-1. DOI:[10.1016/B978-0-12-374370-1.00005-7] URL:
fhttps://linkinghub.elsevier.com/retrieve/pii/B9780123743701000057
(cit. on p.|45).

[Ste77] G.W. Stewart. “On the perturbation of pseudo-inverses, projections and lin-
ear least squares problems”. In: SIAM Review 19.4 (Oct. 1977), pp. 634—662..
ISSN: 0036-1445. DOI:[10 . 1137 /1019104 URL:[http : //epubs . siam.]
[org/doi/10.1137/1019104/(cit. on p.[72).

[Sto+12]  G. Stober, R. Latteck, M. Rapp, W. Singer, and M. Zecha. “MAARSY - the
new MST radar on Andgya: First results of spaced antenna and Doppler mea-
surements of atmospheric winds in the troposphere and mesosphere using
a partial array”. In: Adv. Radio Sci. (2012), pp. 291-298 (cit. on p. [88).

[Sto+13] G. Stober, S. Sommer, M. Rapp, and R. Latteck. “Investigation of gravity
waves using horizontally resolved radial velocity measurements”. In: Atmo-
spheric Measurement Techniques 6.10 (Oct. 2013), pp. 2893-2905. ISSN: 1867-
8548. pOI:[10 . 5194 /amt - 6-2893-2013| URL:fhttps : //www . atmos—

meas-tech.net/6/2893/2013/|(cit. on pp.[2,[88} [90).

[Sto+18]  G. Stober, S. Sommer, C. Schult, R. Latteck, and J. L. Chau. “Observation of

Kelvin—Helmbholtz instabilities and gravity waves in the summer mesopause
above Andenes in Northern Norway”. In: Atmospheric Chemistry and Physics
18.9 (May 2018), pp. 6721-6732. 1SSN: 1680-7324. DOI:[10 . 5194 /acp- 18-
6721-2018. URL:[https : //www . atmos - chem-phys .net/18/6721/

[2018/(cit. on p.}4).

[Sto92] A. G. Stove. “Linear FMCW radar techniques”. In: IEE Proceedings F - Radar
and Signal Processing 139.5 (1992), pp. 343-350 (cit. on p.31).

197


https://doi.org/10.1117/12.2007032
https://doi.org/10.1117/12.2007032
https://doi.org/10.1117/12.2007032
https://doi.org/10.5194/ars-11-319-2013
https://www.adv-radio-sci.net/11/319/2013/
https://www.adv-radio-sci.net/11/319/2013/
https://doi.org/10.1016/B978-0-12-374370-1.00005-7
https://linkinghub.elsevier.com/retrieve/pii/B9780123743701000057
https://doi.org/10.1137/1019104
http://epubs.siam.org/doi/10.1137/1019104
http://epubs.siam.org/doi/10.1137/1019104
https://doi.org/10.5194/amt-6-2893-2013
https://www.atmos-meas-tech.net/6/2893/2013/
https://www.atmos-meas-tech.net/6/2893/2013/
https://doi.org/10.5194/acp-18-6721-2018
https://doi.org/10.5194/acp-18-6721-2018
https://www.atmos-chem-phys.net/18/6721/2018/
https://www.atmos-chem-phys.net/18/6721/2018/

BIBLIOGRAPHY

[Sul15]

[SVo1]

[SZW10]

[Tag+17]

[Tal+16]

[Tan+18]

[Tel99]

M. Sulzer. “Radar — Incoherent scatter radar”. In: Encyclopedia of Atmospheric
Sciences. Ed. by G. R. North, J. Pyle, and F. Zhang. 2nd editio. Oxford: El-
sevier, 2015, pp. 422—428. ISBN: 978-0-12-382225-3. DOL:[10 . 1016 /B978 -]
[0-12-382225-3. 00330 - 3| URL:|http : / / www . sciencedirect .
[com/science/article/pii/B97801238222530033037%20https : / /|
[linkinghub.elsevier.com/retrieve/pii/B9780123822253003303|
(cit. on p.[52).

M. N. Sasi and L. Vijayan. “Turbulence characteristics in the tropical meso-
sphere as obtained by MST radar at Gadanki (13.5° N, 79.2° E)”. In: Annales
Geophysicae 19.8 (2001), pp. 1019-1025. DOI:[10 . 5194/ angeo - 19- 1019
[2001] urL:[https://www.ann-geophys .net/19/1019/2001/|(cit. on
p-[85).

X. Song, S. Zhou, and P. Willett. “Reducing the waveform cross correlation

of MIMO radar with space-time coding”. In: IEEE Transactions on Signal Pro-

cessing 58.8 (Aug. 2010), pp. 4213-4224. 1SSN:1053587X. DOI:(10.1109/TSP .|
[2010.2048207|(cit. on p.[71).

O. Taghizadeh, V. Radhakrishnan, G. Alirezaei, E. Zandi, and R. Mathar.
“Optimal linear MMSE design for passive distributed radar sensor network
systems”. In: 2017 IEEE International Conference on Wireless for Space and Ex-
treme Environments, WiSEE 2017. Institute of Electrical and Electronics Engi-
neers Inc., Nov. 2017, pp. 81-85. ISBN: 9781538633182. DOI:{10.1109/WiSEE.

