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Abstract

Knowledge of stratospheric turbulence is still limited, but important for the atmospheric energy
balance and the mixing of trace species. A new balloon-borne instrument which measures tur-
bulent fluctuations in wind and temperature with unprecedented vertical resolution has recently
been developed at the Leibniz-Institute of Atmospheric Physics.

In this thesis, the instrument and therewith the data quality have been improved significantly.
New flights have been performed. Features of observed dissipation rates are explained by atmos-
pheric background conditions. Dissipation rates are compared to Thorpe analyses of radioson-
des. The assumption needed for such an evaluation is checked and found not to be fulfilled.
Kinetic dissipation rates computed from simultaneous wind and temperature measurements are
inconsistent and reveal potential problems with the turbulence theory used for the evaluation.

Zusammenfassung

Stratosphérische Turbulenz ist bislang wenig verstanden, aber wichtig fiir die atmosphérische
Energiebilanz und den Transport von Spurenstoften. Am Leibniz-Institut fiir Atmospharenphy-
sik ist unldngst ein neues ballongetragenes Instrument entwickelt worden, das turbulente Fluk-
tuationen in Wind und Temperatur mit bis dahin unerreichter vertikaler Auflésung misst.

Im Rahmen dieser Arbeit sind das Instrument und dadurch die Datenqualitdt signifikant ver-
bessert worden. Neue Fliige sind durchgefiihrt worden. Charakteristiken gemessener Dissipa-
tionsraten werden durch atmosphirische Hintergrundbedingungen erkldrt. Dissipationsraten
werden mit einer Thorpe-Analyse von Radiosonden verglichen. Die Voraussetzung fiir die An-
wendbarkeit einer solchen Auswertung wird tiberpriift und falsifiziert. Aus gleichzeitigen Mes-
sungen von Wind- und Temperaturfluktuationen ermittelte kinetische Dissipationsraten sind
inkonsistent und weisen auf mogliche Probleme der fiir die Auswertung verwendeten Turbu-
lenztheorie hin.
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1 Introduction

The Earth’s atmosphere is a very complex system which is highly non-linear and coupled. Time
and time again new unexpected features are discovered. Complicated cross-relations can result
in unintuitive phenomena. For instance, the lowest temperatures on Earth are found in the polar
summer near 85 km altitude, although the Sun is shining 24 hours per day. Obviously, this cannot
be caused by solar irradiation. Rather it is connected to large-scale dynamics driven by waves
known as the Brewer-Dobson circulation, which results in an upwelling at the summer pole and
thus adiabatic cooling. In the Antarctic, this temperature minimum is even lower (down to 100 K)
and also at higher altitudes than expected, as recently observed by|Liibken et al. [2014]. To date,
no model can reproduce this behaviour without changing the gravity wave spectrum which has
side effects in the stratosphere.
The basic system is understood. Usually the

atmosphere is vertically structured according 120

to the temperature gradient. Figure [L.1| shows {104

a typical temperature profile for mid-latitude |
conditions. The lowermost layer is mostly 100 =
heated from the Earth’s surface, thus temper- (- 10
atures decrease with height. It is called tro- 30 7 102
posphere from the Greek word for “change’, = ] S
because turbulent mixing plays an important =% =
role. Here the weather pattern takes place. It 5 60 107 g
ends at roughly 8 km in the Arctic and 18 km g 2
near the equator at a level which is called ® I DU )
tropopause. Thereafter, the temperature gra- 40

dient is near zero or even positive, primarily i 10°

due to the absorption of ultraviolet solar ra- 20

diation by ozone. Due to the stable stratifi- __tropopause | 102
cation this layer is called stratosphere. Above

the stratopause at ~50 km height temperature 0 200 300 | 46(1)03

decreases again due to the lack of heating.
This layer is called mesosphere, from the Greek
meso, “in between”. A temperature minimum,
which is called mesopause, is reached between
roughly 80 km and 100 km depending on sea-
son. It entails the lowest temperatures on

temperature / K

Figure 1.1: Mean temperature structure of the at-
mosphere for summer (red) and winter (blue) con-
ditions at 50°N. Data from Fleming et al.| [1988].
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Earth. Further upwards the thermosphere begins with a steep increase in temperature due to the
absorption of high-energy ultraviolet radiation by photodissociation of molecules and stripping
of electrons from atoms.

The primary effect that leads to the thermal structure is the absorption of solar irradiation.
The structure is modified by dynamical effects. The most important one is the Brewer-Dobson
circulation mentioned above. Basically it consists of an upwelling at the tropics, two branches of
meridional poleward flux in the lower and upper stratosphere, upwelling in the summer meso-
sphere, and downwelling in the winter mesosphere and stratosphere, and a flux from summer
pole to winter pole in the mesosphere. That upwelling or downwelling results in adiabatic cooling
or heating, respectively.

Another factor of the global energy budget is breaking gravity waves, which cause turbulence
and dissipation into heat. Gravity waves are typically generated in the troposphere and propagate
upwards. Due to decreasing pressure, the amplitude increases with altitude. When the wave-
induced temperature gradient exceeds the adiabatic lapse rate, the wave breaks. This typically
occurs in the mesosphere. However, some waves already break in the stratosphere, e.g. due
to wave filtering which generally occurs when the phase speed equals the background wind.
These breaking waves deposit their momentum and energy via the accompanying turbulence and
dissipation. This modifies the energy flux from the troposphere to the mesosphere. The amount
of energy dissipated in the stratosphere is largely unknown. Due to the stable stratification it
has been assumed to be small. However, as the measurements from this work show, energy
dissipation in the stratosphere is larger than expected. The actual extent of dissipation directly
influences the global energy distribution. Moreover, turbulence is important for the mixing of
trace species.

The lack of knowledge about stratospheric turbulence for the most part originates from tech-
nical challenges. The dissipation occurs on very small scales of centimetres or millimetres. These
scales cannot be resolved by remote sensing techniques, such as radars (see Wilson|[2004] for an
overview), lidars [Smalikho et al.,[2005] and satellites [Gavrilov, 2013, [Sofieva et al.l [2007]. In-
situ observations are performed in the troposphere with aircraft [Schumann et al., 1995, Bogel
and Baumann, 1991, Gultepe and Starr, 1995], helicopter [Siebert et al., 2007], tethered balloons
[Erehlich et al.,2003] or unmanned aerial vehicles (UAV) [Balsley et al., 2015]], and in the meso-
sphere with sounding rockets [e. g.|Liibken, 1992} Giebeler et al.,[1993]. In the stratosphere balloon-
borne measurements were performed in the 1970s and 1980s by [Barat [1982b]]. His instrument
resolved most of the inertial subrange, which was a huge achievement at that time. However,
the vertical resolution was limited by the technical feasibility at that time. |Clayson and Kantha
[2008] proposed to use standard radiosondes for turbulence measurements, but as is shown in
this work, these devices cannot detect most turbulent layers due to their limited vertical resolu-
tion.

To close the gap, a new balloon-borne instrument for high-resolution measurements of tur-
bulent dissipation was developed at the IAP. It is called LITOS (Leibniz Institute Turbulence
Observations in the Stratosphere). First results show that much more turbulence is present in
the stratosphere than previously assumed (in terms of turbulent fraction). Turbulent heating



rates reach up to a few Kelvin per day for thin (roughly 10 m) layers. This is in the same order
as typical solar heating rates in the lower stratosphere [Brasseur and Solomon, 1986, Fig. 4.19b].
Thus stratospheric turbulence is more important than previously assumed. High-resolution ob-
servations as performed by LITOS are necessary to detect the full extent.

Before the beginning of this work, one masters thesis [Suminska, 2008] and one PhD the-
sis [Theuerkauf, |2012] had been performed on LITOS (the latter was finished while the work
on this thesis had already begun). A measurement system with one-channel data acquisition
was present. The applicability of the Constant Temperature Anemometer and Constant Cur-
rent Anemometer systems in the environment of a balloon flight had been checked with labora-
tory experiments by Theuerkauf [2012]. Two flights with large balloons (namely BEXUS 6 and
BEXUS 8) and a few flights with small balloons had been performed. However, data quality from
the small platform was poor, and no information on gondola movements or the influence of the
gondola on the measurement was available. Theuerkauf| [2012] wrote software to infer profiles
of kinetic dissipation rates from the raw data using Fourier techniques. These methods were re-
implemented, improved and extended within this work. Data evaluation by Theuerkauf [2012]
concentrated on the two BEXUS flights mentioned above. She performed statistics on turbulent
layer thickness and separation, examined profiles of energy dissipation rates and the relation to
the Richardson number. She also looked at gravity wave breaking and Kelvin-Helmholtz insta-
bilities as possible sources of the observed turbulence.

Several questions had not been tackled. As mentioned above, the potential modification of
the geophysical flow by the gondola system was yet to be examined. A comparison to the Thorpe
evaluation of radiosondes, a method that was becoming popular at that time, had not been per-
formed. The thermal dissipation rate had not been looked at. Furthermore, LITOS results had
not been complemented by other data such as model simulations or radars. That is where this
work set in.

During the final phase of this work, a second masters thesis was porformed on LITOS [Soder,
2014]. It concentrated on technical aspects of the small payload. Particularly, Soder| [2014] inte-
grated the measurement system in the spherical payload that had been decided to use after the
wind tunnel experiments described in Section

This thesis is structured as follows: First basic concepts of turbulence theory needed for the
analysis of the measurements are shortly introduced in Chapter 2| Particularly, the concept of
dissipation is physically motivated. Chapter [3|describes the instrument used for this study. The
methods to extract turbulence data from the raw data are described in Chapter {4 Beside de-
scribing the spectral method for high-resolution measurements by LITOS, an error analysis is
given. Furthermore, a method to extract dissipation rates from standard radiosondes, a variant
of the so-called Thorpe analysis, is explained, as LITOS results are compared with such an eval-
uation. Geophysical results are detailed in Chapter |5 This includes the relation of dissipation
rates to atmospheric background parameters, an intercomparison of different flights, as well as a
comparison to model simulations and to radiosonde analyses from the same gondola. Further-
more, the relation between kinetic and thermal dissipation is considered. Finally, all results are
summarised in Chapter[6} and an outlook is given. The appendices contain a summary of statis-
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tical theory of turbulence and a derivation of the fitting function for experimental spectra (Ap-
pendix[A)), a new construction of wavelets for the continuous wavelet transform (Appendix B),
and a description of tests of the attitude reconstruction for the balloon gondola (Appendix|C).



2 Basics of turbulence

2.1 Introduction

Turbulence is a complex phenomenon. Although considerable progress was made in the last fifty
years, it is still far from being completely understood. To date, no rigorous definition of turbu-
lence has been found. Thus it is worthwhile to examine some basic properties, as summed up,
e.g., in Mathieu and Scott| [2000, Section 1.1]. To this end, it is illustrative to look at a simple
example. Figure[2.] presents visualisations of turbulence generated by a grid which shows many
typical characteristics. It is easy to see that the flow is random. This is one of the most important
features of turbulence. The details are unpredictable, but statistical properties are supposed to
be reproducible. Besides, turbulence contains a wide range of different scales. When zooming in
on the fluctuations, more fluctuations on smaller scales appear and so on, until on the smallest
scales the distribution is smooth. Figure [2.1] also shows that turbulent flow is rotational, i.e. it
is characterised by vorticity. Typically the vorticity has large variations at small scales. Further-
more, it is a continuum phenomenon and intrinsically three-dimensional. Moreover, turbulence
dissipates energy, i.e. kinetic energy is irreversibly converted into heat. Section [2.2| elaborates
on this topic. Finally, turbulence is diffusive, i. . it rapidly disperses material and heat (mixing).
Turbulent transport is an important factor, e. g., for the mixing of trace species.

Figure 2.1: Homogeneous turbulence behind a grid. Photographs by Thomas Corke and Hassan Nagib
fromhttp://fdrc.iit.edu/research/nagibResearch.php (vis 10 Jul 2015).
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2 Basics of turbulence

An important parameter of a flow is the Reynolds number

Re := u_B (2.1)
y

where u is a characteristic velocity, € a characteristic length and v the kinematic viscosity. It
describes the ratio of inertial to viscous forces. Viscosity damps the tendency to instability, thus
a high Reynolds number is essential for turbulence [Mathieu and Scott, 2000, Section 1.1].

Based on observations, Richardson! [1922, p. 66] realised that “big whirls have little whirls that
feed on their velocity, and little whirls have lesser whirls and so on to viscosity—in the molecular
sense.” This conjecture is nowadays known as the energy cascade and widely accepted. Energy
is fed into the cascade on large scales, therein transported to smaller scales, and dissipated at the
smallest scales.

An inverse energy cascade in which energy is transported from small to large scales exists in
so-called two-dimensional turbulence [Salmon, 1998, Section 4.8], a topic completely different
from the three-dimensional case discussed in this work. Quasi two-dimensional turbulence is
important in quasigeostrophic flow.

The large range of turbulent scales can be divided into regimes based on different dominating
physical processes. As hinted above, the smallest scales are dominated by viscous forces. Those
are called viscous subrange. In the atmosphere, buoyancy forces play a major role at large scales;
this is called the buoyancy subrange. If the Reynolds number is large enough, a new range of scales
appears where energy is neither brought into the system nor taken out of it, only transported to
smaller scales via the cascade. This region is called the inertial subrange. More on the different
subranges can be found in Appendix[A} especially in Section

Measurements, e. g. the one shown in Fig-
ure show that turbulence typically con-
sists of fluctuations around a mean flow. The
velocity does not deviate greatly from the
mean for long periods of time [Pope, 2000,
Section 1.1]. Thus it is convenient to sepa-
rate the turbulent fluctuations from the back-
ground mean flow. For any measurable quan-
tity a (e.g. velocity a = u or temperature 1t
a = T), one writes

0.0 0.1 0 03
S
a=(a)+a (2.2)

Figure 2.2: Time series of the axial component of
where (-) denotes an ensemble average and . . :

] ) ) velocity U;(t) on the centreline of a turbulent jet
the prime designates the fluctuations defined ./ 1. experiment of [Tong and Warhaft [1995].

by (2.2). This concept is known as Reynolds Figure taken from Pope [2000, Fig. 1.3].
decomposition. The mean is independent of

the actual realisation of the flow, while the fluctuations represent the random nature of turbu-
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lence and are thus of main interest [Mathieu and Scott, 2000, Section 2.4].

In the remainder of this chapter, the concepts needed for the evaluation of experimental data
from LITOS are introduced. First, Section [2.2]illustrates what dissipation is and how it is related
to entropy. Afterwards, the essential concepts of the statistical treatment of turbulence needed
for the determination of energy dissipation rates are very briefly introduced in Section A
more detailed treatment and a derivation of the spectral function that is fitted to experimental
data can be found in Appendix[A]

2.2 Dissipation

One of the central concepts used in this thesis is dissipation, as this is what LITOS measures. Thus
it is important to understand what dissipation is. To this end, some fundamentals are shortly
reviewed. The concept described below relating dissipation to entropy is hardly known among
experimenters, but is important to understand the nature of dissipation.

Typographically, vectors are denoted in bold face and tensors in sans-serif. A flow is described
by the velocity u, its temperature T, pressure p, density p, and kinematic viscosity v. The ac-
celeration due to gravity is g = —V¢, where ¢ is the gravitational potential. As usual in fluid
dynamics, the treatment is based on continuum mechanics because all scales are much larger
than the molecular structure of matter. Einstein’s summation convention is used, i. e. repeated
indices imply summation.

The evolution of the flow is governed by the Navier-Stokes equations. The first one in the set
is the momentum equation (deduced from Newton’s second law)

du Ju 1 1
Ly, - _VUp+-V-F- 2.3
dr o THYHETVPEOY vé (2.3)
[Lange, [2002, (2-19), (2-51)]. The terms on the right-hand side describe strain, shear and gravi-
tational forces. F is called deformation tensor and describes the response due to strain and shear
forces. The second equation of importance is the continuity equation (based on mass conserva-
tion)

dp op

— 4+ . = — + . = 0. 2.4

q VU=, vV (pu) (2.4)
Using the Frobenius product A--B := a;;b;j, the set is completed by the equation for the internal
energy per unit mass e; (based on the first law of thermodynamics)

de; Jdg 1 1 1

L -Ve = —F-- — U-—-v- 25

"o Ve ; Vu ppV u pV Jo (2.5)
[Lange, 2002, (2-56)]. ] is the heat flux. The three terms on the right hand side describe the
change of internal energy due to friction, pressure work and transport.
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To infer a budget of kinetic energy per unit mass e, = #?/2 and potential energy ¢, the mo-
mentum equation is multiplied with pu to yield after simple modifications

dp(ex + @)

o5 =V-(pu(ek+¢)—up—u-F)+pV-u—F--Vu. (2.6)

The first term on the right hand side denotes transport. The second and third terms are already
known from the internal energy equation where they are present with different sign. Pres-
sure work accounted for by the second term is the reversible conversion between inner energy
and kinetic energy. Frictional dissipation of kinetic energy to inner energy quantified by the
third term is an irreversible process. Thus the kinetic energy dissipation rate of the total flow &, is
defined

& 1= lF --Vu. 2.7)
p

Not only kinetic energy is dissipated, but also heat. However, that cannot be seen in the ener-
getics. Thus, entropy is considered. A budget equation of entropy per unit mass s is deduced from
the Gibbs relation (neglecting water vapour, ions, etc. as those play no role in the stratosphere)

ds de; dv de;
a_ge 4V _ da . 2.8
Trqr=Pa ThPg =P g TPV U (28)

[Lange, 2002, (2-57)], where v is the volume per unit mass. The second equality uses the conti-
nuity equation p§* = V - u. Inserting the internal energy equation (2.3) yields

ds 11 11, VT 1
<2 - __F.. I S, v 2.9
& T Vu TPIQ T PV Ja (2.9)
—_—— —_——
=&t =:—)Et

0

[similar to/GafSmann and Herzog, 2014, (17)]. The inequality is the second law of thermodynam-
ics. Due to Onsager’s theory, the vector type and tensor type quantities have to be separately
non-negative [Lange, 2002, Section 1.10(a)]. The first term describes the entropy production due
to irreversible conversion of kinetic energy to inner energy by friction. The condition & > 0 also
poses a constraint to the deformation tensor F. The second term describes the entropy produc-
tion due to thermal diffusion, i. . irreversible conversion of available inner energy to unavailable
inner energy. This is also a type of dissipation. The non-negativity condition together with di-
mensional reasoning implies J, = —c,paV T, where a is the thermal diffusivity. Thus the thermal
dissipation rate of the total flow is defined as

. 1 VT c
Xe = _;IQT = “TP(VT)Z- (2.10)
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Altogether, entropy production is given by the sum of kinetic energy dissipation, thermal dissi-
pation, and transport. & > 0 and j; > 0 is a direct consequence of the second law of thermody-
namics.

In many textbooks on turbulence, e. g. Mathieu and Scott [2000], Pope|[2000], Tatarskii [1971],
the flow is assumed to be incompressible, i. e. V - u = 0. This is permissible if “the characteristic
velocities are small compared to the velocity of sound ¢ and the ratio of the characteristic length
scale over which the velocity changes markedly to the time needed for this change to occur is
also small compared to ¢” [Tatarskii, 1971, p. 46]. For the evaluation of the LITOS data, the
dissipation rate is computed in windows of a few metres altitude, for which density does not
change significantly. Typical velocities are in the order of 1 m s which is much smaller than c.
Thus the flow may be treated as incompressible. In that case the deformation tensor reduces to a
much simpler form and thus the kinetic energy dissipation rate to

1 v [ou; OJu;j 2
g=—F - Vu=-|—+—], 211
Y p 2 (axj 0x; (210

where v is the kinematic viscosity.

Asmentioned in the introduction to this chapter, it is common practice in turbulence theory to
decompose quantities into a mean and a fluctuating part, the so-called Reynolds decomposition.
The fluctuations are supposed to contain the turbulent part of the flow and represent the random
nature. Dissipation is one of the key characteristics of turbulence. Thus it is important to look at
what the decomposition effects to dissipation. Inserting the decomposition for velocity

u; = (M,’) + M; (212)

[Mathieu and Scott, 2000, eq. (3.2)] into (2.11)) and averaging the resulting equation yields

2 2
_v([d{u) d(u;) v [(du; %
(e = 2 ( dx; ’ dx; "2 dx; ! dx; (2.13)

=tem =(ef)

[Mathieu and Scott, 2000, (4.25)]. The mixed terms vanish due to Reynolds” postulate [Lange,
2002, Section 6.1], particularly because ((u j)u;.> = 0. That means the overall dissipation & nicely
splits into a mean and a fluctuating component ¢, and (), respectively. Usually the turbulent
kinetic energy dissipation is much larger than the one of the mean flow,

&m << (&f) (2.14)

[Mathieu and Scott, 2000, (4.29)] because the gradients of the fluctuations are much larger than
those of the slowly varying mean. Thus it is convenient to study the energy dissipation of the
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fluctuations only. That is what is usually denoted as the dissipation rate, i. e.

= — i ] . . . . . . .

This nomenclature is used from this point onwards. The definition is consistent with Tatarskii
(1971, S10].

Looking at the thermal dissipation, one sees that ((VT)?) = (V(T))? + ((VT")?) similarly
splits into a mean and fluctuating part with (V (T))? < ((VT’)?). Additionally, the temperature
fluctuations are much smaller than the mean, T’ < (T). Thus, the thermal dissipation

v ~C—p(x 2 C—p(x )2 )
() » oy (VAT + e (9 T)°) (2.16)

=¥m =(%t)

also decomposes into shares for the mean flow and the fluctuations, §., and (¥¢), with ¥m << ( f¢)-
Therefore, the mean dissipation of temperature fluctuations, (§¢), is considered only. In order to
be consistent with the textbook of |Tatarskii| [1971], previous works by [Theuerkauf [2012] and
Liibken! [1993]], and numerical simulations by Werne and Fritts| [2001], Fritts et al.| [2015]], the
thermal dissipation of temperature fluctuations y (denoted as N in the first three of the aforemen-
tioned works) is defined as

)

T
=« ((VT’ )2> = (¥r) ) (thermal dissipation rate for fluctuations) (2.17)
Cp

[cf. Tatarskii, 1971, (13.25)], although it does not have the dimensions of a dissipation.
In the literature dissipation rates are also given in the form of heating rates due to turbulent
dissipation

dT
i g/cp. (2.18)

In this form the heating due to turbulent dissipation can easily be compared to that, e. g., due to
solar irradiation.

2.3 Statistical theory and spectral analysis

In the previous section, the concept of dissipation was physically motivated and defined. The
definition contains the derivatives of the fluctuations, which have to be computed at the smallest
scales, the so-called Kolmogorov microscale 7 := \/v3/¢ [e. g. Mathieu and Scott, 2000, (7.37)],
because only at these scales the distribution is smooth (cf. Section[2.1). # is in the order of mil-

10



2.3 Statistical theory and spectral analysis

limetres and below. Both spatially and temporally (when applying Taylor’s hypothesis to observe
the spatial derivatives) the resolution of LITOS is not sufficient to include # for all cases. More
important, the fluctuations at those scales are below the measurement noise. Thus the dissipation
rate is not directly measurable, and a separate theory has to be used.

As mentioned in the introduction to this chapter, turbulent fluctuations have a random char-
acter. That suggests to tackle the problem with statistical methods. The velocity fluctuations
u'(x, t) and temperature fluctuations T’(x, t) are treated as random fields. A measurement is
one realisation of the random process.

Based on [Tatarskii [1971], |Liibken| [1993] established a theory for the extraction of turbulence
parameters for temperature and density fluctuations, which [Theuerkauf| [2012] extended for ve-
locity fluctuations. A complete derivation including the discussion of some implicit assumptions
not mentioned by the original authors is given in Appendix[A} together with an introduction to
the statistical theory of turbulence. Here, only the most essential results are summarised.

If the statistics of a field is independent of time, it is called stationary. Moreover, if the statisti-
cal properties do not depend on the location in space, it is homogeneous, and if the statistics are
independent of the direction in space, it is called isotropic. All three of these properties are as-
sumed hereafter. This is permissible because small scales are considered, see below. That causes
the temporal correlation function

BY (x,t,7) = (uj(x, t + T)u}(x, 1)) (2.19)

[Tatarskii, 1971, (2.7)] to be independent of x and ¢, i. e. dependent on 7 only. This reduction of
the number of variables together with a decorrelation assumption enables a Fourier transform

W(w) := % / BW (1) cos(wrt)dr (2.20)

[Tatarskii, (1971, (2.16)]. The sine term vanishes because B(® is an even function. W is called the
temporal spectrum.