2017.8124897|(cit. on p.[72).

S. H. Talisa, K. W. O’'Haver, T. M. Comberiate, M. D. Sharp, and O. F. Somer-
lock. “Benefits of digital phased array radars”. In: Proceedings of the IEEE 104.3
(2016), pp. 530-543. ISSN: 1558-2256. DOI:[10. 1109/ JPROC. 2016 . 2515842
(cit. on p.[52).

L. Tang, H. Meng, X. Chen, J. Zhang, L. Lv, and K. Liu. “A novel 3D imaging
method of FMCW MIMO-SAR”. In: 2018 China International SAR Symposium,
CISS 2018 - Proceedings. Institute of Electrical and Electronics Engineers Inc.,
Nov. 2018. ISBN: 9781538671931. DOI:[10 . 1109 /SARS . 2018 . 8551995/ (cit.
onp.).

E.Telatar. “Capacity of multi-antenna Gaussian channels”. In: European Trans-
actions on Telecommunications 10 (1999), pp. 585-595. DOI: {10 . 1002 / ett .
[4460100604. URL:[attp: //dx . doi.org/10.1002/ett . 4460100604
(cit. on pp.[8, |49} [52).

198


https://doi.org/10.1016/B978-0-12-382225-3.00330-3
https://doi.org/10.1016/B978-0-12-382225-3.00330-3
http://www.sciencedirect.com/science/article/pii/B9780123822253003303%20https://linkinghub.elsevier.com/retrieve/pii/B9780123822253003303
http://www.sciencedirect.com/science/article/pii/B9780123822253003303%20https://linkinghub.elsevier.com/retrieve/pii/B9780123822253003303
http://www.sciencedirect.com/science/article/pii/B9780123822253003303%20https://linkinghub.elsevier.com/retrieve/pii/B9780123822253003303
https://doi.org/10.5194/angeo-19-1019-2001
https://doi.org/10.5194/angeo-19-1019-2001
https://www.ann-geophys.net/19/1019/2001/
https://doi.org/10.1109/TSP.2010.2048207
https://doi.org/10.1109/TSP.2010.2048207
https://doi.org/10.1109/WiSEE.2017.8124897
https://doi.org/10.1109/WiSEE.2017.8124897
https://doi.org/10.1109/JPROC.2016.2515842
https://doi.org/10.1109/SARS.2018.8551995
https://doi.org/10.1002/ett.4460100604
https://doi.org/10.1002/ett.4460100604
http://dx.doi.org/10.1002/ett.4460100604

BIBLIOGRAPHY

[TGO7]

[Tibo6]

[Tik+95]

[TMO2]

[Tri+12]

[Tro04]

[TTO9]

[Turé0]

J. A. Tropp and A. C. Gilbert. “Signal recovery from random measurements
via orthogonal matching pursuit”. In: IEEE Transactions on Information The-
ory 53.12 (Dec. 2007), pp. 4655-4666. ISSN: 0018-9448. DOI:[10 . 1109 /TIT .|
[2007 . 909108. URL:[ittps : //dol . org/10. 1109/TIT. 2007 . 9091087
[20http://ieeexplore.ieee.org/document/4385788/(cit. on p.[130).

R. Tibshirani. “Regression shriknage and selection via the Lasso”. In: Journal
of the Royal Statistical Society. Series B (Methodological) 58.1 (1996), pp. 267—288.
ISSN: 00359246. DOI:[10.2307/2346178|(cit. on p.[72).

A.N.Tikhonov, A. V. Goncharsky, V. V. Stepanov, A. G. Yagola, A. N. Tikhonov,
A. V. Goncharsky, V. V. Stepanov, and A. G. Yagola. “Regularization meth-
ods”. In: Numerical Methods for the Solution of Ill-Posed Problems. Springer Nether-
lands, 1995, pp. 7-63. DOI:[10. 1007 /978-94-015-8480-7{\ _}2|(cit. on
p.[72).

D. S. Taubman and M. W. Marcellin. “Image transforms”. In: JPEG2000 Im-
age compression fundamentals, standards and practice. Boston, MA: Springer US,
2002, pp. 143-207. ISBN: 978-1-4615-0799-4. DOL:[10 . 1007 /978~ 1-4615-]
[0799-4{\_J4. urL:[ittps: //doi.org/10.1007/976-1-4615-0799-]

[4_4 (cit. on p. }43).
A. Trimeche, N. Boukid, A. Sakly, and A. Mtibaa. “Performance analysis of
ZF and MMSE equalizers for MIMO systems”. In: 7th International Conference

on Design and Technology of Integrated Systems in Nanoscale Era, DTIS 2012. 2012.
ISBN: 9781467319287. DOI:[10.1109/DTIS. 2012. 6232979 (cit. on p.[72).

J. A. Tropp. “Greed is good: algorithmic results for sparse approximation”.
In: IEEE Transactions on Information Theory 50.10 (2004), pp. 2231-2242.. ISSN:
0018-9448. DOL:[10.1109/TIT.2004.834793](cit. on pp. 130, [135).

R. J. Tibshirani and R. Tibshirani. “A bias correction for the minimum er-
ror rate in cross-validation”. In: The Annals of Applied Statistics 3.2 (June 2009),
pp. 822—829. ISSN: 1932-6157. DOI:[10 . 1214 / 08 - AOAS224] URL: [https :|
[//doi.org/10.1214/08-A0AS224](cit. on p.[128).

G. L. Turin. “An introduction to matched filters”. In: IEEE Transactions on In-
formation Theory 6.3 (June 1960), pp. 311-329. ISSN: 0018-9448. DOI:(10. 1109/
[TIT.1960.1057571] URL:[attp://ieeexplore.ieee.org/document/|

[t057571/|cit. on pp. 125, [26).

199


https://doi.org/10.1109/TIT.2007.909108
https://doi.org/10.1109/TIT.2007.909108
https://doi.org/10.1109/TIT.2007.909108%20http://ieeexplore.ieee.org/document/4385788/
https://doi.org/10.1109/TIT.2007.909108%20http://ieeexplore.ieee.org/document/4385788/
https://doi.org/10.2307/2346178
https://doi.org/10.1007/978-1-4615-0799-4_4
https://doi.org/10.1007/978-1-4615-0799-4_4
https://doi.org/10.1109/DTIS.2012.6232979
https://doi.org/10.1109/TIT.2004.834793
https://doi.org/10.1214/08-AOAS224
https://doi.org/10.1214/08-AOAS224
https://doi.org/10.1214/08-AOAS224
https://doi.org/10.1109/TIT.1960.1057571
https://doi.org/10.1109/TIT.1960.1057571
http://ieeexplore.ieee.org/document/1057571/
http://ieeexplore.ieee.org/document/1057571/

BIBLIOGRAPHY

[UCAI5]

[Urc+18]

[Urc+19a]

[Urc+19b]

[Van+07]

[VB88]

[Vie+16]

[Vie+19]

UCAR - Center for science and education. Earth’satmosphere. 2015. URL:ht tps :

|//scied.ucar.edu/shortcontent/earths-atmosphere](cit. on p.}).

J.M.Urco,]. L. Chau, M. A. Milla, J. Vierinen, and T. Weber. “Coherent MIMO
to improve aperture synthesis radar imaging of field-aligned irregularities:
First results at Jicamarca’. In: IEEE Transactions on Geoscience and Remote Sens-
ing 56.5 (May 2018), pp. 2980—2990. ISSN: 0196-2892. DOI:[10 . 1109 /TGRS .|
[2017 . 2788425] UrL:fattp : // ieeexplore . ieee . org / document /

[8267289/|(cit. on pp. 58} 7557 [102).

J. M. Urco, J. L. Chau, T. Weber, and R. Latteck. “Enhancing the spatiotempo-

ral features of polar mesosphere summer echoes using coherent MIMO and
radarimaging at MAARSY”. In: Atmospheric Measurement Techniques 12.2 (Feb.
2019), pp. 955-969. 1SSN: 18678548. DOI:[10.5194/amt-12-955-2019. URL:
https://www.atmos-meas-tech.net/12/955/2019/(cit. on pp.[58}
109).

J. M. Urco, J. L. Chau, T. Weber, J. P. Vierinen, and R. Volz. “Sparse signal re-
covery in MIMO specular meteor radars with waveform diversity”. In: IEEE
Transactions on Geoscience and Remote Sensing 57.12 (Dec. 2019), pp. 10088—-10098.
ISSN: 0196-2892. DOI:(10 . 1109 /TGRS . 2019 . 2931375| URL:[https://
[ieeexplore.ieee.org/document/8802292/|(cit. on p.[124).

S. Van Huffel, I. Markovsky, R. J. Vaccaro, and T. Soderstrom. “Total least
squares and errors-in-variables modeling”. In: Signal Processing 87.10 (Oct.
2007), pp. 2281-2282. ISSN: 01651684. DOI:[10 . 1016 / j . sigpro . 2007 .|
[04.008| URL:[https://linkinghub.elsevier.com/retrieve/pii/|
[50165168407001557 (cit. on p.[72).

B. D. Van Veen and K. M. Buckley. “Beamforming: a versatile approach to
spatial filtering”. In: IEEE ASSP Magazine 5.2 (1988), pp. 4—24 (cit. on pp. [38]
73).

]. Vierinen, J. L. Chau, N. Pfeffer, M. Clahsen, and G. Stober. “Coded contin-
uous wave meteor radar”. In: Atmospheric Measurement Techniques 9.2 (Mar.
2016), pp. 829-839. ISSN: 1867-8548. DOI:[10.5194/amt-9-829-2016| URL:
https://vww.atmos-meas-tech.net/9/829/2016/ (cit. on pp.[2,[¢} 32}
21} [22, 124} 127, [36).