Liibken and Hillert| [1992, (4)] used a Heisenberg type spectrum spanning the inertial and
viscous subranges

I(3)sin(3)  (wfuy)
e (1 ()"

up ko

W(w)=C* (2.21)

where C? is the so-called structure function constant, u;, denotes the balloon ascent velocity and
ko the breakpoint between the inertial and viscous subranges. For velocity fluctuations, C? =
a2e?? [Kolmogorov, [1941a, (23)], and for temperature fluctuations C? = a%gl% [Obukhov, 1949,
(21)], where a2 and a7 are constants. The spatial scale I, = 27/k, corresponding to the breakpoint

11
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is called inner scale. It is related to the dissipation rate by

3
Io=ci\/ v? (2.22)

[e. g. Tatarskii, 1971, (12.4)], where ¢/, is a constant depending on the type of fluctuations consid-
ered.

Theuerkauf [2012, (B.13)] derived for velocity fluctuations

. 3/4
Cow=2m ( 9F(5/3)121n(7r/3) af,) (223)

(see Appendix for details of the derivation). The value of a2 is usually determined from
measurements. Theuerkauf [2012, Appendix B] used a2 = 2.0 [Bertin et al., 1997, (8); |Antonia
et al., 1981, p. 580; Pope, 2000, p. 194] yielding

Clow = 5.7. (2.24)

This value for ¢, is used for the evaluation performed in this thesis. The empirical constant
a2 can also be determined with renormalisation group analysis techniques. [Yakhot and Orszag
(1986, (2.62)] obtained for the Kolomogorov constant in the inertial-range energy spectrum Cx =
1.617, which results in a2 = 2.13 and thus, using (2.23)), ¢;,, = 5.98. In contrast, Hocking [1985|
Section 4] gave ¢, , = 12.8; however, he noted that “/, is not exactly the point on the spectrum
where a break in slope would occur [e. g., Hill and Clifford, 1978, figure 1]; the break in slope
occurs at a spatial scale of between 2 and 4 times [;.” The break is just what is needed for the fit
to a measured spectrum. As the value is derived to represent the kink in the spectrum, it
seems more realistic for the use at hand.

The different values of the constant cj,, vary by a factor of ~2.2. Due to the ¢}  dependence
of the inversion of (2.22), that results in a systematic uncertainty in ¢ of a factor of ~25! When
disregarding the value by [Hocking [1985] because that does not lead to an [, corresponding to
the point in the spectrum where the kink occurs, the uncertainty is 5% in [, or 20 % in e.

For temperature fluctuations Theuerkauf [2012, (A.23)] deduced

3/4
, (2.25)

9T (5/3) sin(n/3) a2)

c =2
b T ( 16P7y; T

where Prp, := v/a is the molecular Prandtl number which describes the relation between kine-
matic viscosity v and molecular diffusion coefficient a. With a2 = 1.74 x 2 [Liibken, 1992, (37)]
(the factor 2 is the normalisation factor f, from Liibken [1992]) and Pr,,, = 0.73 [Libken, 1993,
Appendix A] she obtained

¢t =10.9, (2.26)
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2.3 Statistical theory and spectral analysis

the value used in this thesis. Wilson et al. [2014, Section 3.3.4] used a2 = 3.2 for the structure
function constant, which, using (2.25), results in ¢;, 1 = 10.3, i. e. quite similar to the value derived
by Theuerkauf [2012]. |Hill and Cliftord| [1978, (7)] gave a different value of ¢;, v = 7.4. The dif-
ferent values of ¢;, r cause an uncertainty in ¢ of a factor of ~4.7. When disregarding the value by
Hill and Clifford|[1978] (the I, obtained with it does not correspond to the kink in the spectrum,
see above), the uncertainty is 6 % in I, or 25% in ¢.

When inserting the definition of the structure function constant C? into (2.21), one sees that
the resulting equation depends on both [; and e. Therefore ¢ is eliminated by using (2.22)). The
resultant formula for velocity fluctuations

3\’ (%) sin(Z -5/3
W(w) =alc r ()sin(5)  (w/us) (2.27)
v 0,V lal 27Uy 1 © 8/3\2
( + (ub(ZTl/lo)) )
has only [ as free parameter, and that for temperature fluctuations
Y P TE)sin(E)  (w/uy)5?
W(w) =at x| ¢} 177 T (2.28)
Iy 27Uy, (1 +( ® ) )

ub(27'[/l0)

has only I, and y as free parameters, because the balloon ascent velocity u;, and the kinematic
viscosity v are known from the radiosonde measurement. Thus [, (and therewith ¢) and y can be
obtained by fitting to measured spectra. Especially, I, is mainly determined by the spatial scale
where the break between inertial and viscous subrange is located (there is an additional weak
ly dependency of the structure function constant C?). The thermal dissipation rate  is a linear
factor in the structure function constant C% and thus the temperature spectrum (2.28), therefore
it is specified by the level of the absolute value of the PSD.

The breakpoint between inertial and buoyancy subranges is called outer scale. Ozmidov] [1965]
deduced an outer scale representing the vertical size of the largest eddies in stably stratified fluid
by finding the scale where the turbulent kinetic energy equals the buoyancy energy,

P L Lo 5 Eyp = Epot o< N> L3,

Therewith he obtained
€
LO =CLo ﬁ (229)

with a constant ¢, near unity. This scale is called Ozmidov scale. Geller| [1972, Appendix 2] in-
curred a similar result by finding the scale where turbulent and buoyancy acceleration are equal.
As the spatial scales in measured spectra are below Lo, the assumption of isotropy is justified.
The constant ¢, is often set to 1 [e. g. Gavrilov et al., 2005, (Clayson and Kantha, 2008, [Wilson
et al.,2014]. The Ozmidov scale plays a role in extracting turbulence parameters from radiosonde
measurements, a method detailed in Section 4.2
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3 Measurement technique

The instrument used in this study is described in this chapter. First, the general measurement
principle is illustrated. Then the gondola system of the balloon-borne instrument is specified in
detail. The last two sections discuss potential disturbances of the measurement by the instrument
itself. These can be caused by gondola motions which create spurious apparent winds or by the
gondola form altering the geophysical flow. After experimenting with different payload shapes,
the one inducing the least disturbances is chosen.

3.1 General measurement principle

On large scales, i. e. in the buoyancy subrange and part of the inertial subrange, wave motions
superpose the turbulent fluctuations. Thus it is favourable to measure at small scales where only
turbulent motions are present. For the precise determination of the energy dissipation rate, the
resolution has to be better than the inner scale ly. [y = ¢;,~/v? /e, (2.22)), scales with the kinematic
viscosity v = u/p which in turn is the dynamic viscosity y scaled by density p. The dynamic
viscosity is defined by the resistance to shear and does not change greatly. Due to the exponential
decrease of density with altitude and because the height dependence of the dissipation rate is
weaker [cf. Libken, 1997, Figure 9; Haack et al., 2014, Figure 7], the inner scale increases with
height. Typical values are centimetres in the troposphere and metres in the mesosphere. The
coverage of the full spectrum down to these small scales can only be performed with in-situ
techniques.

Moreover, atmospheric turbulence is very intermittent [e. g. Salmon, 1998, [Frisch, 1995]. To
resolve changes in energy dissipation at scales in the order of 1 m with spectral methods, a win-
dow of that length has to contain enough data points that the spectrum covers several orders of
magnitude of spatial scales. This is necessary to resolve both the inertial and viscous subrange in
order to enable a meaningful fit of a turbulence model to the data (cf. Section [4.11).

In-situ platforms suitable for the stratosphere are balloons or high altitude aircrafts. The latter
cannot reach the middle stratosphere, are very expensive and typically operate at high speeds
which is unfavourable for the resolution of very small scales and velocities. Thus balloons have
been chosen as platform. A new balloon-borne instrument for the in-situ measurement of tur-
bulence in wind and temperature called LITOS (Leibniz Institute Turbulence Observations in
the Stratosphere) was designed at IAP to fulfill the requirements named above. To this end, sen-
sitive wind and temperature sensors are installed on the gondola of the balloon. A standard me-
teorological radiosonde (details see below) records the atmospheric background. The distance
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3.1 General measurement principle

between balloon and gondola is typically 100 m to 150 m to be out of the wake of the balloon. To
prevent influences from the gondola, the sensors are mounted on booms, and the radiosonde is
attached either 30 m below the gondola or between balloon and gondola.

Since most of the area exposed to wind of the whole system comprises the balloon, the gondola
is advected with the mean wind in the altitude of the balloon u(z + h), where z denotes the
altitude of the gondola, & the distance between balloon and payload, and the overbar a cross-
section weighted average over the height of the balloon. Thus the wind sensor measures the
apparent horizontal wind u,(z) given as the difference between the true wind u(z) at the altitude
of the gondola and the velocity of the balloon u(z + h), as indicated in Figure Since only wind
fluctuations u’ are needed for the turbulence analysis, and because u(z + h) contains only large-
scale motions that are included in (u), knowledge of u, is sufficient. u’ is extracted from u, by
subtracting a linear trend or a spline, see Section

The wind sensor is a constant temperature anemometer (CTA), which consists of a thin wire

altitude
A _
Lonl u(z+h) S

u(z+h)

u(z U,
wind sensor
(CTA)

u(z)

z4+ —t

temperature
sensor (CCA)

Figure 3.1: General measurement principle of LITOS. z denotes the altitude of the sensor(s), 4 the dis-
tance between balloon and gondola, u horizontal wind velocity, the overbar a cross-section weighted
average over the height of the balloon, and u, the apparent wind. In the photographs of the CTA and
CCA sensors, the ticks on the ruler are millimetres.
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3 Measurement technique

of 5 um diameter and 1.25 mm length held at a constant temperature. This is performed by incor-
porating the wire as one leg of a Wheatstone bridge. The anemometer’s principle of operation is
based on the cooling effect of the air flow penetrating the wire. The amount of heat taken away
corresponds to wind velocity. Thus, the latter is given by the voltage required to keep the wire’s
temperature constant. The principle is described in detail by Bruun [1995] and |Durst [2008].

The wire’s orientation designates its spatial sensitivity. As indicated in Figure[3.1, probes with
the wire oriented vertically are used for LITOS in order to measure the horizontal wind compo-
nent while being insensitive to the vertical component. The prongs that support the wire imply
a preferred flow direction from opposite the prongs (from the right side in Figure 3.1). If the
prongs lie upstream, the measurement can be disturbed.

CTA sensors are standard for laboratory measurements, and whole textbooks are devoted to
this topic [e. g. Bruun,[1995]. However, LITOS is the first instrument to apply them on a balloon.
The applicability in such an environment has been examined in a previous study [Theuerkauf
et al., 2011]. The lower pressure limit has been estimated to ~1hPa (~45km). Laboratory ex-
periments on the dependence of the CTA response on pressure and temperature have been per-
formed. CTA sensitivity decreases with decreasing pressure (increasing altitude), but also with
increasing wind velocity. The impact on the dissipation rate is not straightforward. Theuerkauf|
et al. [2011] showed for a representative example that within the altitude section of a window
length (up to ~25 m) the change in sensitivity is small enough not to influence the spectrum. The
limiting factor for the detection of dissipation rates is the number of data points in the fit rather
than the sensor sensitivity, cf. Section [4.1.1]

The evaluation of the CTA data depends on the spectral form but not on the absolute values
(see Section [4.1); therefore the anemometer voltage is directly used for the analysis, and a cali-
bration of the CTA system is not necessary. Such a calibration to infer wind velocities from the
anemometer voltage would indeed be difficult because it has to be performed in a laboratory for
known velocities under the same ambient conditions (pressure, temperature) as the measure-
ment [see Theuerkauf et al., 2011]. Conditions of a balloon flight, where pressure varies within
several orders of magnitude and temperature changes by ~80 K, are very difficult to simulate in
a wind tunnel.

The constant temperature anemometry system by Dantec Dynamics is used for LITOS. The
Dantec Dynamics 55P31 gold-plated wire probe is specified up to frequencies of 90 kHz at stan-
dard pressure (~1000 hPa), the MiniCTA 54T30 Wheatstone bridge with a frequency response
of 10 kHz. With a mean balloon ascent rate of 5m s, a sampling frequency of 8 kHz has been
selected to obtain a sub-millimetre vertical resolution. Thus, the inner scale of turbulence is re-
solved for most cases. Only for very large dissipation rates the inertial subrange extends to the
Nyquist limit.

The temperature sensor is a constant current anemometer (CCA). It consists of a thin wire
of 1um diametre and 0.4 mm length, which is basically operated as a resistance thermometer
(despite its name “anemometer”). As the current is kept konstant, the output voltage is directly
proportional to temperature. Due to the very low heat capacity of the wire and the low current,
a sampling rate of 8 kHz is applied.
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3.2 Gondola system

Theuerkauf| [2012, Section 3.2] tested the impact of pressure and wind on the CCA measure-
ment. No influence could be detected within the tested range of —40 °C to 20 °C and 0 ms™ to
35ms™ in the climate chamber and 5hPa to 1000 hPa in the pressure chamber. Thus she con-
cluded that the system can be used without restriction for stratospheric soundings.

For the BEXUS 8 flight, a Dantec Dynamics 90C20 temperature module with a 55P31 wire
probe has been used. Due to the large weight of the module, it was replaced by another one
with lower weight for the BEXUS 12 flight, namely the 1745 constant current anemometer system
manufactured by TSI Corporation with 1260A-T1.5 probes (wire diameter 3.8 um, wire length
1.3 mm). However, that Wheatstone bridge turned out to have too large a noise.

The sensors are moved vertically through the atmosphere by the rising balloon. Neglecting
the vertical wind compared to the ascent velocity, a spatial measurement (more specifically an
altitude profile) is obtained. With Taylor’s frozen field hypothesis this enables the computation
of spatial spectra without knowing the absolute wind velocity. Those spectra are needed for the
derivation of e. During the floating phase there is no such known movement through the ambient
air, thus turbulence evaluation is impossible without absolute wind measurement.

As mentioned above, the atmospheric background is observed by a meteorological radiosonde
(Vaisala RS92), which measures temperature, pressure, humidity and background wind in a stan-
dardised way with a sampling time of 2 s, i. . a vertical resolution of 10 m. The accuracy (accord-
ing to the data sheet) is 0.5 K, 1 hPa, 1 %RH and 0.15 m s, respectively. The device has an onboard
telemetry which transmits the data to a ground station.

3.2 Gondola system

The LITOS experiment exists in two versions. One was flown on large (~100 kg) payloads to-
gether with other experiments within Balloon EXperiments for University Students (BEXUYS)
and allowed for a larger weight. That way more sensors can be flown, and instruments can be
added for tests. The drawback is that the launch location and time is very limited (it takes place
at Kiruna, Sweden in autumn) and cannot be influenced by the experimenters. Thus, a small
stand-alone version was developed which can be flown with a weather balloon from every ra-
diosonde station at all times. In order to keep this version simple and avoid complex licensing
procedures with air safety authorities, the overall payload weight is limited to 5 kg. Both systems
are described in the following subsections.

3.2.1 Gondola system for large payloads (BEXUS)

Balloon EXperiments for University Students (BEXUS) is a programme run by the German
Aerospace Center (DLR) and the Swedish National Space Board (SNSB). It allows university
students to carry out experiments on stratospheric research balloons. A payload of up to ~100 kg
is launched with a 12000 m? balloon from Esrange Space Center, Kiruna, Sweden (67°53’N,
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3 Measurement technique

21° 04’ E). That allows more weight and there-
fore more sensors than with a small payload.
The LITOS experiment was flown three times
with BEXUS: on BEXUS 6, 8 and 12 in 2008,
2009 and 2011, respectively. The first two
flights are already described by Theuerkauf
[2012] so that here the focus lies on BEXUS 12.

Esrange provides the flight train including
balloon, a cutter, a parachute, the Esrange Bal-
loon Service System (EBASS) used for altitude
control and flight termination, an Argos GPS
and air traffic control Transponder (AGT), a
radar reflector, and a gondola into which the
experiment is integrated using defined inter-
faces [Persson et al., )2010]. Infrastructure of-
tered by Esrange also includes a telemetry sys-
tem called E-Link that can be used by the ex-
periments. Figure [3.2 shows a sketch of the
flight train of BEXUS 12.

The LITOS experiment for BEXUS 12 was
designed to be redundant because the frag-
ile probes might break during the launch pro-
cedure. Two CTA sensors (Dantec Dynam-
ics’ MiniCTA system 54T30 with gold-plated
wire probes 55P31) and three CCA sensors
(TSI Corporation’s Model 1745 CCA Wheat-
stone bridges with 1260A-T1.5 probes) were
installed. All five were sampled with stand-
alone dataloggers developed by Reimesch
Communications that were already used for
the BEXUS 6 and 8 flights. New booms sup-
porting the sensors were designed that put the
probes further away from the gondola com-
pared to BEXUS 8 and 6. The actual construc-
tion was performed by a student of mechan-
ical engineering. One CTA sensor produced
data with good quality that are the basis for
the geophysical results presented in Chapter5]
The data acquisition device of the other one
had a failure so that the data is corrupt. The

balloon (12 000 m?3)

cutter
parachute
EBASS
= strobelight
[] flight train AGT

% radar reflector

radiosonde

<«———— CTA/CCA sensors

payload gondola

Figure 3.2: Flight train of BEXUS 12. Drawing ac-
cording to|Persson et al. [2010].

Wheatstone bridge of the new light-weight CCA system turned out to have a high non-Gaussian
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3.2 Gondola system

noise level which is exceeded only by very large temperature fluctuations. Additionally the data
are affected by electronic disturbances in form of large spikes, which were generated by a cou-
pling of the CCA bridge to the data acquisition via the joint voltage supply. Therefore the CCA
data from BEXUS 12 are not used in this thesis.

Additionally, a three-dimensional CTA probe (Dantec Dynamics 55P91) was tested which con-
sists of three CTA wires arranged so that all three wind components can be measured. The aim
was to check the assumption of isotropy. Exact temporal correlation of all three channels is im-
portant; thus a new electronics board which can acquire three channels at once was developed
within the Bachelor thesis of Andreas Roloff 2011]. Regrettably, it had a high inherent
noise in the same order as the wind fluctuations. Nevertheless, information can be extracted with
spectral analysis. For instance, several turbulent layers and clearly calm regions have been iden-
tified. However, due to the low signal to noise ratio many spectra are not identifiable as turbulent
or calm which prevents automatic data evaluation. Thus the data of the three-dimensional CTA
sensor are not considered further in this thesis.

To prevent gondola-induced disturbances, the wind and temperature sensors were mounted
onbooms attached to the outside of the gondola (see photograph in Figure[3.3). A radiosonde was
incorporated in the flight train, i. e. placed between balloon and gondola. Separate IAP developed
control electronics coordinated the whole experiment and transmitted housekeeping data via the
E-Link telemetry system provided by Esrange. All data were stored on SD cards, as the payload
was recovered with a helicopter. The overall experiment weight was 25kg.

Figure 3.3: Photograph of the BEXUS 12 gondola just before launch on 27th September 2011
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3 Measurement technique

3.2.2 Gondola system for small payloads

The BEXUS campaigns have the disadvantage that place and time of the launch are fixed and
cannot be influenced by the experimenter. Furthermore, the experiment has to go through a one
year long review process similar to what is usual in space projects. Thus participating in BEXUS is
laborious and inflexible. The launch of alarge balloon outside of BEXUS would be very expensive.
In order to get flexible flight opportunities, a small version of LITOS was developed which can be
launched with a weather balloon from every radiosonde station. To date, several launches from
Kithlungsborn (54° 07" N, 11° 46’ E) and Sodankyld (67° 22’ N, 26° 38’ E) were performed.

In contrast to BEXUS, where infrastructure is provided, for the small payload everything has
to be cared for by the experimenter. This includes balloon, parachute, packaging, and recovery
system. For the latter, a GPS tracker (NAL Research 9601-DGS-LP) which transmits the position
via Iridium satellite network is used. The tracker can be complemented with a radio beacon with
frequency 150 MHz. All equipment is packed in styrofoam boxes to protect it during impact and
to provide some thermal isolation. Details are given in the following subsections. Air traffic
regulations limit the overall weight to be flown without complex licensing and safety procedures
to 5kg. After subtracting the mass of the recovery system, parachute, unwinders, etc., roughly
3 kg remain for the instrument itself. Taking into account Wheatstone bridges, data acquisition
and batteries, the number of sensors is constrained to one or two.

First version: cubic payload

Initially (i. e. before the beginning of this work), the main experiment consisted of one CTA
sensor with Wheatstone bridge, data acquisition (Reimesch Communications), separate house-
keeping electronics with attitude sensors, and batteries; it was packed in a cubic styrofoam box
of 35 cm width and 30 cm height. Figure[3.4/shows a photograph. A camera was included to give
a visual impression of the attitude. The probe support sticks out on the top of the box. To orient
the box such that the CTA is oriented towards the wind (cf. Section3.1), a wind vane is attached
to the gondola. The orientation is desired due to the sensor’s directional change in sensitivity.
Two 50 m unwinders provide distance to the balloon to be out of its wake. The tracking system
is placed in a separate box directly below the balloon. The radiosonde hangs below the main
instrument with another 30 m unwinder. The left side of Figure [3.5[shows a sketch of the flight
train.

First flights yielded large gondola movements (see Section[3.3)). Apart from prominent pendu-
lum displacements, fast turns were observed. These could be reproduced in laboratory pendulum
tests of the gondola on a 3 m cord: the payload makes sudden 180° turns in mid-movement while
swinging back because a threshold velocity has to be exceeded for the wind vane to work. In or-
der to prevent those movements, two additional large wind vanes were added (see photograph in
Figure[3.6). In fact rotation and particularly quick turns were greatly reduced (see Section [3.3).
However, due to the large area exposed to wind pendulum motions were still quite large. To
further reduce the motions and because of wind tunnel results (see Section [3.4), a new payload
form was designed.
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3.2 Gondola system

Figure 3.4: Photograph of the initial LITOS payload in a cubic box with one windvane, launched on 1st
July 2010 from Kiihlungsborn
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balloon
A parachute A
6 IRIDIUM GPS tracker @

CTA sensor(s)
payload box / i

wind vane

radiosonde

Figure 3.5: Flight train for the small payload. Left: first version with cubic box. Right: second version
with spherical box.
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3.2 Gondola system

Figure 3.6: Photograph of the LITOS payload with three large windvanes, launched on 25th February
2011 from Kiihlungsborn
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Second version: spherical payload

Due to the problems with the cubic payload mentioned above and the results from the wind
tunnel experiments described in Section[3.4] it was proposed by the author to change the gondola
to a spherical shape. The idea is to minimise the area exposed to wind. Later, simulations with
a simplified model performed by confirmed that this is the best approach. The
integration of the components into the spherical styrofoam box was performed by|Soder [2014].
To further suppress movements, added rods sticking out of the gondola for the
suspension to increase the lever arm. The right side of Figure [3.5 shows a drawing of the new
design, Figure [3.7|a photograph. First flights confirm that gondola movements have decreased,
see Section[3.3]for details.

Concurrently, a new data acquisition electronics has been developed in-house based on the
student-developed board flown with BEXUS 12. It can sample two CTA/CCA simultaneously so
that the number of sensors can be increased to 2 while respecting the weight limit and solving
previous problems with the synchronisation of the data encountered at BEXUS. The electronic
noise was reduced to ~1 mV which is similar to the noise level of the CTA Wheatstone bridge.
Additionally, the board features a real time clock (RTC) to simplify merging the data with that
of the radiosonde and a new attitude sensor (ADIS16407) which combines a three-axial gyro-
scope, a three-axial temperature-compensated accelerometer, a three-axial magnetometer and a
pressure sensor in one chip.