J. Vierinen, ]. L. Chau, H. Charuvil, J. M. Urco, M. Clahsen, V. Avsarkisov, R.

Marino, and R. Volz. “Observing mesospheric turbulence with specular me-

200


https://scied.ucar.edu/shortcontent/earths-atmosphere
https://scied.ucar.edu/shortcontent/earths-atmosphere
https://doi.org/10.1109/TGRS.2017.2788425
https://doi.org/10.1109/TGRS.2017.2788425
http://ieeexplore.ieee.org/document/8267289/
http://ieeexplore.ieee.org/document/8267289/
https://doi.org/10.5194/amt-12-955-2019
https://www.atmos-meas-tech.net/12/955/2019/
https://doi.org/10.1109/TGRS.2019.2931375
https://ieeexplore.ieee.org/document/8802292/
https://ieeexplore.ieee.org/document/8802292/
https://doi.org/10.1016/j.sigpro.2007.04.008
https://doi.org/10.1016/j.sigpro.2007.04.008
https://linkinghub.elsevier.com/retrieve/pii/S0165168407001557
https://linkinghub.elsevier.com/retrieve/pii/S0165168407001557
https://doi.org/10.5194/amt-9-829-2016
https://www.atmos-meas-tech.net/9/829/2016/

BIBLIOGRAPHY

[Vinl5]

[VVo1]

[Wan+07]

[Wani2]

[Wee93]

[Wel74]

[WEV13]

teor radars: A novel method for estimating second-order statistics of wind
velocity”. In: Earth and Space Science 6.7 (July 2019), pp. 1171-1195. ISSN: 2333-
5084. DOI:|10 . 1029 /2019EA000570] URL:[https : //onlinelibrary .|
[wiley.com/doi/abs/10.1029/2019EA000570%20https: //agupubs.]
[onlinelibrary.wiley.com/doi/abs/10.1029/2019EA000570|(cit. on

v BE0 B,

R. A. Vincent. “The dynamics of the mesosphere and lower thermosphere:

a brief review.” In: Progress in Earth and Planetary Science 2.4 (Dec. 2015), p. 4.
ISSN: 21974284. DOI1:|10. 1186/540645-015-0035-8| URL:[http://www.|
[progearthplanetsci.com/content/2/1/4 (cit. on pp. 4} 85).

S. Van Huftel and J. Vandewalle. The total least squares problem. Society for In-
dustrial and Applied Mathematics, Jan. 1991. ISBN: 978-0-89871-275-9. DOI:
[10.1137/1.9781611971002| URL:|http://epubs . siam. org/doi/|
foook/10.1137/1.9781611971002)(cit. on p.[72).

C. Wang, E. Au, R. Murch, W. Mow, R. Cheng, and V. Lau. “On the perfor-
mance of the MIMO Zero-Forcing receiver in the presence of channel es-
timation error”. In: IEEE Transactions on Wireless Communications 6.3 (Mar.
2007), pp. 805-810. 1SSN: 1536-1276. DOI:[10.1109/TWC. 2007 . 05384. URL:
[http://ieeexplore.ieee.org/document/4133864/|(cit. on p.[L15).

W.-Q. Wang. “Virtual antenna array analysis for MIMO synthetic aperture
radars”. In: International Journal of Antennas and Propagation 2012 (2012), pp. 1-
10. 1SSN: 1687-5869. DOI:(10 . 1155 /2012 /587276| URL:[http : / / www .
fhindawi.com/journals/ijap/2012/587276/|(cit. on p.[51).

V. Weerackody. “Diversity for the direct-sequence spread spectrum system
using multiple transmit antennas”. In: IEEE International Conference on Com-
munications. Publ by IEEE, 1993, pp. 1775-1779. ISBN: 0780309510. DOL:[10 .
[1109/icc.1993.397586/(cit. on p.[55).

L. Welch. “Lower bounds on the maximum cross correlation of signals (Cor-
resp.)” In: IEEE Transactions on Information Theory 20.3 (1974), pp. 397-399 (cit.

on p.[33).

T. Wimalajeewa, Y. C. Eldar, and P. K. Varshney. “Recovery of sparse matrices
via matrix sketching”. In: CoRR abs/1311.2 (Nov. 2013). URL:fhttp: //arxiv.
[org/abs/1311.2448 (cit. on p.[130).

201


https://doi.org/10.1029/2019EA000570
https://onlinelibrary.wiley.com/doi/abs/10.1029/2019EA000570%20https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019EA000570
https://onlinelibrary.wiley.com/doi/abs/10.1029/2019EA000570%20https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019EA000570
https://onlinelibrary.wiley.com/doi/abs/10.1029/2019EA000570%20https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019EA000570
https://doi.org/10.1186/s40645-015-0035-8
http://www.progearthplanetsci.com/content/2/1/4
http://www.progearthplanetsci.com/content/2/1/4
https://doi.org/10.1137/1.9781611971002
http://epubs.siam.org/doi/book/10.1137/1.9781611971002
http://epubs.siam.org/doi/book/10.1137/1.9781611971002
https://doi.org/10.1109/TWC.2007.05384
http://ieeexplore.ieee.org/document/4133864/
https://doi.org/10.1155/2012/587276
http://www.hindawi.com/journals/ijap/2012/587276/
http://www.hindawi.com/journals/ijap/2012/587276/
https://doi.org/10.1109/icc.1993.397586
https://doi.org/10.1109/icc.1993.397586
http://arxiv.org/abs/1311.2448
http://arxiv.org/abs/1311.2448

BIBLIOGRAPHY

[WHO06]

[Wid+67]

[Wie30]

[Wilo9]

[WKS12]

[Wol+98]

[Woo+19]

[Woo072]

[Wo0097]

J. M. Wallace and P. V. Hobbs. Atmospheric science. Second. Elsevier, 2006,
pp. 1-488. ISBN: 9780127329512. DOI:[10 . 1016 /C2009-0- 00034 - 8| URL:
[https://linkinghub.elsevier.com/retrieve/pii/C20090000348
(cit. on p.[1).

B. Widrow, P. Mantey, L. Griffiths, and B. Goode. “Adaptive antenna sys-
tems”. In: Proceedings of the IEEE 55.12 (1967), pp. 2143-2159. ISSN: 0018-9219.
DOI:[10.1109/PROC. 1967 .6092. URL:|http://ieeexplore.ieee.org/
[document/1448022/ (cit. on pp.[50} [52).

N. Wiener. “Generalized harmonic analysis”. In: Acta Mathematica 55.1 (Dec.
1930), pp. 117-258. ISSN: 0001-5962. DOI{10 . 1007 /BF02546511. URL{http:|
[//projecteuclid.org/euclid.acta/1485887877|(cit. on p.[147).

M. Wilson. “Meteor trails track upper atmospheric winds”. In: Physics Today
62 (2009), p. 16 (cit. on p.(88).

J. Wang, S. Kwon, and B. Shim. “Generalized orthogonal matching pursuit”.
In: IEEE Transactions on Signal Processing 60.12 (Dec. 2012), pp. 6202—6216.
I1SSN: 1053-587X. Do1: (10 . 1109 /TSP . 2012 . 2218810. URL: fhttp : / /]
[ieeexplore.ieee.org/document/6302206/(cit. on pp.[130;,[131).

P. Wolniansky, G. Foschini, G. Golden, and R. Valenzuela. “V-BLAST: an ar-
chitecture for realizing very high data rates over the rich-scattering wire-
less channel”. In: 1998 URSI International Symposium on Signals, Systems, and
Electronics. Conference Proceedings (Cat. No.98EX167). IEEE, 1998, pp. 295-300.
ISBN: 0-7803-4900-8. Do1:(10 . 1109 /ISSSE . 1998 . 738086] URL:[http :]
|//ieeexplore.ieee.org/document/738086/|(cit. on p.[128).

R.F. Woodman, D.T. Farley, B. B. Balsley, and M. A. Milla. “The early history
of the Jicamarca Radio Observatory and the incoherent scatter technique”.
In: History of Geo- and Space Sciences 10.2 (2019), pp. 245—266. DOI:
lhgss-10-245-2019] URL:|https://www.hist-geo-space-sci.net/

10/245/2019/|(cit. on pp.[17,[38).

R. F. Woodman. “East-west ionospheric drifts at the magnetic equator”. In:
Space Res. 12 (1972), pp. 969—-974 (cit. on p. [50).

R. F. Woodman. “Coherent radar imaging: signal processing and statistical
properties”. In: Radio Science 32.6 (Nov. 1997), pp. 2373—2391. ISSN: 00486604
por:[T0. 1029 /97RS02017] URL:[ittp : //doi . wiley . com/ 10 . 1029/

[97RS02017](cit. on p.}43).

202


https://doi.org/10.1016/C2009-0-00034-8
https://linkinghub.elsevier.com/retrieve/pii/C20090000348
https://doi.org/10.1109/PROC.1967.6092
http://ieeexplore.ieee.org/document/1448022/
http://ieeexplore.ieee.org/document/1448022/
https://doi.org/10.1007/BF02546511
http://projecteuclid.org/euclid.acta/1485887877
http://projecteuclid.org/euclid.acta/1485887877
https://doi.org/10.1109/TSP.2012.2218810
http://ieeexplore.ieee.org/document/6302206/
http://ieeexplore.ieee.org/document/6302206/
https://doi.org/10.1109/ISSSE.1998.738086
http://ieeexplore.ieee.org/document/738086/
http://ieeexplore.ieee.org/document/738086/
https://doi.org/10.5194/hgss-10-245-2019
https://doi.org/10.5194/hgss-10-245-2019
https://www.hist-geo-space-sci.net/10/245/2019/
https://www.hist-geo-space-sci.net/10/245/2019/
https://doi.org/10.1029/97RS02017
http://doi.wiley.com/10.1029/97RS02017
http://doi.wiley.com/10.1029/97RS02017

BIBLIOGRAPHY

[WSC13]

[WSG94]

[WWLO03]

[XLS06]

[Xua+17]

[YH17]

[Yig+09]

[YP68]

W.-Q. Wang, H. Shao, and J. Cai. “MIMO antenna array design with polyno-
mial factorization”. In: International Journal of Antennas and Propagation 2013
(2013). Ed. by Y. Yao, p. 358413. 1SSN:1687-5869. DOL:[10 . 1155/2013/358413]
URL:[https://doi.org/10.1155/2013/358413(cit. on pp.|[68,[81).