Figure 3.7: Photograph of the spherical LITOS payload launched on 20th November 2014 from Kiih-
lungsborn. The cubic styrofoam box is not part of the payload, but is used for handling on the ground.
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3.3 Gondola movements

3.3 Gondola movements

Gondola movements during flight are not restricted to slow pendulum motions, but also include
large accelerations, e. g. due to wind forcing. Such a behaviour can be seen, e. g., on films from
video cameras flown with the payload. Those motions induce spurious apparent winds and thus
disturb the measurement. That problem had not been examined before this work. In order to
estimate the impact, the attitude is to be recon-
structed. That is a standard problem in avion-
ics, where the Attitude Heading Reference Sys-
tem (AHRS) determines the orientation along
the principal axes (see Figure [3.8). Basically,
there are two alternatives: measuring the atti-
tude with respect to an external reference (e. g.
the Sun or the magnetic field) or an inertial
measurement. The latter has the main problem
that small errors accumulate [Wertz, 1978, Sec-
tion 1.3]. Thus, typically data from several sen- roll axis
sors are combined with a Kalman or similar fil-

ter [Wertz [1978], although in principle the atti- Figure 3.8: Aircraft principal axes. Image source:
tude can be reconstructed by integrating a rota- Wikipedia

tion measurement.

In many low-cost environments, three-dimensional rotation, acceleration and magnetometer
sensors are used [e. g. Kraft, 2002, |Claussen, 2008]]. The estimation from the gyroscope is cor-
rected by the measurements of the other sensors. Specifically, the acceleration sensor is assumed
to measure mainly gravity and thus used to correct the roll and pitch angles but provides no in-
formation on the yaw angle. Similarly, the magnetic field direction provides information on the
yaw angle but not on the roll angle.

On the LITOS payload, rotation, acceleration and mag-
netometer sensors have been included (cf. Section 3.2). A
temperature-induced drift of the measured acceleration in
the first version of the sensor (ADIS16350) and possible tilted
mounting are corrected. To reconstruct the gondola attitude,
the algorithm developed by|Claussen|[2008] has been chosen
for its simplicity. Expected movements are mainly pendulum
motions, thus displacement and azimuth angles as defined in
Figure [3.9 are computed. The gyroscope is specified with a
noise of 0.6 °s™! RMS, so the accuracy of the attitude is ex-
pected to be 1° to 2° at best. The error is difficult to quantify
because the algorithm has complex inherent dynamics. To
test the method, the data acquisition box was put in known
attitudes in the laboratory and additionally exposed to pen-
dulum motions using a 3 m string and known initial displace-

pitch axis
~

V..
yaw axis

Figure 3.9: Definition of the dis-
placement angle ¢ and the azimuth
angle 9
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ments. The known attitudes were reproduced with the expected accuracy given above, and the
oscillation period differed by ~0.1's to the theoretical ond]of 3.5 s and to the measurement with
a stop watch for 10 periods. The details are given in Appendix|C|

As described in the previous section, there are four types of gondolas: the large payload (BEXUYS)
and three shapes of the small payload (cubic with one wind vane, cubic with three wind vanes,
and spherical). For each type a representative flight has been selected. For these four flights the
displacement angle ¢ and the azimuthal angular velocity 9 are plotted in Figures
and respectively.

For the heavy BEXUS payload, the displacement angle is in the order of the accuracy of the atti-
tude measurement, i. e. it hung “like a stone” without significant pendulum motions (Figure[3.10}
left panel). Concurrently the gondola slowly rotated around the yaw axis (middle panel) with
an angular velocity typically below 4.5 °s™! (right panel), i. e. a 360° turn lasts > 80s. As can be
seen in the middle panel, there was no preferred direction. These slow movements take place on
much larger time scales than the CTA and CCA measurement which they are thus assumed not
to affect.

In contrast, the first version of the small payload made large pendulum motions reaching dis-

1 assuming a mathematical pendulum with small displacements, i.e. T = 271\/2 , where [ is the length of the cord
and g the acceleration of gravity

rms = 0.4° o=45°s"

30 T T 30 | | | 30 il | | L i

} f | f | ;

25 - 25 | . 25 | -

20 | i 20 - g 20 3 -

g i g ] ‘ i

L 15 . Y 15 g 15 3 B

E i =N - £ 3 i

® 10 - T <10 i

] B ] i k|

5 7 ’ > E :* 5 E 0

07“”\””\HH7 07‘\‘\‘\_‘7 07“‘}“‘7

0 10 20 30 0 90 180 270 360 -180-90 0 90 180
displacement angle ¢ / deg azimuth angle 9 / deg angular velocity 9 / deg/s

Figure 3.10: Attitude for the BEXUS 8 flight launched at Kiruna at 10th November 2009. Left: displace-
ment angle (blue) and rms (red). Centre: azimuth angle. Right: rotation around the azimuth axis (blue)
and mean plus/minus one standard deviation (red).
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Figure 3.11: Same as Figure 3.10} but for the cubic payload with one windvane launched at Sodankyli at
5th August 2010.
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Figure 3.12: Same as Figure|[3.10, but for the cubic payload with three large windvanes launched at Kiih-
lungsborn at 25th February 2011.
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Figure 3.13: Same as Figure [3.10} but for the spherical payload launched at Kithlungsborn at 20th
November 2014.

placements of up to ~20° (Figure left panel). Additionally, some fast turns in azimuth angle
were observed (centre panel), featuring large angular velocities (right panel). These are explained
as follows: When the gondola swings back in pendulum motion, the wind vane turns it 180°. But
due to the velocity threshold needed for the wind vane to work, that does not happen at the ex-
trema but in mid-movement, i. e. at first the gondola moves with the wind vane at front. Such
motions have been reproduced in laboratory tests with the payload hanging on a 3 m cord. Thus
the single wind vane does not have the desired effect, but introduces additional problems. When
zooming in (see Figure it can be seen that the movements of the payload were quite quick
which comes along with large accelerations. These induce apparent wind fluctuations which
disturb the CTA measurement. Only limited sections of the sounding are usable, and any semi-
automatic evaluation of the data is prohibited.

The next approach was to prevent quick movements by greatly increasing the area exposed to
wind in order to use its breaking effect. In fact, the large wind vanes effectively prevented rotation:
the rms of 9 is halved in comparison to the gondola with one wind vane (see Figure centre
and right panels). Moreover, there were less pendulum motions with less amplitude, and they
were less quickly (right panel, see also Figure [3.14). Due to the lower acceleration, the data is
disturbed less, even though the rms of the displacement angle ¢ is larger. Apart from the still
relatively large pendulum angles, the payload with the large wind vanes is bulky and difficult to
handle.

The new spherical payload was designed to behave as similar to the heavy BEXUS payload
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Figure 3.14: Detailed plot for the displacement angle for flights with different small gondolas. Left: cu-
bic payload with one wind vane. Centre: cubic payload with three large wind vanes. Right: spherical
payload. The red vertical line in each panel shows the rms (over the whole flight).

as possible, i. e. the ratio between the area cross-section and weight was reduced as much as
possible. Furthermore, the suspension was changed by |Soder [2014] to rods sticking out of the
gondola to increase the lever arm. As can be seen in Figure (left panel), that resulted in
much less pendulum motions, which are similar to BEXUS and in the order of the accuracy
of the measurement, after initial movements induced by the launch procedure have subsided.
The huge improvement compared to the cubic shape is particularly visible in the detailed plot
in Figure As a drawback rotation has greatly increased (centre panel of Figure [3.13); it is
much faster than for BEXUS due to the much lower inertia of the small gondola. On the other
hand, the movement is smooth without large accelerations (right panel) because the form has no
preferred direction; thus the disturbance of the measurement is small. The spherical form gave
the best data from a small payload so far.

To compare the behaviour of the different gondolas quantitatively, the root mean square (rms)
has been computed for the displacement angle and the standard deviation for the azimuth an-
gular velocity. Those two quantities are presented in Figure The BEXUS platform with its
large weight has the best performance, both for pendulum motions (rms = 0.4°) and rotation
(0 = 4.5°s7!). For the small payload, the first version has the worst performance with large
pendulum motions with rms = 2.8° and fast rotation (¢ = 24.1°s™!). The new spherical form
with its higher weight to area ratio is a tremendous improvement with pendulum motions with
rms = 0.9°, i. e. only slightly inferior to BEXUS. The rotation with ¢ = 20.7 °s™! is also lower than
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Figure 3.15: Comparison of the movements of the different types of gondolas. Top: rms of the displace-
ment angle ¢. Bottom: standard deviation of the azimuth angular velocity ¢(9).

for the first version, but still significantly larger than for BEXUS. The best azimuth orientation is
observed for the payload with large wind vanes, where the absolute orientation mostly remains
within a band of ~ 90°. The angular velocities with o = 12.4°s™! are higher than for BEXUS, but
still lowest for the small payload. However, it is bulky and difficult to handle. It should also be
kept in mind that the smoothness of the motions is very important, but is not covered by the
parameters rms and o.

Summarising, the new spherical shape of the payload results in a vast reduction of spurious
motions of the gondola; especially large accelerations were reduced. For that reason data quality
has significantly improved.

3.4 Wind tunnel experiments

The turbulence measurement can also be disturbed by the modification of the geophysical flow
by the gondola itself. For example, turbulence can be generated when air flows over the edge of
the box. Such effects on LITOS had not been examined before this work. In order to check the
influence of the gondola system on the measurement, wind tunnel experiments were performed
at the facilities of the Chair of Fluid Dynamics at the University of Rostock (LSM) in March 2011.
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3.4 Wind tunnel experiments

To this end, a 1:3 model of the gondola at that time (i. e. the cubic form with one wind vane)
was built from aluminium, yet a real CTA sensor was placed at the scale location to enable a real
measurement (cf. photographs in Figure [3.16)). The model was exposed to a laminar flow with
constant velocity, and the flow was examined for several gondola attitudes.

For a qualitative view, the flow was made visible with smoke. For this experiment the wind
tunnel was operated at 1ms™. This corresponds to a Reynolds number of ~6500, i.e. typical
conditions at ~20 km altitude. Larger wind velocities (representative of conditions, e. g., near

Figure 3.16: Streamline photographs of the Reynolds-scaled model of the cubic LITOS payload with
pitch angles of 0° (top left), 15° (top right), —45° (bottom left) and —90° (bottom right). Roll and yaw
angles are 0°. The laminar flow velocity was 1 m s™!, which corresponds to a Reynolds number of ~6500,
i. e. typical conditions at ~20 km altitude.
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3 Measurement technique

ground) have not been realised because too large velocities dissipate the smoke (i. e. the stream-
lines are no more visible). Figure shows photographs for pitch angles of 0°, 15°, —45° and
—90°. Roll and yaw angles are 0°. The photographs show that the streamlines are bent by the
cube. If the pitch angle is larger than ~15°, the CTA can either measure turbulence induced by
the flow over the edge of the gondola or air shadowed by the edge (top right panel), and thus not
the atmospheric flow. If the pitch angle approaches —90°, the sensor is in the stagnation area of
the cube (bottom right panel).

Of particular interest is the wire response. As a worst case estimate, an experiment was con-
ducted to quantify for which angles of attack gondola-induced turbulence from flow over the
edge is observed. The model was tilted around the pitch and roll axes in 5° steps between —5° and
45° for yaw angles of 0°, 20°, and 45°. For each position a 10 s time series of the CTA voltage was
recorded with a sampling rate of 30 kHz using a Wheatstone bridge and A/D converter system
provided by LSM. The wind tunnel was operated at 6 m s™! which corresponds to 2 m s for the
real gondola near ground; that is in the order of a typical horizontal apparent wind during flight.

As an estimation of the intensity of turbulence, the mean of the power spectral density between
90 Hz and 300 Hz is plotted colour-coded in dependence of pitch and roll angle for yaw angles
of 0° and 45° in Figure It is quite low for angles less than ~20° (laminar flow on the wire)
and strongly increases for larger angles (flow over the edge of the box).

yaw angle 0 degrees yaw angle 45 degrees

roll angle / degrees
roll angle / degrees

0 10 20 30 40 0 10 20 30 40
pitch angle / degrees pitch angle / degrees
HE
10°¢ 10-° 10-* 10-3
intensity

Figure 3.17: Mean of the power spectral density between 90 Hz and 300 Hz as a measure of the intensity
of turbulence in dependence of the pitch and roll angle for a yaw angle of 0° (left) and 45° (right) of the
gondola model.
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3.4 Wind tunnel experiments

During flight the flow has a typical angle of attack of ~—80° (5 m s™! ascent rate, ~1 m s~ wind
shear) (not shown in Figure 3.17). That means normally the flow is not affected by the gondola.
Nevertheless, during large pendulum motions as described in the previous section, disturbances
cannot be excluded. As a consequence, the payload form was changed in order to affect the flow
less. Since during flight the angle of attack cannot be controlled, a spherical form has been chosen
because it has no preferred direction.

To enable a direct comparison of both shapes, the streamlines have been visualised for the new
payload form, too. Figure shows photographs for the same angles of attack as Figure
depicts for the cubic payload (excluding —90°). For the new shape the streamlines are bent less
and are closer to the body; the flow is affected much less. Especially, while for the cubic form it is
strongly dependent on the angle of attack whether the measurement is disturbed by the gondola
or not, the spherical form does not have such a dependence. Therefore the spherical shape is
preferred over the cubic one.

As shown in Section the payload shape without edges and wind vanes results in calmer
flight. That means that the performance of the new spherical payload is best for both attitude
and possible modification of the geophysical flow. Turbulence data from the spherical payload is
shown in Section[5.4l
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Figure 3.18: Streamline photographs of the Reynolds-scaled model of the spherical LITOS payload with
pitch angles of 0° (top left), 15° (top right), and —45° (bottom). The laminar flow velocity was 1ms™.
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In this chapter it is specified how the geophysical parameters interpreted in the next chapter are
obtained from the raw data measured by the instrument described in the last chapter. Particu-
larly, the energy dissipation rate ¢ is of interest. The method to derive ¢ from wind or temperature
fluctuations with spectral analysis is detailed in Section[4.1, and errors are analysed. Furthermore,
in Section 4.2|a method used in the literature to infer energy dissipation rates from standard ra-
diosondes is outlined. The results from both methods are compared in Chapter[5} Section
briefly describes the setup for model simulations used for the interpretation of the geophysical
background during the BEXUS 8 and BEXUS 12 flights.

4.1 Determination of the energy dissipation rate with
spectral analysis

As mentioned at the beginning of Section[2.3Jon page[l0} a direct computation of ¢ with definition
is not feasible, because it contains the derivatives of the velocity which has to be computed
at the Kolmogorov microscale where the atmospheric fluctuations are below the instrumental
noise level. Therefore an indirect method with spectral analysis is used.

The temporal spectrum (2.20) is the Fourier transform of the autocorrelation function (2.19)
of velocity or temperature fluctuations with respect to the time variable. Thus (in view of the
Wiener-Khinchin theorem) it is the power spectral density (PSD) of the velocity or temperature
fluctuations. Therefore, the spectrum W in the form given in or can be fitted to
the power spectrum of measured wind or temperature fluctuations, respectively. To this end, the
inner scale of turbulence needs to be resolved. LITOS is designed to perform that for typical
stratospheric conditions.

As noted in Section LITOS does not measure absolute velocities, because the calibration
of the CTA sensor for all possible ambient conditions in the troposphere and stratosphere is not
feasible. However, the effect of the calibration on the PSD is mainly a scaling of the absolute
value, but the derivation of the energy dissipation rate does not depend on the absolute value of
the PSD, only on identifying the position of the bend between inertial and viscous subrange. Thus
an additional multiplicative fit parameter which covers the unknown calibration is introduced
for velocity fluctuations. [Theuerkauf [2012, Appendix C] examined the impact of CTA sensor
sensitivity on the PSD and found it negligible.

For temperature fluctuation, no such problem arises because the calibration of the CCA sensor
does not depend on pressure or wind velocity. The thermometer voltage is converted to temper-
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4 Data analysis technique

ature prior to data analysis. This step is important to obtain reasonable values of the thermal
dissipation rate y from the fit, because y crucially depends on the absolute value of the PSD.

There are different possibilities to obtain the power spectrum from the measurements. On
the one hand, after the choice of a suitable window, the periodogram W as an estimation of the
power spectrum can be computed directly with Fourier methods. The periodogram is called an
estimation of the true PSD because only one realisation of a stochastic process is observed. De-
tails are given in Section[4.L1} On the other hand, power spectral densities can also be computed
with wavelets [e. g. Torrence and Compo}[1998]. Section[4.1.3|covers this topic. For the evaluation
in Chapter|[5} the Fourier method is used because the noise level detection is more stable.

4.1.1 Spectral analysis using Fourier technique

Figure 4.1 shows an example of wind and temperature fluctuations from the BEXUS 8 flight.
Large-scale motions have been removed by subtracting a spline. Large fluctuations, e. g. between
~16 086 m and 16 152 m, represent turbulence. The small amplitudes of ~2 mV or ~0.1 K, respec-
tively, e. g. from 16.06 to 16.08 km, are due to instrumental noise and correspond to a calm region.
'Theuerkauf [2012, Section 4.2] used the magnitude of the fluctuations to identify turbulent re-
gions and inferred statistics of layer thickness and distance.

wind fluctuations temperature fluctuations

16.18 t
16.14 B 16.14 | i

16.08; ¥ ; 16.08 7
16.06% 16.06*

T — T
-30 -20 -10 0 10 20 30 -1 -0.5 0 0.5 1
voltage / mV temperature / K

16.18

16.16 - ii - 16.16 -

altitude / km

altitude / km

Figure 4.1: Example of measured wind (left) and temperature (right) fluctuations from the BEXUS 8
flight. An amplitude of $2mV or 0.1K, respectively, corresponds to instrumental noise. The green shad-
ing marks turbulent regions for which the power spectral density is shown in Figure The grey shad-
ing marks the non-turbulent region for which the spectrum is shown in Figure 4.4] The vertical knot
distance of the smoothing spline subtracted to extract the fluctuations is 0.1 m.
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4.1 Determination of the energy dissipation rate with spectral analysis

For the turbulent layer from 16 086 m to 16 152 m (shaded green in Figure[4.1) the periodogram
W is computed with a von Hann window after the removal of a linear trend. Please note that the
detrending is different than the spline removal shown in the raw data plot in Figure The
resulting PSD is smoothed with a (linear) running average over 31 data points. The averaging re-
duces the uncertainty in the power spectrum estimate [DelSole and Tippett, 2014]. The resulting
spectra are shown in Figure[4.2] (blue and red curves in the top and bottom panels, respectively).
The grey dotted lines mark the 95 % confidence levels computed as described by |DelSole and
Tippett [2014]. A —5/3 slope describing an inertial regime and the transition to the viscous sub-
range with —7 slope are identified. The -7 slope is not reached due to noise and the smoothing
procedure, as can be seen with artificial spectra (cf. the description of artificial spectra at the
end of Section [4.1.2). However, it is only important to locate the kink in order to determine I,
The part at spatial scales smaller than ~10~2 m with approximately constant PSD corresponds to
the instrumental noise level. As the transition between inertial and viscous subrange is resolved,
the turbulence model or (2.28)), respectively, can be fitted to the data. Prior to fitting, the
instrumental noise level has to be detected and the fitting range adapted accordingly. The PSD
value of the noise level (green horizontal line in Figure is estimated from the median of the
PSD between a third of the sampling frequency, f;/3, and the Nyquist frequency, f;/2. This high-
frequency part of the spectrum typically shows instrumental noise only. The median is robust to
potential disturbances in form of spikes. The small-scale end of the fit range is then chosen as the
spatial scale where the PSD first falls below the noise level (starting from large scales), because
aside from small-scale fluctuations the PSD typically decreases with increasing frequency until
the noise level is reached. The large-scale fit limit is set arbitrarily to 2 m spatial scale; this is
well within the inertial range even for very small dissipation rates. The noise level is subtracted
from the periodogram before fitting. PSD values that are below the noise level (i. e. negative after
noise level subtraction) are omitted. In Figure (4.2 the fit curve has an apparent positive curva-
ture (i. e. it “bends” towards higher PSD values) at the small-scale end (particularly visible in the
top panel). This is due to the added constant offset of the noise level to the fit function prior to
plotting. To show that this artefact of the depiction is not present in the fit, the velocity spectrum
from Figure[4.2] (top panel) is displayed with subtracted noise level in Figure[4.3} i. e. as used for
performing the fit. Therein the fit function always has negative curvature.

The fit is performed with logarithmic data. Let W, , denote the theoretical spectrum (2.27)
or (2.28), which depends on frequency w = 27 f and the parameter I, and y. Please remember
that for velocity fluctuations an additional multiplicative factor is added to to care for
the unknown calibration. For simplicity, this constant is also called y in this section, but has
no physical meaning—in contrast to y from temperature fluctuations which denotes the thermal
dissipation rate. The fit parameter (a, b) := (log Iy, log y) are obtained by fitting the function x ~
W, (x) 1= log Wyga 105 (10%) to the measured data (x, y) = (log2nf,log W), where f denotes
frequency and log the logarithm to the base 10. To this end, the standard x* measure

i (log VV, —log I/Vlog lo,logx(lologﬁ ))2
2
=1 0

(4.1)
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Figure 4.2: Example of spectrum and fit for the determination of the dissipation rate for velocity (top)
and temperature (bottom) fluctuations. The blue and red curves, respectively, show the measurements,
the grey dotted lines the 95 % confidence interval. The cyan and orange curves show the fits of the
Heisenberg model to the measured spectra, the vertical lines of the same colour indicate the inner scale
lp. The green dashed lines visualise slopes of —5/3 and -7 to guide the eye. The light green horizontal
and vertical lines show the detected noise level and the fit limits, respectively.
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Figure 4.3: Example of the spectrum of velocity fluctuations from Figure|4.2} top panel with noise level
subtracted, i. e. as used for performing the fit. Curves and lines as in Figure

[James and Winkler, 2004} [Eadie et al., 1971, Section 8.4] is minimised with CERN’s MINUIT
software, where W is the observed periodogram at frequency f;, o; the standard deviation of
the measurement log W;, and N the number of data points in the spectrum. The measurement
error o; is dealt with in the next section. The symbol x? should not be confused with the thermal
dissipation rate y. The fit result for the examples is shown in Figure 4.3/ as cyan curve and in
Figure 4.2|in the top and bottom panel as cyan and orange curve, respectively.

In the example, the resultant dissipation rates from wind and temperature fluctuations disagree
by roughly a factor of 55. This is more than the uncertainty of the ¢ determination which is
roughly a factor of 4 (see next subsection). The relation between ¢ values obtained from wind
and temperature measurements is discussed in Section

The procedure contains several improvements compared to that used by Theuerkauf| [2012].
The methods to detect the noise level and choose the fit range were modified. The fit algorithm
used by/Theuerkauf|[2012] (MATLAB’s Isqcurvefit function which minimises a different quantity
than MINUIT) does not return a fit error and does not depend on the input error, thus it was
replaced. Additionally to the new features, the performance of the fit is better.

In order to obtain an altitude profile of energy dissipation, a sliding window of 5 m altitude
with 50 % overlap is used, i. e. the resulting profile has a vertical resolution of 2.5m. For each
window, the periodogram is computed with a Hann window after the removal of a linear trend,
the spectrum is smoothed and the fit of the turbulence model is performed as described above.
Then a set of criteria is applied to sort out non-turbulent spectra which manifest as bad fits. An
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example of a non-turbulent spectrum (from the calm region shaded grey in Figure4.1)) is shown
in Figure[4.4] The criteria are:

(a) The noise level estimation fails.
(b) The inner scale ], is outside the fit range.
(c) € hasan implausible value (e < 0 or ¢ > 100 W kg™).

(d) The mean logarithmic absolute difference between fit and data is larger than a threshold
of 0.4.

(e) I is larger than a threshold of a 25th of the window length. For such large inner scales
the fit is dominated by too few data points. This kind of criterion describes a technical
minimum and was introduced by |Soder| [2014, Section 4.2].