J. H. Winters, J. Salz, and R. D. Gitlin. “The impact of antenna diversity on
the capacity of wireless communication systems”. In: IEEE Transactions on
Communications 42.234 (1994), pp. 1740-1751. 1ISSN: 00906778. DOTI:
[TCOMM. 1994 . 582882 (cit. on p.[55).

G. Wang, D. Wang, and D. Li. “An efficient ZF-SIC detection algorithm in
MIMO CDMA system”. In: 14th IEEE Proceedings on Personal, Indoor and Mobile
Radio Communications, 2003. PIMRC 2003. Vol. 2. IEEE, 2003, pp. 1708-1711.
ISBN: 0-7803-7822-9. DOI:[10 . 1109 /PIMRC . 2003 . 1260406] URL:
|//ieeexplore.ieee.org/document/1260406/ (cit. on p.[128).

L. Xu, J. Li, and P. Stoica. “Radar imaging via adaptive MIMO techniques”.
In: European Signal Processing Conference. Vol. 1. 2006, pp. 1-5 (cit. on p..

V. N. Xuan, K. Hartmann, W. Weihs, and O. Loffeld. “Modified orthogo-
nal matching pursuit for multiple measurement vector with joint sparsity
in super-resolution compressed sensing”. In: 2017 51st Asilomar Conference on

Signals, Systems, and Computers. 2017, pp. 840—844. DOI:(10 . 1109 /ACSSC ..
2017 . 8335466 (cit. on p. [133).

X. Yuan and R. Haimi-Cohen. “Image compression based on compressive

sensing: end-to-end comparison with JPEG”. In: (June 2017). URL:|http: //
larxiv.org/abs/1706.01000(cit. on p.|45).

E.Yigit, A. S. Medvedev, A. D. Aylward, P. Hartogh, and M. J. Harris. “Model-
ing the effects of gravity wave momentum deposition on the general circu-
lation above the turbopause”. In: Journal of Geophysical Research: Atmospheres
114.D7 (2009). pOI:(10 . 1029 /2008JD011132| URL:[https : / /agupubs .|
[onlinelibrary.wiley.com/doi/abs/10.1029/2008JD011132|(cit. on

p.[6).

K. O.Yngvesson and F. W. Perkins. “Radar Thomson scatter studies of photo-

electrons in the ionosphere and Landau damping”. In: Journal of Geophysical
Research 73 (1968), pp. 97-110 (cit. on p.[17).

203


https://doi.org/10.1155/2013/358413
https://doi.org/10.1155/2013/358413
https://doi.org/10.1109/TCOMM.1994.582882
https://doi.org/10.1109/TCOMM.1994.582882
https://doi.org/10.1109/PIMRC.2003.1260406
http://ieeexplore.ieee.org/document/1260406/
http://ieeexplore.ieee.org/document/1260406/
https://doi.org/10.1109/ACSSC.2017.8335466
https://doi.org/10.1109/ACSSC.2017.8335466
http://arxiv.org/abs/1706.01000
http://arxiv.org/abs/1706.01000
https://doi.org/10.1029/2008JD011132
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008JD011132
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008JD011132

BIBLIOGRAPHY

[YPHOO] T.-Y.Yu,R.D.Palmer,andD. L. Hysell. “A simulation study of coherent radar
imaging”. In: Radio Science 35.5 (Sept. 2000), pp. 1129-1141. ISSN: 00486604
por:[T0. 1029/1999RS002236. URL:[http: //doi.wiley .com/10. 1029/

1999RS002236|(cit. on pp. (96} [98).

[Zec+01]  M.Zecha,]. Rottger, W. Singer, P. Hoffmann, and D. Keuer. “Scattering prop-

erties of PMSE irregularities and refinement of velocity estimates”. In: Jour-

nal of Atmospheric and Solar-Terrestrial Physics 63 (2001), pp. 201-214 (cit. on

p-[89).

204


https://doi.org/10.1029/1999RS002236
http://doi.wiley.com/10.1029/1999RS002236
http://doi.wiley.com/10.1029/1999RS002236




JUAN M. E. URCO CORDERO

Ph.D. in Electrical Engineering

@ mcordero@illinois.edu L (+1) 217 7218562 N 302 South First St., 61820 Q@ Champaign, IL, USA

EDUCATION

Ph.D. in Electrical Engineering
University of Rostock
B4 April 2016 - March 2021 Q@ Rostock, Germany

MS in Information Technology and Telematics
Universidad Nacional Mayor de San Marcos
& Aug 2010 - Jul 2012 Q Lima, Peru

BA in Electrical Engineering
Universidad Nacional Mayor de San Marcos
9 March 2001 - Dec 2005 Q Lima, Peru

RESEARCH EXPERIENCE

Postdoctoral Research Associate
University of lllinois at Urbana-Champaign
B8 June 2021 - present Q@ Champaign, IL, USA

Ph.D. candidate
Institute for Atmospheric Physics

i 2016 - 2021 Q@ Kiihlungsborn, Germnany

R&D department
Jicamarca Radio Observatory
g 2009 - 2016 Q Lima, Peru

Summer Research Experience Program
MIT Haystack Observatory
9 Summer 2014 Q@ MA USA

Summer Undergraduate Research Program
Pontificia Universidad Catolica del Peru
M Summer 2016 Q Lima, Peru

REASEARCH INTEREST

- Statistic analysis, inverse problems

- Model reduction, sparse sensing

- Machine learning and data science for
modeling high-dimensional complex
systems.

- Fluid dynamics, transport phenomena

PROGRAMMING SKILLS
Python 00000
C/C++ 00000
Matlab 0000
IDL 0000
Assembler 000
Java 000
Others [ X
STRENGTHS

Highly motivated and eager to learn
Self-learning = Problem solving

Dot connecting skill



AWARDS AND HONORS

2019 CEDAR poster competition award - Honor-

able mention
Santa Fe, USA

2010-2012 Fully funded scholarship for Master’s stud-

ies
CONCYTEC, Peru

2009 Best employee of the year award

Jicarmarca Radio Observatory.

2006 Graduate student award - Second place

X' INTERCON, IEEE, Peru

2005 Undergraduate student award - First place

XII'INTERCON, IEEE, Peru

PEAR-REVIEWED PUBLICATIONS

1.

Urco, J. M., Kamalabadi, F., Kamaci, U., Harding, B. J., Frey, H. U,, Mende, S. B., Huba, J., England,
S. L., Immel, T. J. (2021). Conjugate photoelectron energy spectra derived from coincident FUV
and radio measurements. Geophys. Res. Lett [under reviewl].

. Asokan, H. C., Chau, J. L., Marino, R., Vierinen, J., Vargas, F., Urco, J. M., Clahsen, M., Jacobi, C.

(2021). Study of second-order wind statistics in the mesosphere and lower thermosphere region
from multistatic specular meteor radar observations during the SIMONe 2018 campaign. Atmos.
Chem. [under review].

. Volz, R., Chau, J., Erickson, P., Vierinen, Urco, J. M., J. M., Clahsen, M. (2021). Four-dimensional

mesospheric and lower thermospheric wind fields using Gaussian process regression on multi-
static specular meteor radar observations. Atmospheric Measurement Techniques Discussions,
1-29.

Chau, J. L., Urco, J. M., Vierinen, J.,, Harding, B. J., Clahsen, M., Pfeffer, N., Kuyeng, K. M., Milla, M.
A., Erickson, P. J. (2021). Multistatic Specular Meteor Radar Network in Peru: System Description
and Initial Results. Earth and Space Science, 8(1), €2020EA001293.

. Conte, J. F,, Chau, J. L., Urco, J. M., Latteck, R., Vierinen, J., Salvador, J. O. (2021). First Studies

of Mesosphere and Lower Thermosphere Dynamics Using a Multistatic Specular Meteor Radar
Network Over Southern Patagonia. Earth and Space Science, 8(2).

Stamm, J., Vierinen, J., Urco, J. M., Gustavsson, B., Chau, J. L. (2021). Radar imaging with EISCAT
3D. Annales Geophysicae, 39(1), 119-134.

Chau, J. L., Urco, J. M., Avsarkisov, V., Vierinen, J. P,, Latteck, R., Hall, C. M., Tsutsumi, M. (2020).
Four-Dimensional Quantification of Kelvin-Helmholtz Instabilities in the Polar Summer Meso-
sphere Using Volumetric Radar Imaging. Geophysical Research Letters, 47(1).

. Urco, J. M,, Chau, J. L., Weber, T., Latteck, R. (2019). Enhancing the spatiotemporal features of

polar mesosphere summer echoes using coherent MIMO and radar imaging at MAARSY. Atmo-
spheric Measurement Techniques, 12(2), 955-969.

Chau, J. L., Urco, J. M., Vierinen, J.,, Volz, R., Clahsen, M., Pfeffer, N., Trautner, J. (2019). Novel
specular meteor radar systems using coherent MIMO techniques to study the mesosphere and
lower thermosphere. Atmospheric Measurement Techniques, 12(4), 2113-2127.



10. Vierinen, J., Chau, J. L., Charuvil, H., Urco, J. M., Clahsen, M., Avsarkisov, V., Marino, R., Volz, R.
(2019). Observing Mesospheric Turbulence With Specular Meteor Radars: A Novel Method for
Estimating Second-Order Statistics of Wind Velocity. Earth and Space Science, 6(7), 1171-1195.

11. Urco, J. M,, Chau, J. L., Weber, T., Vierinen, J. P,, Volz, R. (2019). Sparse signal recovery in MIMO
specular meteor radars with waveform diversity. IEEE Transactions on Geoscience and Remote
Sensing, 57(12), 10088-10098.

12. Hysell, D. L., Sharma, P., Urco, J. M., Milla, M. A. (2019). Aperture-synthesis radar imaging with
compressive sensing for ionospheric research. Radio Science, 54(6), 503-516.