The criteria are extended compared to those used by [Theuerkauf [2012]. For spectra that are
sorted out, ¢ is set to zero. Figure [4.5depicts a part of the ¢ profile from velocity fluctuations of
the BEXUS 8 flight. The shading marks the layer that is shown in Figures and[4.3]
Oboukhov]|[1962] and Kolmogorovi [1962] hypothesised that dissipation rates follow a lognor-
mal distribution. This supposition was later derived more rigorously by |Gurvich and Yaglom
[1967]] by using Kolmogorov’s breakage theory [Kolmogorov, 1941b|] and introducing a scale-
similarity law for e. Basically, the volume averages ; in a nested set of volumes V; with V., c V;

wind 16 060 m to 16 075 m
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Figure 4.4: Example of a spectrum of a non-turbulent region
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Figure 4.5: Part of the altitude profile of energy dissipation from velocity fluctuations for the BEXUS 8
flight. The shading marks the layer that is shown in Figures and

are considered, and the random variables ; are assumed to be mutually independent and identi-
cally distributed so that the central limit theorem can be applied. See Yamazaki and Lueck|[1990,
Section 2] for a review of the theory. The distribution was experimentally confirmed, e. g., by
measurements in the boundary layer by Freytag [1978]. According to Ulrich Schumann (DLR)
[private communication], it is a quality criterion for a measurement of atmospheric dissipation
rates to reproduce that distribution. Figure [4.6/show histograms of dissipation rates for the tro-
pospheric and stratospheric measurements of the BEXUS 12 flight. In the stratosphere, the data
shows good agreement with a lognormal distribution. In the troposphere, however, an addi-
tional “shoulder” at small rates is present. The cause for this feature is yet unknown and has to
be further investigated.

The importance of the criterion [(e)| for a well-behaved distribution of ¢ is illustrated in Fig-
ure Especially for BEXUS 8, a second band with very small dissipation rates appears which
mainly consists of bad fits. These are filtered out by the criterion[(e)| (grey area in the plot).

Turbulent layers are determined from the ¢ profile by finding connected sections where none
of the criteria listed above applies, i. e. where € > 0. In order to care for outliers from bad spectra
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Figure 4.6: Histograms of tropospheric (left) and stratospheric (right) dissipation rates obtained with
a 5 m window from the measurements of BEXUS 12. The red curves show most likely normal distribu-
tions of the logarithmic ¢ data.

caused by disturbances, layers separated by only one non-turbulent window (i. e. data point in
the profile) are treated as one.
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Figure 4.7: Altitude profiles of dissipation rates for the BEXUS 8 (left) and BEXUS 12 (right) flights
before application of the criterion (e)] for the technical minimum. The grey shading marks those data

points that will be eliminated by the criterion. The red curve shows the theoretical minimum by |Libken
(1993].

4.1.2 Error analysis

For the fit the measurement noise variance o7 of the logarithmic PSD is needed, but its es-
timation proves difficult. In principle, a statistical treatment of the logarithmic data is necessary,
but some integrals arising in this context cannot be solved with elementary methods. However,
as will be shown later the statistical error is much smaller than the error resulting from the choice
of the fit range. To circumvent the difficulty in computing ¢7, it is helpful to notice that the con-
fidence intervals (in linear space) are proportional to the PSD. Thus the logarithm of the ratio of
the upper confidence interval to the PSD is additive in logarithmic space, and it does not depend
on frequency. That leads to the idea to use it as input error o; for the fit. This is not equal to the
variance of the logarithmic data but should be in a similar order of magnitude.

Now the error for the result for the inner scale [, is analysed, which has not been done before for
this method. The resulting fit error in I, for the example in Figure[4.2]is +0.006 cm and +0.005 cm
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for the top and bottom panel, respectively. The interval is much smaller than expected, in fact
so small that in the figure it is inside the thickness of the line marking /,. Similar small fit errors
are generally observed. Of course, the fit error crucially depends on the absolute value of the
measurement error o; used as input for the fit, which is not known precisely, see above.

Error due to the choice of the fit limits and the noise level subtraction

In practice, however, the error resulting from other sources, e. g. the choice of the noise level or
the fit limits, is much larger than the statistical error which manifests as fit error. This will be
illustrated with an example of a typical spectrum. Since many spectra are similar, the results are
representative for most cases. The fit limits and the noise level subtraction are individually varied
and the impact on the fit result is quantified.

First the dependence of the fit result for the inner scale on the choice of the small-scale fit
limit is considered as shown in Figure By eye, the transition between geophysical signal
and constant instrumental noise level is visible, but due to the oscillations in the PSD and the
numerous possibilities for disturbances, the automatic procedure described in the last subsection
does not always find the optimal result. To estimate the error, the small-scale fit limit is varied by
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Figure 4.8: Dependence of the fit on the variation of the small-scale fit limit. The blue curve denotes
the measured spectrum. The dark green dashed line shows the default choice of the small-scale fit limit
while the magenta and yellow ones correspond to a lower or higher one. The solid curves of the same
colour represent the respective fit and the solid vertical lines the corresponding inner scale. The light
green lines mark the default large-scale fit limit and noise level.
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4.1 Determination of the energy dissipation rate with spectral analysis

35 % and the respective fits are performed. The variation is chosen by eye as what would still be an
appropriate choice of the point where the spectrum enters the noise level band. The dark green
curve represents the default choice as described in the last subsection. If the limit is at too small a
scale, the fit extends to the region with approximately constant PSD (noise), but such a behaviour
is not described by the fit function. (The apparent positive curvature of the fit function at the
small-scale end is due to the depiction with added noise level, see previous section, particularly
Figures[4.2]and[4.3]) That leads to a fit that does not describe the data very well (magenta curve
in Figure [4.8). If the limit is too far at large scales, the fit range is shortened and potentially
the transition in the spectrum representing the inner scale is not completely within the range
any more (orange curve). The results for the inner scale [, vary by ~20 %, much more than the
statistical fit error. In terms of ¢, that corresponds to roughly a factor of 2.

To quantify the dependence on the choice of the large-scale fit limit, that limit is varied by a
factor of 5. Similar to the case above, the variation is chosen by eye as what is still well within the
inertial subrange. The resulting fits are presented in Figure[4.9] Mostly, the slope of the spectrum
does not change very much at the large scales resolved for typical window lengths. Additionally,
the density of data points on a logarithmic frequency scale is much smaller on large scales than
on small scales; thus the fit is affected less by the large scales. Hence the expected impact on the
fit result is low. This is confirmed by the example where the variation of [, is only about 7 %. That
corresponds to ~20 % in ¢.

Finally, the influence of the noise level subtraction is discussed. The noise level is a band with

BEXUS 12 CTA4 10 285 m to 10 295 m
TTTT T TT T T T T
I

—_
<
=)}

T 102 2.0e+00 m |
E = 10 =6.5e-02 m

> 4.0e-01 m

oy = 10=6.1e—02m

E 10—4 |
8 1.0e+01 m

= = 10 =6.7¢e-02 m

o

o

2

)

a.

‘Ah‘ ’ .
H | VT Y N

_
S
&

102 1073

—_
=)
—
(e}

(=]
—_
<

spatial scales / m

Figure 4.9: Dependence of the fit on the variation of the large-scale fit limit. Analogous to Figure
but the three colours dark green, magenta and yellow mark three variations of the large-scale fit limit.
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Figure 4.10: Dependence of the fit on the variation of the subtraction of the noise level. The green,
magenta and orange curves represent the fits obtained for the noise level subtraction shown with the
dashed horizontal lines of the same colour. The respective solid vertical lines visualise the resulting in-
ner scales. The light green vertical lines mark the fit range.

a thickness of roughly half an order of magnitude with irregular varying boundaries. Thus the
choice of the noise level value is not unique. Figure shows the fit results for three choices.
The green curve represents the default choice of the median between f;/3 and f;/2 described in
the last subsection. The magenta and orange curves correspond to 50 % lower or higher ones,
respectively. The amount of the variation was chosen visually as what still describes the noise
level band. The impact on [; is ~20 %. This corresponds to roughly a factor of 2 in e.

Altogether, due to the described variation in noise level and fit limits, [, varies between 4.0 cm
to 7.8 cm, i. e. by ~40 % compared to the default choice. This results in an uncertainty in ¢ of a
factor of 7!

Error analysis using artificial spectra

The approach presented above does not consider the inherent dynamics of the automatic routines
for the noise level detection and the choice of the fit limits. Thus another approach is used to
get an impression of the impact of these routines. Artificial spectra are generated by adding
noise to theoretical spectra with random [; those are processed just like the measured ones, and
the obtained [/, and ¢ are compared to the original ones. Generally, the theoretical spectrum is
disturbed by a combination of measurement noise and atmospheric variability due to the fact
that only one realisation of a random process is observed. The instrumental noise is modelled
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4.1 Determination of the energy dissipation rate with spectral analysis

by Gaussian white noise. The atmospheric part is in principle unknown, thus it has been chosen
such that the artificial spectra are similar to the measured ones. The choice is a normal distributed
noise with standard deviation proportional to the PSD value.

An example is shown in Figure[4.11} From 100 000 realisations, disregarding those ~10 % where
the fit is sorted out due to the criteria named in Section [4.1.1, a mean absolute value of relative
error in ¢ of roughly 1.5 is obtained. For 90 % of those realisations, the relative error is below
0.9, and for 95 % it is below 1.9. Figure presents a histogram of the relative error for all
realisations. The largest obtained error was 15000 due to the incorrect detection of the small-
scale fit limit, but there are only a few outliers with a relative error above 4. The mean relative
error in [y is larger than 0, as is the median. That means that the retrieval gives by trend too large
an inner scale and thus too small a dissipation rate. That is respected in the histogram for the
error in ¢ by the fact that most values lie below 0. The median is —0.4. The mean error, however,
is positive due to few outliers with much too large e.

Summing up, a relative error in the dissipation rate ¢ of roughly 1.5 is expected due to the
imprecise choice of noise level and fit limits. Some sporadic spectra are likely to have a greater
error (outliers). When looking at the ratio of determined and theoretical values, the geometrical
mean error in ¢ is a factor of 4.

Moreover, the uncertainty in the constant ¢;, in results in an additional possible bias in
&, see Section[2.3
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Figure 4.11: Example of an artificial spectrum used for a sensitivity study to estimate the error in [ and
e. The blue curve shows the spectrum, the red one the fit, the vertical red line the inner scale, and the

green lines are as in Figure
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Figure 4.12: Relative error of Iy (top) and ¢ (bottom) obtained for 100 000 artificial spectra with random
lyo. The blue vertical line shows the mean, the red one the median. In the bottom panel, the error scale
changes from linear to logarithmic at a value of 10 in order to include outliers.
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4.1 Determination of the energy dissipation rate with spectral analysis

4.1.3 Spectral analysis using wavelets

As mentioned before, the power spectral density can also be computed with wavelets. After the
choice of an analysing wavelet y, the continuous wavelet transform (CWT)

oo

Wu(a,b) = |a]* [ u(t)w(%) dt (4.2)

[Daubechies, 1992, (1.2.1)] decomposes the signal u into a time-frequency representation in de-
pendence of the wavelet scale a and the time shift b. The wavelet power is defined as

Wu(a, b)|* (4.3)

[Torrence and Compo, 1998, Section 3d]. The wavelet power comprises a power spectral density
in dependence on frequency and time (respective space). A further advantage compared to the
windowed Fourier technique is that the support of the wavelet

suppy = {t ¢ R:y(t) # 0}

(which is comparable to the window size in windowed Fourier analysis) scales with wavelet scale
a, so that for fine scales only local details are resolved. Wavelet scale a is connected to frequency

f via
f(a) = % (4.4)

[analogous to [Torrence and Compo, 1998, Section 3h], where f. is the centre frequency of the
analysing wavelet.

Figure shows the wavelet power spectrum for the BEXUS 12 flight computed with the
analysing wavelet with v, = 6 after removal of a running average. The thin horizontal lines
of higher PSD make the thin layers directly visible. Remember that for larger dissipation rates,
the power spectrum drops below the noise level at smaller scales (i. e. higher frequencies). For
instance, above ~10 km the spatial scale where the PSD first reaches the noise level (dark blue in
the colour code) drops to larger spatial scales. This corresponds to a drop in dissipation rate as
described in Section The peaks on very small spatial scales of a few millimetre correspond
to high-frequency electronic disturbances. Those do not affect the data evaluation because they
are well outside the fit range.

A magnified part from 9.8 km to 10.3 km is depicted in Figure for better visibility of the
details. It demonstrates the advantage of the time-frequency representation that allows the iden-
tification of turbulent layers without the choice of a window.

In order to obtain energy dissipation rates, the global wavelet spectrum for a given altitude
window is computed which consists of the mean of the wavelet power over altitude (i. e. time)
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scales, thus the intermittency featuring thin turbulent layers is visible in the figure.

[Torrence and Compo, 1998, Section 5a]. A turbulence model can be fitted to such a spectrum

similarly than for Fourier spectra (see Section [4.1.I). An example is presented in Figure [4.15
An advantage compared to the Fourier spectrum is that the data points are equally spaced in
logarithmic frequency space. That means that the fit is equally determined by all scales and not
dominated by the small scales as in the Fourier case.

A problem with wavelet spectra is that the noise level detection does not work reliably, al-
though a few alternative methods using the derivative of a spline fit have been tested. Potentially,
that can be solved by new methods, e. g. with overlapping linear fits; however, that is outside the

scope of this work. Thus, the Fourier analysis is used for the evaluation shown in Chapter|[5]

50



4.1 Determination of the energy dissipation rate with spectral analysis

10.3

1e-05
1e-06
10.2 T
- 1e—07 E
£ 101 le-08 2
2 F1e—09 =
2 2
s 10 e-10 5
E
le=11 =
9.9 2
le-12
9.8 le—13

1 0.1 0.01
spatial scales / m

Figure 4.14: Magnification of the wavelet power spectrum from 9.8 km to 10.3 km for the BEXUS 12

flight. It shows that by using wavelet techniques the extent of turbulent layers is visible without having to
chose a window.
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with fit of the turbulence model (2.27) (red curve). The red vertical line shows the resulting inner scale
Iy, the other lines are as in Figure
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4.2 Thorpe analysis

Recently, turbulence studies with standard radiosonde data were published. Those sondes have
a vertical resolution of roughly 10 m, i. e. much larger than that of LITOS, cf. Section 3.1, For that
kind of analysis, Thorpe’s method has been used. In order to compare this approach with the
high-resolved measurements of LITOS, it is applied to the data of radiosondes on LITOS flights.
The method and necessary data processing are described below. Results using this method and
a comparison to those from spectral analysis are shown in Section 5.5

4.2.1 Basic principle

Thorpe [1977] proposed a simple method for the indirect measurement of turbulence in oceans
and lakes, which was adapted to the atmosphere by |Luce et al,|[2002]] and (Clayson and Kantha
[2008]. It uses static instabilities as a proxy. Stability can be measured by the gradient of the po-
tential temperature ® := T (%)R/ ‘%, where ps = 1000 hPa is a reference pressure, R = 287 J kg™
the specific gas constant for dry air and ¢, = 1003]Jkg™' K the specific heat capacity of air at
constant pressure. In a stably stratified atmosphere, ® is a monotonously increasing function
of altitude. If, locally, the potential temperature has a negative gradient, a static instability is at
hand. Such an instability drives natural convection and turbulence, although it need not be the
original driving process, but could be created, e. g., by three-dimensional wind-shear. Since tur-
bulent motions tend to remove the gradient in potential temperature, the method cannot detect
turbulence at late stages.

The essential idea of the Thorpe method is to compare an observed vertical profile of poten-
tial temperature to an equivalent stable one which is obtained by sorting. That means that by
changing the order of the data points air parcels are moved upwards and downwards to yield a
statically stable profile with monotonously increasing potential temperature. This is easiest (al-
though not necessarily [Thorpe, 2005, p. 176]) done on data sampled on an equidistant altitude
grid z; = jAz, je I, = {1,...,n}, where n is the number of data points in the measurement and
Az the sample altitude step. The measured potential density profile is denoted by ©;, j € I,.

Figure[4.16) demonstrates the sorting process. Let s : I,, - I,, denote the permutation describ-
ing the sorting process, i. e. the sorted profile is referred to by (®,;)). The difference between
measured and sorted profile in potential temperature, St(j) := ®; - @), is called Thorpe signal.
The altitude difference between observed and sorted profile, Dr(j) := z; — zy(;) = (j - s(j))Az,
defines the Thorpe displacement at level z;.

Instabilities are detected using the cumulative sum of the Thorpe displacement, Zj-‘zl Dr(j)
[Wilson et al., 2010, Section 3]. It is zero on statically stable sections, as in that case the profile
is already sorted. Additionally, it is never positive. To verify that fact, let s : I, — I, be any
permutation and k < n arbitrary. Since the sum of the first k natural numbers is the minimum
of the sum of any k different natural numbers in I,,, it follows that

2is< )y f=2s0)

jles71({1,....k}) j=1
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Figure 4.16: The sorting algorithm used to create a stable potential temperature profile (right) from a
measured one (left). The points, A-O, represent the discrete measured values of potential temperature

O; at their respective levels z;. Those between B and M are statically unstable in the sense that there is
denser fluid above or less dense below them, even though the density only decreases with altitude be-
tween F and 1. The vertical arrows show the displacements Dy in z required to re-sort the observed po-
tential temperature profile into the statically stable order shown in the right panel. The sorting conserves
mass but not potential energy. Figure and caption adapted from [Thorpe [2005, Fig. 6.2].

This is equivalent to the assertion with s being the sorting permutation. Thus, a layer with
Zj-‘zl Dr(j) < 0 between points with Z;?:l Dr(j) = 0 can be identified as an inversion in potential

temperature.

The root-mean-square (rms) of the Thorpe displacements Dr, taken “over vertical scales that
exceed the maximum local estimates of Dr” [Thorpe, [2005, p. 176], here over the considered
instability [Wilson et al.,|2010, p. 978], is called Thorpe length

Lt := rms(Dr).

(4.5)

It describes the mean vertical length where heavier fluid is above lighter one.

Thorpe 1977, Section 4] proposed the rms displacement to be a measure of the outer
vertical scale of turbulence. The idea is that the overturning scale is connected to the vertical size
of the largest eddies in stratified flow [Thorpe, 2005} p. 175], which is known as Ozmidov scale
Lo, (2.29). This results in the assumption that both length scales are proportional to each other,
ie.

Lt = croLo (4.6)
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with a constant cro. Inserting the definition (2.29) for the Ozmidov scale,

€

LO = CLO ﬁ)
where the constant ¢ is usually set to 1 [e. g. Gavrilov et al., 2005, |(Clayson and Kantha, 2008,
Wilson et al.; 2014], and solving for ¢ gives

e=cro LAN’. (4.7)

The background buoyancy frequency N is best taken from the sorted profile [Dillon, 1982, Sec-
tion 3]. An imaginary N would result in a negative and imaginary dissipation rate, which is
unphysically. The constant c7, is mostly taken from oceanographic measurements as only few
studies in the atmosphere are available. Its value varies over several orders of magnitude in the
literature. With LITOS, the dissipation rate ¢ is measured directly so that the assumption can
be checked and the constant be determined. The results are found in Section 5.5 Moreover, the
dissipation rates obtained from both methods are compared (where ¢}, = 0.3 is used for the
Thorpe evaluation as by Clayson and Kantha [2008]).

If water vapour reaches saturation, static stability is lower than for dry air due to the release of
latent heat from condensing water during upwards motion [Wilson et al.,2013]. As a remedy, for
saturated regions a moist-conservative potential temperature is used instead of the dry potential
temperature. This is relevant in the troposphere only.

Instrumental noise can create artificial negative gradients in the potential temperature data.
To distinguish these from real inversions, a statistic test according to Wilson et al.| [2010} 2011]
is applied. Basically it consists of comparing the range of the measured data in a detected layer
with the range of a pure noise sample.

The details of the data processing are described in the next subsection.

4.2.2 Data processing and measurement noise of radiosonde data

For the radiosonde evaluation the data processing by Wilson et al|[2011] is used which is de-
scribed in this subsection.

Just before reaching floating altitude the ascent rate of the balloon is very variable, and some-
times the balloon even descends for a short time. Thus prior to data processing, radiosonde data
from above 25 km altitude is cut off in order to eliminate disturbances from that transition phase.

Due to slight variations in ascent velocity, the data come at irregular altitude levels. So first
of all, the data are resampled to a regular vertical grid. Assuming hydrostatic equilibrium, the
measured altitude difference is

AZM = Z%I_l - ZM = ——l—l (4.8)
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where R = 287 kg K is the specific gas constant for dry air, g = 9.81ms~2 the acceleration of
gravity, TM the measured temperature and APM := PM — PM the measured pressure difference
at level i. The superscript M stands for “measured”. The mean ascent rate is Az := (Az}M);, which
is taken as new regular sampling step because this choice is associated with minimal interpo-
lation. The corresponding regular altitude grid is z8 := zM + iAz. The superscript R stands for
“resampled”.

Although the balloon is ascending, due to measurement noise the observed pressure difference
APM is not always negative. Therefore a cubic least square spline fit is performed, yielding a
monotonous pressure profile PA. The superscript A stands for “approximated” The spline is
evaluated at zX yielding a resampled pressure profile PR. The temperature TM is resampled to
the regular grid with linear interpolation leading to a profile TX. From this dataset, the potential
temperature

.~ TR Pret e
Q,:=T; o (4.9)

is computed.

To care for saturation effects in the troposphere, saturated regions are identified with the
method described by|Zhang et al|[2010]. A layer is regarded as saturated, if the relative humid-
ity exceeds an altitude-dependent threshold RH,,;, within the whole layer and if additionally
somewhere within the layer RH > RH . The thresholds RH,;, and RH . are piecewise linear
functions of altitude defined by Zhang et al. [2010]]. As the relative humidity of radiosondes is
computed with respect to liquid water, it is corrected for T < 0°C. To this end, RH is multiplied
by the ratio e,/e; of the saturation pressure of water vapour over liquid water e,, and over ice e;.
e; is estimated by the empirical expression

1hPa
e =
100

6143.7K
exp (28.9074 - —)

(4.10)

[Murphy and Koop} 2005, (2); Wilson et al., 2013, (9)], and e,, by the WMO recommended for-
muld]
log,, ew =10.79574 (1-273.16 K/ T) - 5.02800 log,, ( T/273.16 K)
+ 1.50475 . 10—4 (1 _ 10—8.2969(T/273.16 K—l))
+0.42873 - 10—3 (104.76955(1—273.16 K/T) _ 1)
— 2.2195768 + log,,(1013.25)

(4.11)

[Goft, 1957, (6)], where e,, and e; are in Hectopascal. The left panel in Figure visualises the
difference between original and corrected relative humidity and its impact on the detection of
moist layers for the BEXUS 12 flight.

1 cf.noteonhttp://cires.colorado.edu/ voemel/vp.html (vis 10 Jul 2015)
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Figure 4.17: Left: Relative humidity for the BEXUS 12 flight. The blue curve shows the original ra-
diosonde measurement while the green one includes the correction for saturation over ice for temper-
atures below the frost point. The grey dotted lines denote the thresholds RH iy and RHp,y. Right: Dry
(orange) and composite (red) potential temperatures for the BEXUS 12 flight.

In order to treat moist layers, a few new quantities have to be introduced. The water vapour
mixing ratio is denoted g, the liquid water or ice mixing ratio g, the saturation mixing ratio
gs> and g, = qi + g is the total water mixing ratio. The mixing ratio is related to the relative
humidity by RH » Z—:’. cpa = 1003Jkg' K™ and c,, = 2080] kg K™ are the specific heats at
constant pressure for dry air and water vapour, respectively, ¢, = 4182 kg™ K™ is the specific
heat for liquid (or ice) water, Ly = 2500000 ] kg™ is the latent heat of vaporisation of liquid
water or ice, and y ~ 0.622 is a constant. Using the moist saturated lapse rate

v{ds T Cw L2 s s -
Fm:£(1+qw)(1+cpq oot |y Vq2(1+q—)) (4.12)
Cpd Cpd deRT 4

[Wilson et al., 2013, (8)], a moist Brunt-Vaiséla frequency is computed via

N2~ E (a—T + rm) (1 + qus) _ & dagu (4.13)
T\ oz RT 1+qy dz

[Wilson et al., 2013, (7)]. Now, the composite potential temperature is calculated via

0.(j) = 0.(j-1) (1 N3 l>%) (414)
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where inside saturated layers N7 = N2 is the moist buoyancy frequency, and outside N7 = N =
£(4L + %) the usual dry buoyancy frequency. The right panel of Figure [4.17| shows the dry
potential temperature ®4 and the composite potential temperature ®, for the BEXUS 12 flight.

Although the gradient of the potential temperature is reduced by incorporating moisture ef-
fects (see right panel of Figure [4.17), the correction is small, and it makes no difference in the
number of significant layers for the BEXUS flights. In contrast, Wilson et al. [2013, Section 4]
reported a great impact for flights from Shigaraki MU Observatory (Japan, 34° 51’ N, 136° 06’ E).
Moisture seems to play less a role in the cold arctic atmosphere.

As mentioned before, artificial inversions can be created by measurement noise. Thus, after
the detection of inversions with the cumulative Thorpe displacement Zj?:l Dr(j) (see previous
subsection), a statistical test is performed for each layer. For an inversion from z; to z; 4y, i. e.
of size k data bins, the measured range of potential temperatures Wy := max{®;: i < j<i+k -
1} —min{®; : i < j < i+ k -1} is compared to that of a pure noise sample which consists of k
independent, identically distributed Gaussian random variables with standard deviation gg. The
choice of the measurement noise o is discussed below. If w,(k) is the p percentile of the range

of the pure noise sample, the layer is noise-induced (i. e. not significant) with a p confidence level
if

GK; <wy(k) (4.15)
[Wilson et al., [2010].

Wilson et al.| [2011] proposed a simple method to estimate the instrumental noise og from
the variation of the data itself. Basically, the mean variation between subsequent data points is
treated as noise.

The paper is not explicit about the handling of the pressure. Since PR is smoothed with a spline,
it makes no sense to use it to estimate the measurement noise. Thus, in this work the procedure
is applied to the resampled temperature data TR and the logarithm of the unsmoothed pressure
resampled at the equidistant grid. First, the profile is split into segments of ~200 m altitude. In
each segment, a linear trend is removed, and the measurement noise standard deviation o is set
to the standard deviation of the first differences of the data after trend removal divided by /2.
That is, if T, is the temperature within a segment and [ a linear fit, then

or = \/Var(diff(Tseg -1Ir))/2

where diff : x(j) — x(j+1) — x(j) denotes the first difference operator. The resulting noise
profile is smoothed with a least square spline approximation. An example for the BEXUS 12
flight is shown in Figure Naturally, the result depends on the choice of the grid for the
spline. For the potential temperature, the noise is found with Gauf$’ law of error propagation,

2 R 2 Pr R/cp
Go = © (ﬁ) (R N@ﬁgT(_ef) (4.16)
T ¢, P T p
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where the approximation neglects the noise on pressure which is much smaller than the one on
temperature (see Figure[4.18and Section 3.1).

This method of noise estimation treats all variation at scales in the order of the sampling length
(roughly 10 m) as measurement noise. However, these scales are also affected by geophysics. For
example, small overturns on scales of a few 10 m (which is the typical width of turbulent layers
as measured by LITOS, see Section [5.1] or {Theuerkauf [2012, Section 4.2]) increase the detected
noise level. Thus the estimated measurement noise might be larger than the true one. On the
other hand, sensor noise on scales larger than the sampling length is not covered.

The average of first differences of the potential temperature data scaled by the noise defines
the mean trend-to-noise ratio (tnr)

(diff ©;).
Op

(= (4.17)
[Wilson et al., 2011, (5)]. If it is too low (typically smaller than 1), a denoising procedure is re-
quired, which consists of a weighted running average (with a Hamming window) with m data
points followed by a downsampling with factor m [Wilson et al., 2010, Section 4c]. It increases
the tnr by a factor of m3/2,

For BEXUS 8 the tnr is { = 0.55, and thus a denoising with m = 3 is necessary. 37 of 95 layers
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Figure 4.18: Vertical profiles of the estimated noise level according to(Wilson et al.[[2011] for the
BEXUS 12 flight (radiosonde data prior to downsampling). The blue curves show the estimates in each
altitude segment, the red curve the smoothing spline fit. The green curve in the right panel is computed
with with the smoothed o7.
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4.3 WRF model

(39 %) are significant. For BEXUS 12 the tnr s { = 0.89, and a denoising is performed with m = 2.
Only 10 of 121 layers (~8 %) are significant. As discussed in Section 5.5} that results in a turbulent
fraction of only 21 % (8 %) for BEXUS 8 (BEXUS 12), however 70 % (55 %) of the turbulent layers
observed by LITOS are thinner than the vertical resolution of the (downsampled) radiosonde.
That highlights the importance of measuring on small scales.

For each layer the Thorpe length L is computed, and therewith the energy dissipation rate ¢
using (4.7). The Thorpe length for significant and non-significant layers for the BEXUS 12 flight

is plotted in Figure
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Figure 4.19: Thorpe lengths for the BEXUS 12 flight. The red curve shows the corresponding (compos-
ite) potential temperature ©

In Section 5.5} the Thorpe length is compared to the Ozmidov scale obtained from the dissipa-
tion rates measured by LITOS averaged over the respective layer. In that way, the assumption of
proportionality between both length scales is checked, and values of the constant cZ are com-
puted. Moreover, results for the energy dissipation rate from both methods are compared.

4.3 WRF model

In order to study the atmospheric background conditions and the role of gravity waves during
the BEXUS 8 and BEXUS 12 flights, simulations with the Weather Research and Forecasting
(WRF) model, version 3.4 were performed by Johannes Wagner (University of Innsbruck). The
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4 Data analysis technique

Advanced Research WRF (ARW) core was used which integrates the nonhydrostatic, fully com-
pressible Euler equations on terrain following vertical # coordinates [Skamarock et al., [2008].
Vertically 131 7 levels are used with vertical distance varying from 50 m near the surface to about
600 m at the model top at 1 hPa (about 41km). The horizontal grid uses a stereographic projec-
tion centred at 70.4°N, 10°E. The computational domain consists of an outer domain (d1) with
350x300 grid points and an inner domain (d2) with 343x226 grid points. The domain configura-
tion can be seen in Figure[4.20] Initial and boundary conditions are supplied by European Centre
for Medium-Range Weather Forecasts (ECMWF) operational analysis on 137 model levels with
a temporal resolution of 6 hours.

In Section [5.2} data are visualised as maps on model levels and altitude sections through the
launch point (as marked by the green line in Figure [4.20).
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Figure 4.20: Domain configuration for the WRF model runs performed for the BEXUS 8 and BEXUS 12
flights. The large domain dl1 consists of the whole map, while the small domain d2 is marked by a grey
shading. The green line marks where altitude sections through the launch point are plotted.
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5 Geophysical results

Geophysical results obtained within this study are described in this chapter. First, in Section
turbulence observations during the BEXUS 12 flight from 2011 are presented and related to the at-
mospheric background conditions measured by the radiosonde. Then that flight is contrasted to
the earlier flight BEXUS 8 in Section 5.2} To classify the observations in the geophysical context,
model simulations driven by reanalysis data are used. In Section [5.3|relations between dissipa-
tion rates measured by wind and temperature fluctuations as well as between kinetic and thermal
dissipation are examined. Section 5.4| contains an overview of results obtained from flights with
the small payload described in Section Results from LITOS are compared with those of
the Thorpe evaluation of radiosondes in Section 5.5; moreover, the main assumption for such an
evaluation, namely a linear relation between Thorpe and Ozmidov length scales, is investigated.

5.1 The BEXUS 12 flight

The LITOS experiment was flown as part of the BEXUS 12 payload at 27th September 2011. See
Section for a description of the flight configuration and experiment details. The results
for the turbulence evaluation (as described in Section [4.1) and their relation to the atmospheric
background conditions measured by the radiosonde are given in this section.

The left panel of Figure[5.]|shows the temperature (red) and background horizontal wind (blue
and green) as measured by the radiosonde. Excepting some small inversion layers, temperatures
decrease up to the tropopause at 10.3km. Directly above the tropopause a sharp increase in
temperature is visible. Such kind of feature was first reported by Birner et al. [2002]] and is now
called tropopause inversion layer (TIL). Above ~12.6 km altitude temperatures slightly decrease.
The wind field shows a reversal between ~6 km and 10 km in both components with a strong wind
shear below the tropopause. This wind shear entails low Richardson numbers and correlates to
highly increased dissipation (see below). Above the tropopause the wind field shows signatures of
gravity wave activity with short wavelengths that have no obvious altitude-dependent structure.

The right panel of Figure [5.1] depicts the energy dissipation rate (blue crosses for turbulent
regions, non-turbulent regions are left out). |Libken| [1993, (3.146)] derived an estimate of the
theoretical minimum of the dissipation rate

Emin & ¥ N? (5.1)

by requiring that the turbulent diffusion has to be larger than the molecular one because oth-
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Figure 5.1: Left: Background zonal wind (blue), meridional wind (green) and temperature (red) mea-
sured by the radiosonde. Right: Energy dissipation rate (blue crosses) from wind fluctuations measured
by LITOS. The orange curve shows a Hann-weighted running average over 2 km. The grey area marks
the domain below the technical minimum (cf. Section , the green line the estimation of the theoret-
ical minimum by |Liibken| [1993, (3.146)]. The horizontal black line in both plots marks the tropopause.

erwise molecular diffusion would destroy turbulent eddies immediately. Alternatively, can
be deduced from the condition that the size of a turbulent cell has to exceed the mean free path.
The theoretical minimum is marked in the right panel of Figure 5.1 by the green curve. It
is well below the technical minimum (marked by the grey area in the figure), which is given in
Section in form of a maximum for the inner scale, I, < L/25, where L is the window length
(here 5m). The upper limit to /, is imposed to ensure that enough data points are within the fit
range to enable a meaningful fit.

The dissipation rates show considerable scatter; within only a few 10 m ¢ varies over a few
orders of magnitude. This represents the well-known intermittency of turbulence.

On the large scale, the dissipation rates evince an overall tendency to rise with altitude, except-
ing a step to smaller rates at ~10.5 km. The step is located directly above the tropopause. Thus part
of it is attributed to the highly increased static stability in the tropopause inversion layer (TIL)
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5.1 The BEXUS 12 flight

which suppresses turbulence. Since the retrieval of the dissipation rate is independent of the
Brunt-Viisila frequency N (see Section [4.1.1), the drop is not an artefact of the method. More-
over, the wind shear below the tropopause may have filtered a large fraction of the gravity wave
spectrum so that further upwards less waves persist that can break and produce turbulence. Just
below the step, i. e. at ~10 km altitude, a pronounced maximum in dissipation is found. It can be
explained by this very gravity wave filtering. Furthermore, that turbulent layer correlates with
high wind shear. Within the upper part of the TIL dissipation rates rise again, while above the
TIL at ~12.6 km altitude another drop in dissipation occurs.

By eye, ¢ values in Figure [5.1{ seem to accumulate near 10~* W kg™!. This is confirmed by the
geometric mean value of the turbulent data bins of 7 x 10> W kg™, which represents the most fre-
quent value of the lognormally distributed dissipation rates (cf. Section[4.11} especially Figure[4.6]
on page[42). The arithmetic mean of all bins (including those where ¢ = 0) is 0.5 mW kg~!, the
median is 0.02 mW kg~'. Table[5.1|gives averages for the tropospheric and stratospheric part. The
values are larger in the stratosphere compared to the troposphere. A similar behaviour has been
found by Theuerkauf, [2012, Table 4.5] for the BEXUS 8 and BEXUS 6 flights. A more detailed
comparison of BEXUS 12 and BEXUS 8 is found in Section The averages of the dissipation
rates are in a similar order of magnitude as typical values in the literature. A comparison to dis-
sipation rates found in the literature is presented by Theuerkauf [2012, Section 4.4.3] and |Soder
(2014, Section 4.3].

Figure[5.2shows the cumulative occurrence of dissipation rates. Typical solar heating rates in
the lower stratosphere are in the order of 1 K d™! [Brasseur and Solomon, 1986, Fig. 4.19b]. Com-
parable or higher turbulent heating rates are only reached for 1% of the data bins (i. e. altitude
windows classified as turbulent). 90 % have heating rates below 0.1 K d™! which is negligible for
the energy budget. Most values are in the order of 102 K d~!, which corresponds to the mode of
the distribution, the geometric mean.

During BEXUS 12, turbulence is observed in the whole altitude range. Overall, 85 % of the tro-
posphere and 52 % of the lower stratosphere has been found to be turbulent (i. e. the spectrum
was classified as turbulent, see Section [4.11). This is a much higher percentage than expected.
However, one should keep in mind that some patches have very low dissipation rates. A com-
parison to radar measurements is given below.

Typically, turbulence occurs in thin layers. This can already be seen in the raw data, cf. Fig-
ure (4.1 on page In order to obtain quantitative results, turbulent layers are identified as a
collection of adjacent altitude windows with & > 0; layers separated by only one non-turbulent

Table 5.1: Mean dissipation rates measured during the BEXUS 12 flight

arithmetic mean | geometric mean | turbulent fraction
troposphere 0.4 mW/kg 0.04 mW/kg 85 %
stratosphere 0.6 mW/kg 0.1mW/kg 52 %
whole flight 0.5 mW/kg 0.07 mW/kg 64 %
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Figure 5.2: Cumulative occurrence of dissipation rates for the BEXUS 12 flight

bin are treated as one. Figure [5.3| shows the statistics of turbulent layers for BEXUS 12. Most
frequent are very thin layers consisting of only one data bin. Towards larger thickness the occur-
rence decreases more or less monotonously. Only a few singular layers are larger than 100 m. The
mean layer thickness is 41 m (cyan vertical line in the figure), the median is 18 m (green vertical
line). The thickest layer is 570 m. In the troposphere, the average thickness is as large as 99 m,
while in the stratosphere it is only 27 m.

Theuerkauf [2012, Section 4.2] used a cluster analysis of raw data to infer layer thickness. She
found most layers between 10 m and 50 m with a mean thickness of 46 m for the BEXUS 8 flight
and 38 m for the BEXUS 6 flight. Moreover, layers were generally thinner in the stratosphere
than in the troposphere. These results are very similar to what is found for BEXUS 12 from the
spectral method. Particularly, the mean layer thickness is nearly constant for all three BEXUS
flights. The stability of these results independent of the evaluation method makes them even
more reliable.

Radiosondes typically can reliably detect layers of 20 m thickness (two bins at 10 m vertical
resolution, cf. Section [5.5). 55 % of the layers measured during BEXUS 12 are below that limit.
That highlights the importance of high-resolution measurements. A detailed assessment of tur-
bulence evaluation from radiosondes is given in Section[5.5|

Most layers are thinner than the typical vertical resolution of remote sensing instruments. An
example at the lower end is the PROUST ST radar (located in France) with a range resolution of
30 m (red vertical line in Figure[5.3). 65 % of the layers are thinner than that value.

Using data from that radar, (Wilson et al.| [2005] estimated the turbulent fraction in the lower
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Figure 5.3: Statistics of turbulent layer thickness measured by LITOS. The cyan vertical line marks the
mean layer thickness, the green one the median, and the red one the vertical resolution of the PROUST
ST radar.

stratosphere between 10 % and 20 %. That is much less than the 52 % observed by LITOS. How-
ever, as mentioned above the radar has a range resolution of 30 m and measures dissipation rates
between 107> W kg™ and 103 W kg!. These rates are in the same order as the mean values ob-
served by LITOS. 73 % of the stratospheric layers observed by LITOS are smaller than 30 m. Thus,
according to the results from LITOS, the radar volume is mostly filled with a mixture of turbulent
and non-turbulent air. Additionally, the detection limit is lower than for LITOS. Therefore it is
not surprising that the turbulent fraction observed by the radar is much lower. When counting
only layers thicker than 30 m with ¢ > 107> W kg™, the turbulent fraction in the lower strato-
sphere according to LITOS is only 16 % which is comparable to the radar observations by|[Wilson
et al. [2005] mentioned above.

In the literature, turbulence is often related to the Richardson number Ri = N2/S?, where
S= |aa—’;h| is the vertical shear of horizontal wind and N the Brunt-Viiséld frequency. The Richard-
son number represents the ratio of buoyancy forces (which suppress turbulence) and shear forces
(which generate turbulence). Miles [1961] and Howard|[1961] showed that in a plane-parallel ver-
tically stratified shear flow of an inviscid, non-heat-conducting, incompressible fluid instability
(and thus turbulence) occurs for Richardson numbers below a critical one of Ri, = /4. This can
be understood by considering the work needed for the exchange of two air parcels with altitude
difference Az, which is proportional to Az?(Ri —1/4) [Nappo, 2002, (6.18)]. Later, a value of
Ri. = 1 was suggested [e. g.|Canuto et al., 2001]. The Glossary of Meteorology of the American
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Meteorological Society [Glickman, 2000, p. 188f] statesﬂ that the “value is usually taken as Ri. =
0.25, although suggestions in the literature range from 0.2 to 1.0. There is also some suggestion of
hysteresis, where laminar air flow must drop below Ri = 0.25 to become turbulent, but turbulent
flow can exist up to Ri = 1.0 before becoming laminar” [cf.|Galperin et al., 2007]]. The Richardson
criterion is commonly used in models to parametrise turbulence.

To examine the relation between turbulence and the Richardson number in the LITOS mea-
surements, Ri is plotted in the right panel of Figure [5.4| with a linear axis below ¥4 and a loga-
rithmic one above. The critical number Y4 is shown as red line. Horizontal wind and potential
temperature were smoothed prior to differentiation with a Hann-weighted running mean over
90 m in order not to dominate the derivative by measurement noise. The smoothing length has
been chosen as the smallest one where the influence of the measurement noise is largely elim-
inated after experimenting with different values. Larger smoothing lengths tend to result less

1 Online version under http://glossary.ametsoc.org/wiki/Critical_richardson_number (vis 10 Jul
2015)
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Figure 5.4: Energy dissipation rate (left) and Richardson number (right) for the BEXUS 12 flight. In the
right panel, the Ri axis is split at }/4 into a linear and a logarithmic part. The red vertical line shows the
critical Richardson number V4. The black horizontal line marks the tropopause.
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5.1 The BEXUS 12 flight

regions with Ri < 1/4. The left panel of Figure[5.4| presents the same ¢ profile as the right panel of
Figure[5.1, but with a linear ¢ axis to emphasise the thin layer structure. Just below the tropopause,
i.e. at ~10 km height, a large altitude region with low (even negative) Ri numbers is found which
is correlated to high dissipation rates. As noted above, this region is marked by strong wind shear.
Here, the Richardson criterion is fulfilled. However, there are many altitude regions with large
Ri between 10 and 100 where there is also turbulence. Some examples are presented in Figure|5.5]
It shows the altitude range from 11.4 km to 12.4 km, where the Richardson number is larger than
1 throughout. At 11.414 km, for instance, a peak in dissipation rate occurs at a maximum of the
Richardson number of ~40. Similar behaviour is found at 11.77 km. Several other turbulent layers
are correlated to minima of the Richardson number, e. g. at 11.509 km, near 12.03 km, 12.16 km
and 12.32 km, although Ri > 3 for the whole range. Others are at altitudes where Ri has a gra-
dient, e. g. at 11.60 km, 11.66 km and 11.93 km. Altogether, no clear relation between Richardson
number and turbulence is found. A similar behaviour has already been reported by|Theuerkauf
[2012} Section 5.2] for the BEXUS 6 and 8 flights.

In this work, the Richardson number was computed on different scales than the dissipation
rate, namely 90 m (the smoothing of the radiosonde data to eliminate noise dominating the
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Figure 5.5: Energy dissipation rate (left) and Richardson number (right) for the altitude range 11.4 km to
12.4 km of the BEXUS 12 flight
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derivative) versus 5m (the altitude window length for ¢ computation). Such a comparison of
different scales may be problematic.

Achatz|[2005] performed simulations of stable and unstable gravity waves and found instabil-
ity and onset of turbulence for Richardson numbers both smaller and larger than Ys. He noted
that the theory of Miles|[1961] and Howard [1961] is not applicable because the gravity wave phase
propagation is slanted. In view of this comment it is not that surprising that the Richardson cri-
terion is not fulfilled for the LITOS measurements because in the real atmosphere waves usually
propagate inclined, i. e. the shear is not orthogonal to the altitude axis.

Turbulence is important for the mixing of trace species and heat. By analogy to molecular dif-
fusion, that feature is usually described by an eddy diffusion coefficient. The idea is to parametrise
the vertical heat flux by the vertical gradient of the mean temperature, i. e.

d(T)
dz

[e. g. Panofsky and Dutton, 1984, (4.7.4)]. The eddy diftusion coefficient K has dimensions of
length times velocity. A relation to the dissipation rate is given by

(w'T') =-K

K=p % (5.2)

[Lilly et al., 1974} (8); |Weinstock, 1978, (30)], where f3 is a constant. [Fukao et al.| [1994, (10)]
expressed f3 as a function of the flux Richardson number

namely f3 = Ri¢/(1- Rif). A common choice is Ri¢ = 0.2 and thus 3 = 0.25 [Clayson and Kantha,
2008, Section 2].

Figure [5.6| depicts the eddy diffusivity obtained via for the BEXUS 12 flight. Due to the
proportionality to € and because the variation of N? is much smaller than that of ¢, the structure
is similar to the one of the dissipation rate (right panel of Figure[5.1). That means K shows sim-
ilar large intermittency. It varies between roughly 10> m? s™! and 10° m? s™!. The mean value is
2m?s! and the geometric mean 0.1 m? s™!. The jump at the tropopause is due to the dependency
of on N2,

From older balloon measurements from the 1970s in France, Bertin et al|[1997] obtained val-
ues between roughly 10~* and 10° m? s™! within one large turbulent patch, see left panel in Fig-
ure That confirms a large intermittency. The range of values is within the one observed by
LITOS. The smaller scatter might be due to less vertical resolution and because only an altitude
range of 300 m is covered. In other publications only averages are reported. |Alisse et al.| [2000]
estimated K between 0.01m?s™! and 0.02 m? s™! from selected turbulent patches measured with
a balloon-borne instrument, which is compatible to the geometric mean of the LITOS measure-

68



5.1 The BEXUS 12 flight

/ X‘@X‘Ww‘ T X\H”% \X\ T T TXTT] T \\\HL
25 < eddy diftusivity BE i
—— kinematic viscosity 1
20 |
E -
B il
-~ 15 2
[P] B
st il
= |
‘_‘& 10 ><>x< XXX XX Xxxz
5p ]
| x Xoo%xXx Xog 350X 7 R " g X x :
0 Ll fatel ?%\W ik Roiiiaate x LA ‘ W?%Mf%:o;xw LB XX X L

10-> 10~4 10-3 102 10! 10° 10! 102 103

eddy diffusivity K / m?s™!

Figure 5.6: Eddy diffusion coefficients (blue crosses) for the BEXUS 12 flight computed via (5.2). The
green line shows the kinematic viscosity. The grey area marks the domain below the technical minimum
of LITOS.
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Figure 5.7: Eddy diffusivity measurements found in the literature. Left: Balloon measurement from 28th
April 1978 [IBertin et al.l |1997|]. Right: Annual medians of MU radar data [IKurosaki et al.l.|1996|].

69



5 Geophysical results

ment, given the large variability. Lilly et al.| [1974] observed a dependence on the underlying
terrain in aircraft measurements between 14 km and 21km altitude. They obtained mean val-
ues between 1 x102m?s™! and 6 x 1072 m? s7!. Wilson| [2004] summarised results from radar
measurements. Mainly annual or seasonal medians were given, enabled by the fact that a radar
can measure continuously. Exemplary results from Shigaraki, Japan (35° N, 136° E) are shown in
the right panel of Figure[5.7} The values range roughly from 1 x 10 m?s™ to 1m?s™'. Although
those measurements took place at different geographic locations, they are consistent with the
observations by LITOS.

Hocking [1985, Fig. 1] gave typical values of energy dissipation rates and buoyancy periods for
the lower and middle atmosphere. Inserting these values for the lower stratosphere in re-
sults in typical eddy diffusivities between 6 x 107> m? s~! and 6 x 107! m? s~%. The geometric mean
observed by LITOS falls within this range, while the arithmetic mean is slightly larger. Turbulent
transport seems to have been relatively large during BEXUS 12.