13. Urco, J. M., Chau, J. L., Milla, M. A., Vierinen, J., Weber, T. (2018). Coherent MIMO to improve
aperture synthesis radar imaging of field-aligned irregularities: First results at Jicamarca. IEEE
Transactions on Geoscience and Remote Sensing, 56(5), 2980-2990.

POSTERS AND PRESENTATIONS

Conjugate photoelectrons on the nightime ionosphere derived from coincident ICON and
COSMIC2 measurements

CEDAR Workshop, June 2021

Q@ Virtual

Observation and characterization of small and large-scale mesospheric structures through
MIMO and inverse problem technique

RWTH Aachen University, February 2020

Q@ Aachen, Germany

Observation and characterization of kilometer and meso-scales structures: MIMO and in-
verse problem techniques

Institute for Atmospheric Physics, January 2020

Q@ Kiahlungsborn, Germany

A novel meteor radar network based on MIMO to study the MLT dynamics
CEDAR Workshop, June 2019
Q Sanfa Fe, NM, USA

Enhancing spatio-temporal PMSE features using coherent MIMO and radar imaging
LPMR Workshop, March 2018
Q@ Kborn, Germany

Coherent MIMO to improve aperture synthesis radar imaging
MST15 Workshop, May 2017
Q@ Tokyo, Japan

A modular and powerful radar signal processing software for atmospheric data
CEDAR workshop, June 2014
Q Seattle, WA, USA

Estimation of 2D vector velocity of ionospheric irregularities over Jicamarca using Particle
Image Velocimetry

CEDAR Workshop, June 2012
Q Santa Fe, NM, USA



Radar Signal Processing
Signal Processing Workshop, July 2011
Q JRO, Lima, Peru

Parallel processing for imaging equatorial Spread F irregularities
Winter International Scientific Meeting, July 2010

Q Lima, Peru

Madrigal database at Jicamarca: A scientific database
Summer International Scientific Meeting, January 2010

Q Lima, Peru

Open radar workshop on software radar
MIT Haystack Observatory & JRO, October 2010

Q Lima, Peru

Real-time parallel processing software for radar imaging
National Meeting of Radio Scientists, URSI, August 2010

Q Lima, Peru

A distributed atmospheric database, Madrigal at Jicamarca
CEDAR Workshop, June 2009
Q Santa Fe, NM, USA

REFERENCES

Juha Vierinen Ph.D., Associate Professor
Department of Physics and Technology, The Artic University of Norway
Q +47 77645163, juha-pekka.vierinen@uit.no

Marco Milla Ph. D., JRO Director
Jicamarca Radio Observatory
Q@ +51 317 - 2313, marco.milla@jro.igp.gob.pe

Philip Erickson Ph. D., Group Leader and Principal Research Scientist
Atmospheric Sciences Group, MIT Haystack Observatory
Q +1781 981 5769, pje@haystack.mit.edu



	Introduction
	Motivation
	Earth's atmosphere observations
	Radar measurements of the mesosphere and lower thermosphere (MLT) dynamics
	Objective of this work
	Thesis structure

	Atmospheric radars
	Introduction
	Radar block diagram
	Radar components
	Signal transmission
	Radio wave scattering
	Radar measurements
	Digital signal processing

	Range estimation
	Pulse compression
	Phase-coded continuous wave radar

	Doppler estimation
	Angle of arrival estimation
	Phased array antennas and digital beamforming
	Radar imaging


	Coherent MIMO radar techniques
	What is MIMO?
	Why is MIMO required?
	Transmit diversity in MIMO radars
	Time diversity
	Waveform diversity
	Suboptimal diversity

	MIMO virtual array
	Far-field signal model of pulsed MIMO radars
	Far-field signal model of CW-MIMO radars
	Signal recovery

	Estimation of direction of arrival and departure in MIMO radars
	Relative compensation of phase offsets
	Angular resolution
	Redundant baselines
	Signal processing


	Resolving kilometer-scale dynamics in the mesosphere
	Introduction
	High resolution spatio-temporal measurements of the MLT dynamics
	Polar mesospheric summer echoes as tracers of the MLT dynamics
	The MAARSY radar
	SIMO configuration
	MIMO configuration

	Simulations
	Filter response
	Error analysis

	Experimental implementation
	Phase offset compensation
	Integration time: uncertainties and blurring

	Experimental results
	Comparison of SIMO and MIMO
	Achieved resolution
	Observation of km-scales structures in PMSE


	On mesoscale spatio-temporal dynamics
	Introduction
	Existing specular meteor radars to measure MLT winds
	Specular meteor radar
	Multistatic specular meteor radars based on SIMO

	Multistatic specular meteor radars based on MIMO
	Traditional signal recovery algorithms
	Signal recovery based on compressed sensing
	Sensing matrix design

	Montecarlo simulations
	Experimental results
	3D wind field
	Second order statistics

	Conclusions

	Summary and conclusions
	Zusammenfassung und Fazit
	List of peer-reviewed publications
	Symbol notation
	Acronyms
	List of Figures
	List of Tables
	Bibliography