Summing up, turbulence was observed for 85 % of the troposphere and 52 % of the strato-
sphere and occured in thin patches of typically a few 10 m thickness. Energy dissipation rates are
very intermittent in the range 1078 W kg™ to 10° W kg™! with an average of 5 x 10~ W kg™!. These
results are compatible with earlier measurements by Theuerkauf [2012] and, when taking into
account different instrumental sensitivities, with radar measurements by |Wilson et al.| [2005].
Similar to results by Theuerkauf| [2012], no general relation between the occurrence of turbu-
lence and the Richardson number is found; particularly, turbulence exists for large Ri of ~100. A
pronounced peak in dissipation at roughly 10 km height is explained by a wind reversal in that
altitude region, which produces turbulence by filtering gravity waves as well as directly by the
shear of the background wind.

5.2 Comparison of the BEXUS 8 and 12 flights and re-
lation to the background atmospheres

The LITOS experiment was previously flown (in a different configuration) on BEXUS 8 launched
at10th October 2009 from Kiruna. The flight took place at similar seasonal conditions as BEXUS 12.
Results from this flight are described by |Theuerkauf [2012]. Here, the BEXUS 8 and BEXUS 12
flights are compared.

Figure [5.8| presents profiles of dissipation rates for both flights, while Table [5.2| summarises
the mean values. The background winds and temperatures measured by the radiosondes are
contrasted in Figure

Compared to BEXUS 8, during BEXUS 12 slightly more dissipation in the troposphere but
considerably less dissipation in the lower stratosphere was observed. Furthermore, while for
BEXUS 12 a pronounced maximum was observed below the tropopause (cf. last section), no out-
standing peak was seen for BEXUS 8. This is consistent with the fact that in contrast to BEXUS 12
no noticeable wind shear or wind reversal was present during BEXUS 8 (Figure[5.9). That means
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Figure 5.8: Energy dissipation rate (blue crosses) from wind fluctuations measured by LITOS on the
BEXUS 8 (left) and BEXUS 12 (right) flights. The orange curve shows a Hann-weighted running average
over 2km. The grey area marks the domain below the technical minimum (cf. Section[4.11), the green

line the estimation of the theoretical minimum by [1993, (3.146)]. The horizontal black line in
both plots marks the tropopause.

Table 5.2: Mean dissipation rates and turbulent fraction for the BEXUS 8 and BEXUS 12 flights

BEXUS 8 | BEXUS 12
turbulent fraction / % troposphere 90 85
stratosphere 52 52
whole flight 63 64
arithmetic mean ¢ / mW kg™ | troposphere 0.2 0.4
stratosphere 4 0.6
whole flight 3 0.5
geometric mean ¢ / mW kg™ | troposphere 0.05 0.04
stratosphere 0.4 0.1
whole flight 0.2 0.07
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Figure 5.9: Background zonal wind (blue), meridional wind (green) and temperature (red) measured by
the radiosondes on the BEXUS 8 (left) and BEXUS 12 (right) flights. The horizontal black line in both
plots marks the tropopause.

that no enhanced dynamic instability was present, but also that gravity waves were not filtered
below the tropopause and thus could propagate into the stratosphere and break there.

During BEXUS 8, dissipation rates only slightly decreased at the tropopause. The increase in
stability does not seem to play a large role for turbulent intensity. In contrast, for BEXUS 12 the
decrease in dissipation rate at the tropopause was very pronounced. But that drop is not for the
whole part due to the increase in stability; it also coincides with the upper boundary of the layer
with large wind shear and gravity wave filtering mentioned above.

To further study the relation of the measurements to the atmospheric background conditions,
WRF model runs driven by ECMWF reanalysis data were performed by Johannes Wagner (Uni-
versity of Innsbruck) for both flights. Details of the model configuration can be found in Sec-
tion[4.3] To get an overview, Figure[5.10shows tropospheric winds at 850 hPa for the large domain
(d1), while Figure[5.11|depicts an altitude section through the launch point (Kiruna).

During both flights, tropospheric westerly winds flowed over the Scandinavian mountains
(Figure 5.10). These winds were stronger in 2011, however in 2009 the angle of attack to the
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Figure 5.10: Horizontal winds at 850 hPa from WRF model output for 10th October 2009, 9:00 UT
(left) and 27th September 2011, 18:00 UT (right) on the large domain (d1). The blue streamlines visu-

alise the wind direction. The magenta lines show the trajectories of the BEXUS 8 and BEXUS 12 flights,
respectively.
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Figure 5.11: Horizontal wind velocity as altitude section through the launch point from WRF model
output for 10th October 2009, 9:00 UT (left) and 27th September 2011, 18:00 UT (right) on the large
domain (dl). The magenta lines show projections of the trajectories of the BEXUS 8 (left) and BEXUS 12
(right) flights, respectively.
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mountains was nearly orthogonal while it was tilted in 2011. The resulting mountain wave activity
can clearly be seen, e. g., in the vertical winds and the horizontal divergence; these quantities are
plotted in Figure[5.12]and Figure[5.13] respectively. The small domain (d2) was chosen for these
plots to make details visible. The wave activity is stronger in 2011, thus the larger wind velocity
seems more important than the angle of attack.
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Figure 5.12: Same as Figurebut showing vertical winds on the small domain (d2).
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Figure 5.13: Same as Figure but showing horizontal divergence.
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5.2 Comparison of the BEXUS 8 and 12 flights and relation to the background atmospheres

Waves can also be generated by geostrophic adjustment. Figure shows a wind map for
500 hPa. During BEXUS 12, bending streamlines are visible east of the flight trajectory. Wave
signatures extending from that region to the eastern boundary of the Scandinavian mountains
are visible in the divergence (right panel of Figure[5.13|between ~ x = 400 km and 600 km) and in
the vertical wind. However, what fraction of these waves originates from geostrophic adjustment
cannot be distinguished. Whatsoever, important is that the waves are there.

For 2009, bending streamlines are present northward of Kiruna, but wind velocities in that
area are small. Thus geostrophic adjustment may have occurred only to a small extent, if any.

Waves can propagate over considerable distances and over considerable times. The waves seen
in the horizontal divergence and the vertical winds may have originated hundreds of kilometres
away and/or hours earlier. Whatsoever, the source is not important, only the presence of the
waves.

To trigger turbulence, wave breaking is necessary. Such events are triggered by dynamic or
convective instabilities or by wave-wave interactions [e. g. [Fritts and Alexander, 2003]. However,
only large-scale waves are resolved in WRE, and no information on wave breaking is available.
But waves are the major source of instabilities and turbulence [Fritts et al., 2013, Section 1]. There-
fore, the evaluation concentrates on relating wave activity to turbulence. Wave breaking is often
observed accompanying the presence of waves.

In the case of 2011, as mentioned above wave activity is visible eastwards of the Scandinavian
mountains where the balloon flew. It ceased to exist at ~10 km altitude (see right panels of Fig-
ure[5.12Jand 5.13) which is consistent with wave filtering by the jet visible in the horizontal winds
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Figure 5.14: Same as Figure but showing horizontal winds at 500 hPa for the small domain (d2).
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in the right panel of Figure 5.11| (between x = 400 km and 1000 km). The wind reversal has also
been measured by the radiosonde (right panel of Figure[5.9). The divergence additionally shows
enhanced intensity just below ~10 km altitude (right panel of Figure[5.13). That fits with increased
dissipation directly below the tropopause and the step to smaller rates directly above (right panel
of Figure 5.8} cf. Section[5.1). New wave activity can be seen at ~15km.

In the case of 2009, eastwards of the mountains near the flight trajectory smaller wave activity
is present, but it extends throughout all altitudes (left panel of Figure [5.12). Consistently, no
pronounced jet with wind reversal is present which could have filtered gravity waves (left panel
of Figure[5.11). Again, the radiosonde winds show the same behaviour. Fittingly, no drop in the
dissipation rate is observed.

All these findings confirm the analysis of the radiosonde data and nicely fit the measured dis-
sipation rates. Higher tropospheric dissipation rates in 2011 come along with more wave activity
(compare the left and right panels in Figure[5.12Jor[5.13). Conversely, in the stratosphere the wave
activity was weaker in 2011 compared to 2009 which results in lower dissipation rates observed
by LITOS. That is consistent with the lack of filtering in 2009. However, no clear geophysical
cause of the larger stratospheric wave activity can be identified in the WRF data. A hint is that
in the stratospheric vertical winds (Figure large scale (propagating) waves are visible for
BEXUS 12 while a more chaotic behaviour (potentially breaking waves) is seen for BEXUS 8.

Turbulent kinetic energy (TKE) can also be retrieved from the WRF model output. Since this
data is intended for use in the boundary layer, it can only be interpreted qualitatively in the upper
troposphere and stratosphere. For BEXUS 12, the result is plotted in the left panel of Figure[5.15]
The TKE peaks at ~10 km altitude which corresponds to the intense turbulent layer visible in
the right panel of Figure The fact that it is reproduced in WRF highlights the geophysical
significance of that layer.

The model Richardson number (right panel of Figure[5.15) is mostly much larger than 1 (reach-
ing values in the order of 10°). Only for small regions Ri falls below 2 (coloured area) or even
below Y4 (black contours). Here the event at ~10 km is marked as well. Additionally, low Richard-
son numbers are found between 6.8 km and 7.2 km and between 8.16 km and 8.66 km. At these
altitudes, LITOS has observed turbulence, but the dissipation rates do not peak similar to ~10 km.

Summarising, several features, differences and similarities in dissipation measured during the
BEXUS 8 and 12 flights can be explained from background meteorological conditions. Particu-
larly, turbulence measured by LITOS is related to gravity wave activity observed in WRF sim-
ulations driven by reanalysis data. This hints at a connection between wave activity and wave
breaking, e. g. by continuous breaking of a fraction of the waves throughout all altitudes.
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Figure 5.15: Altitude section through the launch point showing turbulent kinetic energy (TKE) (left)
and Richardson number (right) from WRF model output for 27th September 2011, 18:00 UT at the small
domain (d2). In the right panel, white marks Ri > 2 (with a mean of 1 x 10%), and black contours mark
Ri <1/4. The magenta lines show projections of the trajectory of the BEXUS 12 flight.

5.3 Dissipation rates from wind and temperature mea-
surements

Energy dissipation rates ¢ can be determined from wind as well as from temperature measure-
ments. Theoretically, both should coincide if temperature is a valid tracer (i. e. the background
temperature gradient is not equal to the adiabatic one). During BEXUS 8, data from both CTA
and CCA sensors were acquired.

'Theuerkauf [2012] analysed layer thickness and kinetic dissipation rates ¢ from both measure-
ments. Using a cluster algorithm she found that turbulent layers in the temperature field are on
average significantly thinner than those in the wind field. The mean layer thickness is 46 m for
wind fluctuations, differing between 65 m in the tropopause region (7 km to 15km) and 36 m in
the stratosphere (15 km to 27.5 km). For temperature fluctuations the average width is 24 m and
does not change significantly for both altitude regions (25 m versus 24 m). Partially these differ-
ences may be due to different instrumental sensitivity. The sensitivity of the CTA decreases with
increasing altitude, while that of the CCA is independent of altitude. Furthermore,
notes that kinetic dissipation rates e from temperature fluctuations are on average one
to two orders of magnitude larger than those inferred from wind fluctuations (e,) “for unknown
reasons’ [Theuerkauf, 2012, Chapter 6].

Here, the relation of the dissipation rates from both measurements is examined using repro-
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cessed data, i. e. the dissipation profiles were newly computed from the raw data using the new
set of criteria listed in Section[4.1.1] Moreover, the thermal dissipation rate x is considered. Due
to the uncertainty in altitude assignment for both sensors, profiles computed with a 25 m window
(instead of a 5m one) are used for the comparison.

In the troposphere only few turbulent layers are observed in the temperature data (not shown),
probably because the thermal lapse rate is close to the adiabatic one so that the turbulent fluc-
tuations are very small (potentially lower than the measurement noise). In the stratosphere, the
layer structure detected by the wind and temperature measurements is similar. Figure[5.16shows
an example of ¢ from wind (left panel) and temperature fluctuations (centre panel) for an alti-
tude range from 12 km to 12.7km. Most (strong) turbulent layers have been detected by both
measurements (i. e. the spectrum is classified as turbulent), and also the variation of the magni-
tude of ¢ with altitude is similar. The correlation coefficient between ¢, and &7 is 0.74. However,
the absolute values differ by roughly one order of magnitude. This discrepancy has already been
noted by Theuerkauf| [2012].

For better comparison, the ratio of both dissipation rates for the whole flight is plotted in Fig-
ure Only data bins where both sensors have observed turbulence are included. Apart from
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Figure 5.16: Altitude profile of dissipation rates for the BEXUS 8 flight for the range 12 km to 12.7 km:
Kinetic dissipation rate from wind fluctuations (ey, left), kinetic dissipation rate from temperature fluc-
tuations (e, centre) and thermal dissipation rate y ¢,/ T from temperature fluctuations (right). Please
note the different scales of the dissipation axes of the three panels.
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Figure 5.17: Ratio e1/e, of kinetic dissipation rates obtained from temperature and wind measurements.
Shown are an altitude profile (left) and a histogram (right). The red vertical line marks the geometric
mean or most probable value, the red curve in the right panel the most probable normal distribution of
the logarithmic data.

the lack of simultaneous layers in the troposphere already mentioned above, no pronounced alti-
tude dependence of the ratio can be identified. The histogram shows a nearly lognormal distribu-
tion centred around 20, the geometric mean of the ratios. This offset suggests a systematic bias. It
may originate from wrong values for the constants ¢, , and ¢;, 1 in the formulas for determining
¢ from Iy, (2.22)). The values for c¢;, depend on empirical constants such as the structure function
constant which are not precisely known. Moreover, while [Theuerkauf [2012] used a value for
¢, that is smaller than that of ¢, T, the values given by Hocking [1985] obey the opposite rela-
tion, i.e. ¢,y > ¢}, 1. Solely the ratio of the values for wind and temperature fluctuations used in
this thesis, ¢, v/c;, - makes a difference of a factor of 13 in ¢, cf. and in Section2.3]
See Section [2.3|for a discussion of the different values of ¢;,. Furthermore, the assumptions of
isotropic, homogeneous and stationary turbulence might be not fulfilled.

The full width at half maximum of the distribution is 0.8 orders of magnitude. This is above
the uncertainty estimated for the computation of ¢ in Section[4.1.2} which is roughly a factor of 4.
That hints that the uncertainty determined in Section[4.1.2)may be underestimated, or there may
be a systematic error. The assumptions of isotropy, homogeneity and stationarity might be not
tulfilled. Another possibility is that the theoretical basis behind the evaluation method may need
improvement. For instance, the form of the structure function is crucial for the determination of
¢ from temperature fluctuations. The structure function is deduced from dimensional analysis.
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If in this deduction, for example, § = ycp/T would be used instead of y (an obvious choice when
taking into account the nature of dissipation discussed in Section [2.2), which has a different
dimension, the results would be different.

Another point of interest is in the relation between the kinetic and thermal dissipation, € and
x¢p/T. The factor c,/T is needed to obtain the dimensions of a dissipation and thus compa-
rability, cf. and in Section The thermal dissipation rate y is obtained as second
fit parameter from the fit of the turbulence model to the spectrum of the observed tem-
perature fluctuations, see Section The thermometer voltages are converted to temperatures
prior to the analysis to enable correct absolute values of the PSD. The right panel of Figure
displays part of the altitude profile of xc,/T. Similarities to the kinetic dissipation rate ¢ (centre
and left panels) are visible. The correlation between er and xc,/T is as high as 0.77, that be-
tween &, and xc,/T only 0.56. The higher correlation in the first case is not surprising because
the measurements of ¢, and y are independent, while et and y are determined from the same
spectrum. For example, when no significant temperature fluctuations are observed and thus the
thermal spectrum is classified as non-turbulent, et is zero, although velocity fluctuations and
kinetic dissipation may be present.

To further investigate the relation between € and y, the ratio er/(yc,/T) of kinetic and thermal
dissipation rates measured by temperature fluctuations is presented in Figure The altitude
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Figure 5.18: Ratio of kinetic and thermal dissipation rates e and yc,/T measured by temperature fluc-
tuations. Left: altitude profile (orange); the blue vertical line marks the geometric mean, the red curve a
logarithmic running mean over 5 km. Right: histogram (orange); the blue curve marks the most likely
normal distribution of the logarithmic data, the blue vertical line the most probable value.
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profile (left panel) shows a small height dependence. As visualised by the logarithmic running
mean (red curve), the ratio generally increases with altitude but stays below 1. The histogram
(over all altitudes, right panel) shows a clear lognormal behaviour. A fitted lognormal distribu-
tion (blue curve) shows a good agreement to the data. The mode is 0.03 (vertical blue line), i. e.
X is typically larger than e.

As mentioned above, both er and y are obtained from the same spectrum and are thus not
completely independent. Therefore the relation between the kinetic dissipation rate from the
wind measurement and the thermal dissipation rate (where y is of course from the temperature
measurement) is examined in Figure The ratio &,/(xc,/T) shows a broader distribution
than er/(xc,/T) and resembles the lognormal distribution less well. There is no obvious altitude
dependence of the ratio (left panel), in contrast to the relation of &1 to yc,/T described above.

The statistics may be biased by the fact that bins with € = 0 are not included; however, values
of zero or infinity make no sense on a logarithmic scale. Furthermore, because ¢, and &7 are
correlated, the two statistics presented in Figure[5.18/and [5.19]are not fully independent. But due
to the unclear relation both are considered.

To the author’s knowledge, this is the first examination of measured kinetic and thermal dis-
sipation rates. Thus comparison is possible only with model results.

Gafimann [private comminication] finds in simulations with ICON-IAP that the kinetic dis-
sipation typically peaks at slightly lower altitudes than the thermal dissipation. The reason is
that vertical velocity components of turbulent motions increase the temperature difference to
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Figure 5.19: Same as Figure|5.18] but for the ratio of kinetic and thermal dissipation rates &, and yc,/T
measured by wind and temperature fluctuations, respectively.
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the level directly above which drives thermal dissipation.

In the LITOS data, y and et from temperature always peak at the same altitudes. An important
reason is probably that both are obtained from the same spectrum. While that does not prescribe
the relation in magnitude, no kinetic dissipation can be observed with this method where no
significant temperature fluctuations are present, although wind fluctuations may be present. Such
situations are commonly seen in the raw data. Thus mainly the comparison between &, and xc,/T
is physically meaningful.

Layers in ¢, from the wind measurement in several cases start slightly below corresponding
layers in y (from the temperature measurement); examples in Figure are the layers from
12.57 km to 12.61 km and from 12.33 km to 12.37 km. Such an offset in altitude can also be seen in
the fluctuations, see e. g. Figure[4.] on page[36] However, in several other cases layers in ¢, and
start simultaneously, e. g. from 12.03 km to 12.08 km and from 12.22 km to 12.29 km in Figure[5.16]

Fritts and Wang [2013] compared ¢ and Riy of direct numerical simulations. The correlation
between both fields is generally large, but “approximate spatial coherence does not imply that
the dissipation fields exhibit similar responses”. The degree of correspondence depends on event
character and stage of evolution. Generally, the correlation is weak where strong mixing has
occurred. Fritts et al[[2015, e. g. Fig. 9a, b] found for Kelvin-Helmholtz events that the thermal
dissipation peaks at the outer portions of the KH billows while the kinetic dissipation typically
peaks at the centre.

LITOS is expected to measure events of different origins and stages and thus varying correla-
tions between both kinds of dissipation. In this light, a correlation coeflicient of 0.56 between &,
and yc,/T is within the expected margin.

Of course, one flight cannot resemble the whole story. Further investigations regarding this
basic relationship are necessary. For instance, more flights with both sensors would be interest-
ing.

In this section kinetic dissipation rates measured simultaneously with two different instru-
ments, namely by wind and by temperature fluctuations, are compared. The values have a sys-
tematic offset of more than an order of magnitude and the ratio also scatters by nearly an order
of magnitude. That hints that the value of the constants and may be incorrect, or at
potential inconsistencies and limitations of the turbulence theory used for the evaluation.

Moreover, the first comparison of measured kinetic and thermal dissipation rates was per-
formed. No clear relationship is found, but yc,/T typically is larger than e.

5.4 Flights with the small payload
To date, three flights with the small LITOS payload are available that yielded high quality data.
Those were launched at 27th March 2014, 6th June 2014 and 12th July 2015 from Kithlungsborn.

The first two of these flights were already analysed and related to atmospheric background con-
ditions based on Global Forecast System (GFS) model data by Soder| [2014, Chapter 4]. Some
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results are repeated here and some new ones added. The dissipation profiles shown below are
reprocessed with the new set of criteria listed in Section[4.1.1]
A detailed description of the payload can be found in Section The flight configuration
contained two CTA sensors. For the latest flight one of them had the wire oriented horizontally.
Since both CTA sensors were only approximately 10 cm apart, Soder [2014] used the simulta-
neous measurement of turbulence with both sensors as compliance criterion. No such criterion
is applied here in order to be comparable to the results of the BEXUS flights.

5.4.1 27th March 2014

A balloon with a spherical payload was launched from Kiithlungsborn at 27th March 2014, 11:10
CET. The left panel of Figure shows the atmospheric background conditions measured by
the radiosonde. The wind field (blue and green curves for zonal and meridional components,
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Figure 5.20: Results for the LITOS flight from 27th March 2014. Left: Background zonal wind (blue),
meridional wind (green) and temperature (red) measured by the radiosonde. Centre: Richardson num-
ber with Ri axis split at V4 into a linear and a logarithmic part. Right: Energy dissipation rates (blue
crosses) from wind fluctuations measured by CTA sensor 1. The orange curve shows a Hann-weighted
running average over 2km. The grey area marks the technical minimum (cf. Section[4.L1), the green
line the estimation of the theoretical minimum by Liibken| [1993, (3.146)]. The horizontal black line
marks the tropopause.
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respectively) reveals a relatively strong jet stream. Apart from that, only signatures of small-scale
gravity waves can be seen. Temperatures (red curve) decreased up to the tropopause at 9 km,
above which the lower stratosphere was more or less isothermal. Above ~30km temperatures
increased. The temperature measurement is disturbed (mainly in the stratosphere); the prob-
able reason is radiation effects, because the radiosonde was incorporated in the main payload
during this flight, cf. |Soder| [2014, Section 3.2.3]. Thus, evaluation involving derivatives of the

temperature, e. g. the computation of Richardson numbers, is not possible for altitudes above
~13 km.

Dissipation rates (right panel) reached a maximum between ~7.5km and 8 km. The maxi-
mum correlates with high wind shear (left panel) and entails relatively low Richardson numbers
between approximately —0.2 and 1 (centre panel). Another, less pronounced maximum in ¢ is
found from ~6 km to 6.5 km. Here Richardson numbers were in the same order and even lower
down to —1.5. Similar to the BEXUS flights, a general increase of dissipation rates with altitude
was observed on the large scale. Mean dissipation rates are 0.2 mW kg™ in the troposphere and
0.9 mW kg™ in the stratosphere. This is in the same order of magnitude as for the BEXUS 12
flight.

Turbulence is related to breaking gravity waves. Thus |Soder| [2014, Section 4.4] examined
possible sources of such waves, namely flow over topography (mountains), geostrophic adjust-
ment and convective generation. Although the mere existence of gravity waves is no cause of
turbulence, as already mentioned in Section they have to exist in order to break. Since no
information about wave breaking is available, wave activity is considered.

As seen in the left panel of Figure|5.21, winds blew from eastern directions where no consider-
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Figure 5.21: Horizontal winds at 850 hPa (left) and 500 hPa (right) from GFS run from 27th March 2014
6 UT, 6 h forecast. The blue streamlines visualise the wind direction. The magenta line in both panels
shows a projection of the flight trajectory.
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able mountains are located. Thus no significant mountain wave generation is expected. The flow
at 500 hPa (right panel) was stable parallel from the south-south-east so that no geostrophic ad-
justment was possible. Convective available potential energies were very low (not shown). Soder
(2014, Section 4.4] concluded that tropospheric gravity wave motion was low, but stratospheric
activity may have been caused by strong wind shear near 500 hPa. The wind shear originated
from the jet visible in the left panel of Figure and potentially produced shear instabilities
and turbulence.

The right panel of Figure[5.22]depicts an altitude profile of horizontal divergence. Such profiles
were not considered by |Soder| [2014]. As mentioned in Section this quantity is commonly
used as a proxy for gravity waves. Wave-like structures are visible over the whole altitude region.
This is no contradiction to few sources of waves described above because the waves may have
propagated to Northern Germany from distant points.
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Figure 5.22: Horizontal winds (left) and horizontal divergence (right) as altitude section at 54° N from
GFS run from 27th March 2014 6 UT, 6 h forecast. The magenta line in both panels shows a projection of
the flight trajectory.

5.4.2 6th June 2014

During the flight launched at Kithlungsborn at 6th June 2014, 11:32 CEST, a new CTA Wheatstone
bridge by Dantec Dynamics was tested. For comparison, a classical Wheatstone bridge was oper-
ated at the other channel. The result of the test is described in detail by Soder| [2014]. Essentially,
the new Wheatstone bridge has a large non-Gaussian noise, which makes signal analysis difficult.
Thus only the results from the old Wheatstone bridge are analysed here.

The atmospheric background observed by the radiosonde is shown in the left panel of Fig-
ure As for the previous flight, the radiosonde was incorporated in the payload and thus
the temperature measurement disturbed by radiation effects. Temperatures decreased up to the
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Figure 5.23: Like Figure but for the flight at 6th June 2014. The dissipation profile (right panel) is
based on the data from the old Wheatstone bridge.

tropopause, above which they did not change much. Winds came from south-western direc-
tions and were generally weak. The jet was also weaker than at 27th March. Directly above the
tropopause a strong wind shear was present. However, due to the stable stratification at that
altitude Richardson numbers were above Y4 (centre panel). Low Richardson numbers mainly
appeared in the upper troposphere.

Dissipation rates were large below ~13km altitude (right panel of Figure 5.23). Above they
dropped to low values. This is visible in the running average (orange curve in the ¢ profile)
and in the mean values: The mean dissipation rate from ground to 14 km is 11 mW kg, the one
above 14 km is only 0.1mW kg™!. Between the tropopause and 14 km the average is as high as
24 mW kg1, while in the troposphere it is 4 mW kg™

Atmospheric background conditions from GFS model data are depicted in Figure Soder
(2014, Section 4.4] noted that the northwards winds near ground nearly perpendicular to the
German Central Uplands were a potential source of mountain waves (see left panel). Moreover,
relatively high values of convective available potential energy (CAPE) of up to 1000 ] kg™! were
present above Denmark and the Baltic, and even in northern Germany 200 J kg™! were reached
(not shown). Thus convective creation of gravity waves was likely. Furthermore, bending stream-
lines were present west of the flight path and near Denmark (right panel of Figure which
may have effected geostrophic adjustment. Due to this multitude of sources, Soder| [2014, Sec-
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Figure 5.24: Like Figure 5.21} but for GFS run from 6th June 2014, 6 UT, 6 h forecast
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Figure 5.25: Like Figure[5.22} but for GFS run from 6th June 2014, 6 UT, 6 h forecast

tion 4.4] expected high wave activity which can explain the high dissipation rates observed by
LITOS.

Wave activity is visible in the horizontal divergence (right panel of Figure [5.25). Wave-like
structures are present below ~15 km altitude but become very weak above. This corresponds to
the sharp drop in dissipation rate at that altitude.

The left panel of Figure shows an altitude section of horizontal wind velocity. The jet was
of similar extent than for the previous flight.
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5.4.3 12th July 2015

At 12th July 2015, 00:01 CEST a small LITOS payload was launched at night time for the first time.
The configuration contained two CTA sensors, thereof one with the wire oriented vertically as
usual and the other one with the wire oriented horizontally. The idea for this configuration was
to test the influence of the wire orientation.

The left panel of Figure shows the background parameters measured by the radiosonde.
Westerly winds prevailed up to ~18 km, whereas above ~19 km winds came from the east. This
change in direction was not associated with a significant wind shear because velocities were small
in that altitude region. A jet stream is visible at roughly 10 km. Superposed on the winds are
small-scale gravity waves. Above the tropopause at 11.3 km altitude, temperatures did not change
greatly up to ~20 km; higher up they increased.

The right panel of Figure depicts the turbulent dissipation profile of the sensor with the
wire oriented vertically (i. e. the same wire orientation as for the previous flights). It shows an
overall tendency to increasing rates with altitude up to the tropopause. Above, mean rates drop,
as, e. g., reflected in the weighted running mean (orange curve). From roughly 15 km upwards
dissipation rates were low. So were winds (see left panel).

Turbulent fractions were 45 % in the troposphere and 8 % in the stratosphere and thus much
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Figure 5.26: Like Figure but for the flight at 12th July 2015. The dissipation profile (right panel) is
based on the data from the sensor with the wire oriented vertically.
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smaller than for the BEXUS flights (cf. Table[5.2)on page[71). Arithmetic averages of dissipation
rates were 6 mW kg! in the troposphere and 4 mW kg™ in the stratosphere, i. e. much higher
than for BEXUS, especially in the troposphere. The large averages were mainly caused by some
layers with very large dissipation rates. Geometric mean values were lower than for BEXUS with
0.01 mW kg in the troposphere and 0.03 mW kg™ in the stratosphere. When looking at averages
below and above the drop visible in the profile, one obtains mean dissipation rates of 8 mW kg™
below 15 km and only 0.3 mW kg above. This is similar to the flight from June 2014.

Richardson numbers (centre panel of Figure were small for most altitudes, even above
15 km where turbulent fractions and dissipation rates were low. No direct relation between Richard-
son number and turbulence is observed for the BEXUS flights as well, as noted in Section 5.1} A
comparison to the other Kithlungsborn flights is not possible because for 27th March 2014 and
6th June 2014 the temperature data is disturbed.

Figure[5.27]shows wind maps from GFS model runs from 11th July 2015, 18:00 UT, 6 h forecast.
At 850 hPa (left panel), winds came from the west and north west where the North German Plain
is located, thus no mountain wave activity is expected. At roughly 70 hPa (ca. 20 km altitude) the
winds reversed, but stayed at very low velocities. This can be seen in the altitude section shown
in the left panel of Figure and in the radiosonde measurement (left panel of Figure 5.26).

Another source of gravity waves is geostrophic adjustment. The right panel of Figure [5.27]
shows horizontal winds at 500 hPa. Slightly bending streamlines can be seen west of the flight
path over the North German Plain. These may have emitted gravity waves. Convective avail-
able potential energies are very low (< 1Jkg™, not shown). Gravity waves can also propagate
considerable distances, so low generation does not necessarily imply low wave activity.

The right panel of Figure depicts horizontal divergence. Wave-like structures are visible
below ~15 km; above that altitude no wave activity can be seen any more. This coincides with
high dissipation rates below ~15 km and low rates above.
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Figure 5.27: Like Figure|5.21} but for GES run from 11th July 2015, 18 UT, 6 h forecast
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Figure 5.28: Like Figure5.22} but for GFS run from 11th July 2015, 18 UT, 6 h forecast

5.4.4 Comparison of the Kiihlungsborn flights

Table [5.3| shows a comparison of mean dissipation rates and turbulent fractions for the three
flights from Kiihlungsborn presented above. The flight at 6th June 2014 featured the highest
occurrence rates and mean ¢ values. This corresponds to the largest number of potential gravity
wave sources (mountain waves from the German Central Uplands, geostrophic adjustment and
medium convective available potential energy).

At 12th July 2015, the turbulent fraction in the troposphere was similar while tropospheric dis-
sipation rates were on average even higher. In the stratosphere, the lowest percentage of turbu-
lence was detected. Average dissipation rates were smaller than at 6th June 2014, but still relatively
large. Gravity waves were potentially generated by geostrophic adjustment, while no mountain
wave or convective sources are visible. Waves may also have propagated from other places. Wave-

Table 5.3: Mean dissipation rates and turbulent fractions for the three flights from Kithlungsborn
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27 Mar 2014 | 6 Jun 2014 | 12 Jul 2015
turbulent fraction / % troposphere 36 46 45
stratosphere 20 19 8
whole flight 24 29 23
arithmetic mean ¢ / mW kg™ | troposphere 0.2 4 6
stratosphere 0.9 7 4
whole flight 0.7 6 5
geometric mean ¢ / mW kg | troposphere 0.01 0.1 0.01
stratosphere 0.08 0.05 0.03
whole flight 0.02 0.08 0.01




5.5 Comparison to Thorpe evaluation of radiosonde measurements

like structures are visible in the horizontal divergence below ~15 km, while it is nearly constant
above. This coincides with high dissipation below that altitude and low dissipation above.

The correlation between wave activity and turbulence hints at continuous wave-breaking through-
out all altitudes. When the atmosphere is unstable (Richardson numbers are low, see centre panel
of Figure[5.26), a fraction of the waves can break at all altitudes. In this situation turbulence (and
dissipation) is indeed related to the occurrence of gravity waves.

Mean dissipation rates at 27th March 2014 were lowest for the three flights. This corresponds
to the least sources of gravity waves. No drop in dissipation rate occurred near 15km as for
the other two flights, but medium rates persisted throughout the altitude range. This may be a
seasonal effect and has to be further investigated.

When looking at all flights, one sees a clear relation between the occurrence of a drop in dissi-
pation rate and a drop in the horizontal divergence: For the flight from 27th March 2014, wave-
like structures in the horizontal divergence as well as medium dissipation rates both continue
throughout all altitudes. For the other two flights, both quantities have a drop at roughly 15 km.
This shows a clear correlation between dissipation and gravity wave occurrence and hints at con-
tinuous wave breaking as discussed above.

5.5 Comparison to Thorpe evaluation of radiosonde
measurements

Recently, energy dissipation rates were obtained from standard radiosondes using Thorpe’s method
[e.g. Gavrilov et al., 2005, |Clayson and Kantha}, 2008, Kantha and Hocking, 2011]. The motivation
behind that approach is to exploit existing measurements available for large geographical areas
and several years. For such an evaluation a proportionality between the Thorpe and Ozmidov
scales is assumed to infer dissipation rates via (4.7)), see Section[4.2] This assumption comes from
oceanography but was rarely checked in the atmosphere. With LITOS and a radiosonde on the
same gondola, such a check is possible and was performed as described in this section.

When comparing results from LITOS and a Thorpe analysis, it should be kept in mind that
both methods do not observe exactly the same thing: The Thorpe method uses (static) instabili-
ties as a proxy, while LITOS measures turbulent motions directly. Not all turbulence is associated
with static instabilities. Even if initially a negative potential temperature gradient may have oc-
curred, it is removed by the turbulent motions which outlive the instability. Thus turbulence
may still be active while the instability has already ceased. Such fossil turbulence cannot be ob-
served by the Thorpe method, but may be measured by LITOS. On the other hand, within an
instability turbulence may have not yet been developed. Such a layer is detected by the Thorpe
method, but not by LITOS. Moreover, the retrieval of € assumes fully developed turbulence, but
the atmospheric turbulence may be in a stage where the assumed spectral form is not valid.

The author has already published the results presented in this section in a similar form in
Schneider et al. [2015]. The difference is that in the paper a relaxed form of the significance test
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by|Wilson et al. [2010] has been used to get a better statistical basis, while here the rigorous form
is applied.

The evaluation concentrates on data from the large payload (see Section because that
platform is less sensitive to disturbances. To date, three such flights have been performed, namely
BEXUS 6, 8 and 12 in 2008, 2009 and 2011, respectively. For BEXUS 6, the radiosonde data are
partly disturbed so that it is not considered in this work. At 12th July 2015 a first night-time flight
with the small payload was performed from Kithlungsborn (see Sections and 5.4.3). Data
from this very recent flight is of high quality and thus also suitable for the analysis presented in
this section.

The Thorpe analysis is performed as described in Section Prior to the analysis, ra-
diosonde data above 25 km are cut off to eliminate disturbances from the transition to the floating
phase. For both BEXUS flights a denoising with downsampling factors of 3 and 2 for BEXUS 8
and 12, respectively, is necessary to obtain a sufficiently large mean trend-to-noise ratio (tnr) of
2.8 and 2.5, respectively. With a 95 % percentile, 37 of 95 (10 of 121) detected unstable layers for
BEXUS 8 (BEXUS 12) are significant. For the Kithlungsborn flight the tnr is 1.3 and no denoising
is necessary; 23 of 476 unstable layers are significant.

For BEXUS 8 (BEXUS 12), inversions are observed in 21 % (8 %) of the atmosphere. The mean
layer thickness is 139 m (197 m). In the troposphere, 24 % (17 %) is turbulent with a mean layer
thickness of 189 m (289 m). In the stratosphere, the turbulence fraction according to the Thorpe
analysis is 19 % (2 %) with a mean layer thickness of 121 m (61 m). That means that compared to
the troposphere there is less turbulence in the more stable stratosphere and layers are generally
thinner.

Similar relations between tropospheric and stratospheric values are obtained by LITOS (cf.
Sections[5.1]and[5.2} especially Table[5.2). As expected the turbulent fraction in the stratosphere
is lower than in the troposphere, but altogether much more turbulence has been observed by
LITOS compared to the radiosonde: For BEXUS 8 (BEXUS 12), 63 % (64 %) of the atmosphere
below 25km is turbulent! Layer widths are also smaller in the stratosphere compared to the
troposphere, although with much smaller values than detected by the Thorpe method. That sug-
gests that possibly radiosondes do not have the resolution to detect all turbulence. Particularly,
the statistics of layer thickness presented in Section [5.1| shows that 55 % of the turbulent layers
detected for BEXUS 12 are thinner than the resolution of the downsampled radiosonde of 20 m.
For BEXUS 8, 70 % of the LITOS layers are thinner than 30 m (remember that the downsampling
factor for the radiosonde data of this flight is 3). Taking into account that unstable layers have to
span at least two data bins to be reliably detected, 84 % (72 %) of all LITOS layers for BEXUS 8
(BEXUS 12) are undetectable by the radiosonde.

The Ozmidov scale is computed directly from the dissipation rate ¢ measured by LITOS via
2:29), Lo = 1, \/€/N?; the Brunt-Viisild frequency N = /£ 92 is taken from the radiosonde
measurement as it only slowly varies with altitude. It is computed from the sorted potential tem-

perature profile instead of the original one because a background stratification is needed and an
imaginary N would result in an imaginary and negative Ozmidov scale, which is unphysically
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[Dillon| 1982, Sect. 3]. As mentioned in Section [4.2] the constant ¢y, is set to 1 [e.g.

et al., 2005, |Clayson and Kantha, 2008, Kantha and Hocking, 2011]. The result is visualised in
Figure[5.29for a small altitude range from 20 km to 21.1km (blue curve). It shows substructures
within layers, e. g. between 20.19 km and 20.34 km. Remember from Section [4.1.1] that ¢ is com-
puted in 5 m windows with 50 % overlap. Conversely, the Thorpe scale (green bars) is a per-layer
value by construction. The potential temperature (red curve) from which it is derived has a lower
resolution than the L profile. LITOS reveals that layers detected by the Thorpe method actually
are divided in patches with different dissipation. For example, a patch from 20.68 km to 20.72 km
with relatively large dissipation rate is followed by small non-turbulent region from 20.72 km to
20.75 km, followed by another turbulent layer and so on, all within the same unstable layer ob-
served by the radiosonde. Additionally, several layers measured by LITOS are not detected by
the radiosonde at all, e. g. between 20.19 km and 20.34 km.

In order to compare the Thorpe and the LITOS methods, the dissipation rates measured by
LITOS are averaged over the unstable layers detected by the Thorpe method. Such mean rates
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Figure 5.29: Zoom plot of Thorpe (green) and Ozmidov (blue) length scales for the BEXUS 8 flight. The
red curve shows the potential temperature.
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are denoted by €. Those layers where both methods detect turbulence, i.e. where € > 0, are
selected. For BEXUS 8, 35 of the 37 significant layers (95 %) fulfil that criterion, for BEXUS 12
all 10 (100 %). On the other hand, only 113 of 489 (26 of 498) layers detected by LITOS, i.e.
21% (5 %) intersect a significant Thorpe layer for BEXUS 8 (BEXUS 12). This is also reflected
in the mean layer thickness. The mean thickness of LITOS layers is 40 m (41 m), that of LITOS
layers intersecting a Thorpe layer 122 m (144 m). That means only thick layers are detected by the
radiosonde with its relatively coarse resolution.

A mean Ozmidov scale is computed from € (and the background Brunt-Viisilad frequency as
mentioned before), Lo := \/¢/N?. Figure shows a plot of Ozmidov scale L, versus Thorpe
scale Lt for the BEXUS 8 (green) and BEXUS 12 (magenta) flights as well as for the new Kiih-
lungsborn flight from July 2015 (orange). Both length scales are of similar order of magnitude.
For BEXUS 8, no obvious relation can be identified, particularly no proportionality. The corre-
lation coefficient is 0.31. For BEXUS 12, the correlation is as high as 0.88 and an approximate
proportionality may be present, but it is based on a very small sample. For the Kithlungsborn
flight, the visual impression of the plot hints at a possible proportionality, however the correla-
tion coefficient is only 0.29. Moreover, the value of the ratio Lo/Lr is clearly different for the
Kithlungsborn flight and for the BEXUS flights. That hints that the relation may depend on
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Figure 5.30: Thorpe length Lt vs. Ozmidov scale Lo for BEXUS 8 (green), BEXUS 12 (magenta) and
the July 2015 flight from Kiihlungsborn (orange). The histograms show the distributions of Lo and Lr,
respectively, of all data points in the graph, i. e. of the composite data set of BEXUS 8, BEXUS 12 and
the Kiithlungsborn flight. The occurrence axes have a linear scale and are omitted for readability. Note
that Lt is limited by the resolution of the (downsampled) radiosonde (~30 m for BEXUS 8, ~20 m for
BEXUS 12, and ~10 m for the Kiihlungsborn flight).
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the geophysical situation. Whatsoever, taking into account all data points (i. e. all flights), the
assumption of a general proportionality Lt o Lo, (4.6)), needed for the conversion of Thorpe
lengths to energy dissipation rates, is not fulfilled for the LITOS data.

The histograms in the top and in the right axes in Fig. show the distributions for Lo and
L, respectively, for the composite dataset of all data in the graph, i.e. of BEXUS 8, BEXUS 12
and the Kiihlungsborn flight from 12th July 2015. The maximum for the Thorpe length is at larger
scales than for the Ozmidov scale. The distribution of Lt is more dominated by the centre while
the one of L, is broader. This may be due to the higher sensitivity and dynamic range of LITOS
compared to the radiosonde.

Recent studies question a proportionality between L and Lt even for the ocean. For example,
direct numerical simulations by/Smyth and Moum|[2000] indicate that Lo /Lt is not constant but
rather depends on the age of turbulence (their Fig. 15). Atmospheric simulations by [Fritts et al.
[2015] for breaking gravity waves and Kelvin-Helmholtz instabilities show very different spatial
structures for Lo and L, see Figure The ratio Lo/Lt would strongly depend on the place
where the balloon flies through the field (compare e. g. X’ = 0.75 and X’ = 0.85). This contradicts
a general proportionality between Lo and Lr.

Since a proportionality Lt = croLo is widely assumed in the literature, further investigations

Thorpe Scale,

Figure 5.31: Results of a direct numerical simulation of a Kelvin-Helmholtz instability by Fritts et al.
(2015, Figure 11] showing streamwise-vertical cross sections of Lt, and Lo assuming smoothed and local
¢ (top to bottom). Horizontal and vertical scales show the subdomain location in X’ and Z’
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are necessary. The application to compute dissipation rates via (4.7), ¢ = 2, L% N3, involves the
value of the proportionality constant c2, = (Lo/Lt)?. However, knowledge about that value is
very limited. Having measured both Lo and Ly enables the computation of 2, for each layer. A
histogram of the result for the two BEXUS flights is depicted in the left panel of Figure It
shows a broad distribution spanning more than two orders of magnitude. Taking into account
the large scatter of the data points in Figure this is not unexpected. Wijesekera et al.|[1993,
Section 3.1] found the distribution of the ratio Lt/Lo to be lognormal, which implies (Lo/Lt)? =
¢}o to be lognormal as well. Thus a normal distribution is fitted to the logarithmic data with
a most-likelyhood estimate (blue curve in the left panel of Figure 5.32). It shows a reasonable
agreement to the data and is centred around 0.03 (blue vertical line). The same mode is obtained
when treating both flights BEXUS separately.

The new night-time flight with the small payload performed from Kiithlungsborn at 12th July
2015 shows a different relation with a most probable value of ¢%, = 1.6 (right panel). This high-
lights that the ratio is highly variable.

The values for ¢}, used in the literature are in the order of 1. |Clayson and Kantha [2008]
incured 0.3 by reviewing oceanic measurements. Kantha and Hocking|[2011] obtained ¢3, = 1.0
by a comparison of radiosonde data to radar measurements. Gavrilov et al. [2005] used c%, = 1.32
(cTo = 1.15) referring to a French thesis; this value was obtained from selected thick stratospheric
layers (> 200 m) with statistically homogeneous turbulence. However, in those publications no
data basis, distribution width or error is given. Wilson et al, [2014] reported a few case studies
of turbulent layers in the troposphere detected simultaneously by radar and balloon; using their
reported estimates of Lt and Lo leads to values of ¢z, between 0.1 and L.6.

A comparison of those literature values to the most likely ones from LITOS yields a significant
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Figure 5.32: Statistics of the ratio (Lo/Lt)? for the BEXUS 8 and BEXUS 12 flights (left) and for the
Kithlungsborn flight from 12th July 2015 (right). The blue curves show the most likely normal distribu-
tions for the logarithmic data, the vertical blue lines the most likely values of that distributions.
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discrepancy for the BEXUS flights, while the results are compatible for the Kiithlungsborn flight.
That suggests a geophysical variability of c¢},. Due to the good agreement of the result from
the Kithlungsborn flight and the literature values, a bias by the layer selection procedure or the
different detection thresholds of LITOS and the radiosonde seems less likely.

A comparison of dissipation rates is different from comparing the length scales discussed
above because the relation between the energy dissipation rate ¢ and the length scales involves
the Brunt-Viiséld frequency (see and (4.7)) as well as (for the Thorpe analysis) the value
of the constant c7,. As mentioned at the beginning of this section, several authors used the pro-
portionality Lo o< Ly to obtain energy dissipation rates from radiosondes. In these cases, no
information on the actual relation between Lo and Ly is available, thus a value for ¢, has to be
assumed. To compare such a method with LITOS, emorpe is computed accordingly with (4.7),
EThorpe = C1o L3 N?, regardless of the results concerning the proportionality presented above. The
proportionality constant is assumed to be ¢35 = 0.3 as in |Clayson and Kantha [2008]. Similar
to the computation of the Ozmidov scale, N is taken from the sorted profile to prevent negative
and imaginary dissipation rates which are unphysically.

Figure[5.33|compares altitude profiles of & obtained with both methods for the BEXUS 8 flight.
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Figure 5.33: Energy dissipation rates obtained from Thorpe analysis of the radiosonde (left) and spec-
tral analysis of the high-resolved wind measurement (right) for the BEXUS 8 flight. In the right panel,
the blue curve shows ¢ in the full resolution, the cyan bars visualise averages over the unstable layers
detected by the Thorpe analysis (¢).
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For LITOS, ¢ is shown in the full resolution (blue curve) as well as averaged over the layers de-
tected by the Thorpe analysis (¢, cyan bars). Many turbulent layers measured by LITOS are not
observed by the radiosonde at all. These are not associated with a significant negative gradient
of potential temperature on scales detectable by the radiosonde, which is necessary for detec-
tion by the Thorpe method. Those turbulent layers may be too thin to be observed with the
relatively coarse vertical resolution of the radiosonde. Apart from that, as mentioned above not
all turbulence is related to static instabilities. On the other hand, turbulence may have not yet
been developed within an instability. Both methods do not detect exactly the same thing; the
indirect observation of turbulence through static instabilities (as done by the Thorpe method) is
somewhat different from measuring the turbulent motions directly (as done by LITOS).

Moreover, even for those layers observed by both instruments the difference is large. The left
panel of Figure depicts the ratio €rros/emorpe Of the dissipation rates obtained by LITOS
and by the Thorpe analysis of the radiosonde for BEXUS 8. For this flight, the dissipation rate
measured by LITOS is always smaller than that from the Thorpe analysis. ¢ values deviate up to
a factor of ~300. The geometric mean of the ratio is 9 x 1072, For the flight from 12th July 2015
(right panel of Figure the deviation of both methods is not as large, and the ¢ value from
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Figure 5.34: Ratio of dissipation rate obtained by LITOS and by the Thorpe evaluation of the ra-
diosonde, gr110s/ €Thorpe for BEXUS 8 (left) and the Kithlungsborn flight from 12th July 2015 (right)
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5.5 Comparison to Thorpe evaluation of radiosonde measurements

LITOS is higher than that from the radiosonde for some layers and lower for others.

The deviation in the £ values is connected to the deviation of the mean value of ¢2, = (Lo/Lr)?
from the literature value of 0.3 used in the radiosonde evaluation. With the most probable value,
i.e. ¢ty = 0.03 for BEXUS 8, the difference would be smaller. However, the intention of this
section is the comparison with radiosonde evaluation as performed in the literature; for those
applications no user-adapted value of ¢7, is available.

Mean dissipation rates for significant layers of the BEXUS 8 flight are 7 mW kg™! (geometric
mean: 4 mW kg) from Thorpe compared to 1mW kg™ (geometric mean: 0.5mW kg™) from
LITOS. That means the averages differ by nearly an order of magnitude. The correlation coet-
ficient between € from LITOS and ¢ from Thorpe is 0.41. Table 5.4/ shows a comparison of the
mean values of both methods. In the troposphere the discrepancy is a factor of 10, while in the
stratosphere it is smaller but still a factor of 4. This is, at least for the troposphere, above the
uncertainty of the determination of ¢ from the spectra which is roughly a factor of 4.

It should be noted that the comparison involves two parameters: (a) evaluation method (Thorpe
or spectral analysis) and (b) vertical resolution (low or high). The low-resolved Thorpe analysis
is considered here because such an evaluation of radiosonde data has been proposed for exten-
sive use [Clayson and Kantha, 2008, Love and Geller, 2012]. Please note that Love and Geller
[2012] call 1 Hz (5 m) high resolution, while here it is called low resolution (compared to LITOS
with 8 kHz). In principle, the Thorpe analysis can also be performed on data with higher resolu-
tion, as done, e. g., by|Luce et al. [2002] for temperature data with a 50 Hz sampling rate; however,
such data are rarely available compared to those of standard radiosondes. Furthermore, a kind of
spectral analysis can be used to determine dissipation rates from relatively low-resolution wind
data [Barat, [1982a], but this method depends on the absolute value of the wind velocity, which is
not available for the LITOS measurements (see Section [3.1).

The analysis presented in this section only contains data from three flights, as this is what is
available to date. The two BEXUS flights both took place at polar latitudes near autumn equinox,
while the one with the small payload was at mid-latitudes during summer conditions. Of course
they cannot represent the whole variability of the stratosphere. Nevertheless, although there are
differences between the flights, such as dissipation rates being on average 1 order of magnitude
higher for BEXUS 8 compared to BEXUS 12, these are not relevant for the results discussed above.
More flights with LITOS are planned to broaden the data basis.

Table 5.4: Comparison of mean dissipation rates from Thorpe analysis of the radiosonde and spectral
analysis of LITOS averaged over significant unstable layers for the BEXUS 8 flight

Thorpe LITOS
tropo | strato | all || tropo | strato | all
arithmetic mean ¢ / mW kg™ 2 8 7 0.2 2 1
geometric mean ¢/ mW kg™ | 0.8 7 4 0.1 0.8 |05
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5 Geophysical results

In this section the assumption for the extraction of dissipation rates by Thorpe analysis, a
proportionality between Thorpe length Lt and Ozmidov scale Lo, was checked. No general pro-
portionality is found in the LITOS data, but the relation is highly variable, potentially depending
on the geophysical situation. Although an approximate proportionality may be present for some
flights, the most probable value of the ratio (Lo/Lt)?, the “constant” used in radiosonde anal-
yses, varies by nearly two orders of magnitude for different flights. A comparison of a Thorpe
analysis of radiosonde data as performed in the literature to results from LITOS shows that many
turbulent layers observed by LITOS are not detected by the radiosonde. Indeed, for BEXUS 8,
BEXUS 12, and the Kithlungsborn flight, 84 %, 72 %, and 88 %, respectively, of all layers observed
by LITOS are thinner than the minimal layer width reliably detectable by the radiosonde (defined
by two data bins of the radiosonde profile). That means standard radiosondes have too coarse a
resolution to detect most turbulence.
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6 Summary and outlook

In this work, the balloon-borne instrument LITOS for turbulence measurements in the strato-
sphere that was first developed by Suminskal [2008] and Theuerkauf [2012] has been significantly
improved, and new flights with the instrument were performed and evaluated. Combining data
of new and previous flights, the results from LITOS were compared with an evaluation method
for radiosondes found in the literature, the so-called Thorpe analysis, and the essential assump-
tion for extracting dissipation rates with that method was checked. Moreover, the first compari-
son of kinetic and thermal dissipation rates in the stratosphere was performed.

Technical development

On the technical side, a new data acquisition that eliminates potential problems with the tempo-
ral correlation of data of different sensors has been developed at the IAP. This board also includes
inertial sensors. To reconstruct the attitude of the balloon, an algorithm combining measure-
ments of rotation, acceleration and magnetic field has been implemented within this thesis.

To check the impact of the payload on the measurement, wind tunnel experiments were per-
formed with a model of the small gondola at that time. The results of these experiments have lead
to a new payload shape which is spherical instead of cubic. The much better performance of the
new gondola was verified in the wind tunnel and with the evaluation of attitude measurements
from flights with both payload shapes.

Furthermore, the first error estimation for the retrieval method of the dissipation rate & was

carried out. With retrievals of simulated spectra, the error in ¢ is estimated to roughly a factor of
4.

New flights

Several new flights were performed within this work. One flight on a large (12000 m?) balloon
was conducted from Kiruna during Balloon EXperiments for University Students (BEXUS) 12.
Due to the large weight of the gondola, that system has very few spurious motions and thus the
best data quality.

Additionally, several flights with the new design of the small payload were carried out from
Kithlungsborn. The flight behaviour (e. g. pendulum motions) and data quality are vastly im-
proved compared to the previous design. Some minor issues with disturbances remain.
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6 Summary and outlook

Geophysical results

The new measurements confirm a large intermittency of turbulence, which occurs in patches
alternating with laminar regions. The boundaries between both are relatively sharp. Thin layers
prevail with nearly monotonous decrease in occurrence with increasing thickness. The mean
layer width for BEXUS 12 is 41 m. In the troposphere layers are on average significantly thicker
with 99 m compared to the stratosphere with 27 m. The mean value is in very good agreement to
the observations by Theuerkauf [2012] who obtained 46 m for the BEXUS 8 flight and 38 m for
BEXUS 6 using a different evaluation method. She similarly found thinner and more frequent
layers in the stratosphere compared to the tropopause region (7 km to 15 km).

Turbulent fractions measured by LITOS are large—85 % in the troposphere and 52 % in the
stratosphere for BEXUS 12. Particularly in the stratosphere this is much more than expected.
Most observed layers are thinner than the typical vertical resolution of remote sensing instru-
ments. That means with finer resolution more turbulence can be detected. For a comparison
with radar measurements by Wilson et al.| [2005], the different sensitivity and vertical resolution
of both instruments have to be taken into account. When considering only layers detectable by
the radar, the LITOS results are compatible with a turbulent fraction of 10 % to 20 % obtained by
Wilson et al.|[2005].

Features in dissipation rates € can be related to meteorological background conditions. For
the BEXUS 12 flight, a sharp maximum in turbulent dissipation just below the tropopause at
~10 km altitude corresponds to high wind shears which entails low or even negative Richardson
numbers. LITOS gives direct evidence for the dissipation associated with the dynamical instabil-
ity. The wind shear is associated with a wind reversal that filters gravity waves. During previous
BEXUS flights no such wind reversal and also no distinct peaks in dissipation rates were present,
supporting the above interpretation.

Dissipation was observed even for large Richardson numbers Ri, confirming results by Theuer-
kauf| [2012] that were based on two soundings only. That contradicts the classical criterion for
dynamic instability, which states that turbulence exists for Ri numbers smaller than Y4. Similarly,
Achatz [2005] found in numerical simulations of gravity waves that instability and the onset of
turbulence is independent of Ri.

Eddy diffusion coeflicients computed from ¢ are in acceptable agreement to other stratospheric
measurements considering the different resolutions of the instruments.

To further study the relations to the meteorological background conditions, Weather Research
and Forecasting (WRF) model simulations for the BEXUS 8 and BEXUS 12 flights were provided
by Johannes Wagner (University of Innsbruck). This is the first time that high-resolution strato-
spheric turbulence measurements were interpreted using accompagning high-resolution simu-
lations. Gravity wave activity seen in WREF is clearly related to dissipation observed by LITOS.
For instance, during BEXUS 12 wave activity was enhanced near 10 km and ceased to exist above.
This is consistent with wave filtering and enhanced dissipation in this altitude region. LITOS
for the first time provides a direct measurement of the dissipation associated with the (breaking)
waves. The results also confirm that internal gravity waves are major contributors to instability
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and turbulence [e. g. Fritts et al., 2013, Section 1].

During BEXUS 8 wind and temperature fluctuations were measured simultaneously. Dissipa-
tion rates from those independent observations, ¢, and e, were compared. Both are expected
to coincide since the same physical quantity is measured. For the evaluation, new dissipation
profiles were computed from the original raw data. Rates obtained from both sensors are highly
correlated, but, as already noted by Theuerkauf| [2012], the absolute values differ by more than
one order of magnitude. As was found in the present thesis, this is above the uncertainty in the
determination of € which is estimated to be roughly a factor of 4. That hints at potential incon-
sistencies and limitations of the turbulence theory used to extract the values, e. g. in the constants
in the relation between inner scale [, and dissipation rate ¢ taken from the literature. Moreover,
kinetic and thermal dissipation rates € and yc,/T were compared. The first one specifies the en-
tropy production due to friction, while the second one characterises the entropy production due
to thermal diffusion. This is the first time that € and y from simultaneous observations in the
stratosphere were compared. In the LITOS data, er and yc,/T are highly correlated because they
are computed from the same spectrum—when, e. g., no temperature fluctuations are observed,
er is zero although wind fluctuations and kinetic dissipation may be present. &, and yc,/T are
less correlated with a correlation coefficient of 0.56. The ratio ¢/(yc,/T') shows strong local vari-
ations and its distribution is broad—the full width at half maximum is approximately one order
of magnitude. These results confirm direct numerical simulations by|Fritts and Wang|[2013] who
found that correlations between both fields strongly depend on event character and stage of evo-
lution, being generally large, but weak where strong mixing has occurred. Taking into account
that LITOS is expected to measure events of different origins and stages, a medium correlation
is consistent.

An important part of this work was the comparison to turbulence evaluation of temperature
profiles observed by radiosondes (Thorpe analysis). Such an analysis is commonly used in the
literature. It uses static instabilities as proxy for turbulence. The key assumption for the com-
putation of dissipation rates is a proportionality between Thorpe length Lt and Ozmidov scale
Lo. Such proportionality was observed in the ocean, but rarely tested for atmospheric condi-
tions. Knowledge of the value of the proportionality constant is very limited. Nevertheless, such
a proportionality is widely assumed with a value of the constant mostly taken from oceanic ob-
servations. As LITOS measures ¢ directly, a check of the proportionality is possible and was
performed, and the constant was computed. Surprisingly, no proportionality between L, and Lt
can be seen in the LITOS data. The value of (Lo/Lt)? the “constant” used in the Thorpe analy-
sis, varies over more than two orders of magnitude for individual unstable layers. Even the most
probable value deviates for different flights by nearly two orders of magnitude. That hints at a
geophysical dependency of the relation between Lo and L. The deviation of dissipation rates
from both methods depends on the choice of the constant. For 0.3 as chosen by |Clayson and
Kantha [2008]], & deviates by up to a factor of 300. Moreover, many turbulent layers observed by
LITOS have not been detected by the radiosonde at all. This questions the applicability of the
Thorpe method for individual turbulent layers. Moreover, mean values critically depend on the
choice of the proportionality constant, which seems to depend on the geophysical situation.
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6 Summary and outlook

Outlook

New insights have been gained into stratospheric turbulence. The assumption for the extrac-
tion of dissipation rates from radiosondes, namely a general proportionality between Thorpe
and Ozmidov scales, has been falsified. The actual relation seems to depend on the geophysical
situation, thus further LITOS flights are worthwhile to examine such a potential dependence.
Moreover, new flights will improve the statistical basis. Knowledge of such a relation seems nec-
essary to interpret Thorpe analyses of operational radiosondes. Direct numerical simulations
may also help gaining such knowledge.

LITOS results have not been compared with those of remote sensing instruments observing
turbulence in the same volume, e.g. the OSWIN radar in Kithlungsborn. Such a comparison
would be worthwhile.

By complementing LITOS observations with model data, a connection between gravity waves
and turbulence was examined. These results can be extended by measurements of gravity waves
with other instruments, e. g. by aircraft or lidar, or by a gravity wave analysis of radiosondes.

Calculation of ¢ from first simultaneous high-resolution observations of wind and tempera-
ture were inconsistent and revealed potential problems of the turbulence theory used for data
evaluation. Reviewing the theory seems necessary. Future flights with both sensor types may
hint at the origin of the discrepancies and help answering these fundamental questions. More-
over, further measurements can contribute to the understanding of the relation between kinetic
and thermal dissipation.

With further improvements of the small LITOS payload, flights could be performed on a regu-
lar basis. Furthermore, measurements targeted at specific geophysical questions are planned.
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A Statistical theory of turbulence

In this chapter, the basics of the statistical theory of turbulence are introduced and the function
to be fitted to experimental data for the extraction of turbulence parameters is derived.

As mentioned before, the velocity fluctuations u/(x, t) and temperature fluctuations T’(x, t)
are treated as random fields. By definition they have zero mean. A measurement is one realisation
of the random process.

A.1 Correlations

A common approach is to relate values at two different points in time or space. These relations
are described by the correlation function, one of the most important characteristic quantities.
For a real-valued field the correlation tensors in space (superscript (s)) and time (superscript (t))
are defined as

BY (x, 1, 1) = (uf(x, h)ul(x, 1)) (A1)
Bf;)(xl,xz, t) = (uf(xl, t)u(x2 t)) (A.2)

[Tatarskiil 1971, (2.5); [Mathieu and Scott, {2000} (3.5), (6.4)] (remember u’ has zero mean). It is
positive definite and for a real field u symmetric [Tatarskii, 1971, §2].

If the statistics of a field is independent of time, it is called stationary, and the temporal cor-
relation depends on the time difference 7 := t, — t; only. Conversely, if the temporal correlation
function does not depend on time, the field is stationary [Tatarskii, 1971, §2]. Similarly, if the sta-
tistical properties do not depend on the location in space, the field is named homogeneous, and
the spatial correlation function depends on the difference r := x, — x; only. If it additionally is
isotropic, i. e. the statistics are independent of the direction in space, the dependence of B reduces
to the norm r = |r|. For a stationary, homogeneous and isotropic field, the temporal and spatial
correlation functions are thus for any unit vector e

BS)(T) = (ug(x, t+T)uj(x, t)) (A.3)
BY (1) = (u}(x + re, t)u(x, 1)) (A.4)

[Tatarskii, 1971, (2.7), (8.1); Mathieu and Scott, 2000, (6.5)]. B and B() are independent of ¢
due to stationarity and independent of x due to homogeneity.

105



A Statistical theory of turbulence

The correlation function for a stationary process has its maximum at zero separation,
BY (7)< BY(0) = (ulu’) (A.5)
ij = 7ij i :

[Tatarskii, 1971, (2.12)]. For large separations, the values of turbulent velocity or temperature
fluctuations typically decorrelate,

BY (1) >0 for |z > oo (A.6)
Bl(.;)(r) -0 forl|r| > oo (A7)

[Mathieu and Scott, 2000, Chapter 3]. This empirical behaviour turns out to be useful as it is
necessary for the application of spectral methods (see below).

A.2 Spectral analysis of homogeneous turbulence

The reduction of the number of variables of B(!) to one by stationarity, together with the assump-
tion of decorrelation for large times increments (A.6)), enables a Fourier transform:

[e.e] [e.e]

W(w) := % [ BW(1) exp(iwt)dr = % f BW(1) cos(wr)dr (A.8)

—0Q0 —00

[Tatarskii,[1971, (2.16), (2.16")], where the second equality holds because B(") is a symmetric func-
tion. W is called (temporal) spectrum and can be shown to be real and non-negative [Tatarskii,
1971, (2.16)]. On the other hand, if W (w) > 0 for all w, then the inverse transform of defines
the correlation function of some stationary random process [Tatarskii, 1971, §2]. Analogous, the
spatial spectrum of a homogeneous field satisfying is

®;i(k,t) := ﬁ f Bf;)(r, t) cos(k-r)d’r (A.9)
R3

[Tatarskii, 1971, (4.8); Mathieu and Scott, 2000, (6.7)].

A Fourier transform can also be performed in one spatial dimension only. This is interest-
ing because in-situ measurements are typically along a single trajectory and do not have three-
dimensional resolution. For isotropic fields, where all directions are equivalent, one can regard
an arbitrary line in space in the direction of the unit vector e to define the one-dimensional
spatial spectrum by

(o]

V(k) = % [ B®)(re, t) cos(kr)dr (A.10)

0
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A.3 Structure functions

[Tatarskii, 1971, (4.3), (4.11)]. It is related to the three-dimensional spectrum by

1 dVv

[Tatarskii, 1971, (4.13)].

A.3 Structure functions
A concept related to the correlation function is the structure function
Dij(r) = {(u;(x + 1) = ui(x)) ((uj(x + 1) - uj(x))) (A12)

[Tatarskii, 1971, (8.2)]. It describes correlation of the difference of velocity fluctuations at separa-
tion r and mainly depends on scales smaller than |r| [Liibken, 1993, p. 28]. For a homogeneous
field, it is independent of the location x and connected to the spatial correlation function by

Dyj(r) = 2B (0) - 2B (r) (A.13)

[Tatarskii, [1971, (8.3)]. Thereby it is also connected to the spectrum,

Dyj(r) =2 f (1-cos(k 1)) @;;(k) (A14)

[Tatarskii, 1971, (8.18)]. and its inversion is also well-defined for fields that are only locally
homogeneous, i. e. the spectrum is defined more generally via the structure function [Tatarskii,
1971, §3, §5].

In the case of isotropy, several components of the structure function tensor can be shown to
be equal [Tatarskii, 1971, §8], so that reduces to

D;j(r) = Dy(r)d;j + (Di(r) — Dy(r))nin; (A15)

[Tatarskii, 1971, (8.5”)] with the transversal and longitudinal components Dy = Dy; = D5, and
D,; = D3, respectively, the normal vector n = 7, and the Kronecker delta

8ij = Lo ifi=j
0, ifi#j.

Now the form of the structure function for turbulent fluctuations is deduced. Therefrom im-
portant relations for measured spectra can be obtained.

In the viscous subrange, i. e. for small r, a Taylor expansion around 0 can be performed. Due
to the properties D;;(0) = 0 and %(0) = 0 it starts with the quadratic term. All higher terms

107



A Statistical theory of turbulence

can be neglected. For velocity fluctuations, the relation ¢ = 3V2D;;(0) [Tatarskii, 1971, (10.5)]
(stemming from the definition of ¢) leads to

D;i(r) = % r* in the viscous subrange (A.16)

——
=Cy

[Tatarskii, (1971, (10.7)]. The longitudinal and transversal components are given by

Drr(r) = lirz (A17)
25; in the viscous subrange
Dy(r) = ET’Z (A.18)

[Pope, 2000, (6.39), (6.40)]. For temperature fluctuations in a steady-state distribution one ob-
tains

Dr(r) = % r* in the viscous subrange (A.19)
-
=Cr
[Tatarskiil 1971, (13.28)].

In the inertial subrange, Kolmogorov’s second similarity hypothesis states that the structure
function is independent of the kinematic viscosity v or the thermal diftusivity «, respectively, i. e.
it depends on the dissipation rates and r only [Tatarskii, 1971, §12]. Using dimensional analysis,
one obtains for velocity fluctuations

Dy.(r) = a2e¥? ¥ in the inertial subrange (A.20)

=:C2

v

[Kolmogorov, 1941a, (23); Tatarskii, 1971, (12.7)] with a dimensionless constant a2. Using the
relation Dy = -~ $+2D, (r) [Tatarskii, 1971, (8.10)], results in

2rdr
4, 2/3,2/3 : :
Dy(r) = FHET in the inertial subrange (A.21)
[Tatarskii, 1971, p. 54]. Therewith, the trace is
P R
D;i(r) =2Dy(r) + Dy (r) = S WETT in the inertial subrange (A.22)

[Tatarskii, (1971, eq. (12.14)]. For temperature fluctuations, an analogous reasoning yields

Dr(r) = a%el_)% 3  in the inertial subrange (A.23)
——

=:Cr2F
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A.4 Energetics

[Obukhov, 1949, (21); |Tatarskii, 1971, (13.33)] with a dimensionless constant a2. C?,i € {v, T}, is
called structure function constant.

For a structure function of such a form D(r) = Ar?? with arbitrary constant A, the one-
dimensional spectral density is

[(2)sin(Z s
V(k) = al025IG) s (A.24)
21
[Tatarskii, 1971, (5.37)] and the three-dimensional spectral density
I(2)sin(Z 1 [(2)sin(Z u
(k) :A—(3)Sm(3)k‘? =A§—(3)Sm(3)k" (A.25)

4772 3 4772

[Tatarskii, 1971, (5.38)], where the second equality uses T'(5/3 +1) = 5/3T(5/3).

A.4 Energetics

Finally, the energetics is examined. A distribution of turbulent kinetic energy in wave vector
space is obtained by looking at the inverse transform of (A.9)) and setting r = 0 and i = j, yielding

(gt = 5 LB (0, 1) - f ©;:(k, t) d°k (A.26)

[Mathieu and Scott, 2000, (6.9); Tatarskii, 1971, §9]. Assuming isotropy, spherical symmetry
yields

f 2nk*®;i(k, t) dk (A.27)

————
=E(k,t)

l\)lr—‘

[Mathieu and Scott,[2000, (6.14), (6.15);|Tatarskii, 1971, (9.2)]. E(k) is called the energy spectrum.
If the field is stationary, @;; and E are independent of t.

A relation to the one-dimensional spatial spectrum V (k) can be deduced by inserting (A.11)
in E(k) = 2nk?®;;(k) defined in (A.27) to yield

E(k) = -k—(k) (A.28)

Within a subrange (e. g. the inertial or viscous one), the spectrum can be described by a power
law V (k) = ¢ k# where pu depends on the range in question (see below). For such a spectral form
with arbitrary p € R, inserting in (A.28) yields E(k) = —uck*, i.e. E(k) and V (k) have the same
power law.
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A Statistical theory of turbulence

For the inertial subrange, Tatarskii [1971, (12.15)] deduces the form of the energy spectrum to

55 (2 1ns5T(2)sin(Z
E(k) = T (_) CoS(E) 2Pk = 15 (5)sin(3) agel k=P, (A.29)
277 \3 6 33 21 &
CZ

v

where the second equality uses I'(2/3 + 1) = 2/3T(2/3) and cos(7/6) = sin(7/3). Primarily, the
k=3/* dependence originates from Kolmogorov’s similarity hypothesis.

For the viscous subrange, Heisenberg| [1948] used similarity considerations to infer the form
E(k) o< k7. He also gave an interpolation formula describing the transition between the inertial
and viscous subranges, i. e. between slopes —5/3 and -7,

8\ —2
E(k) = Egk™3 (1 + (kﬁ) ) for the inertial and viscous subranges (A.30)

0

[Heisenberg,[1948, (28)] where Ej is a constant and k, the breakpoint between the subranges. The
length scale corresponding to ko is called the inner scale Iy = 27/ko. As in the viscous subrange
viscosity is important, Kolmogorov; [1941a] assumed in his first similarity hypothesis that [, de-
pends on the kinematic viscosity and the energy dissipation rate only. Thus with dimensional
reasoning

4 4 V3

£
k() (e E or Z() =Cy

(A.31)

[Kolmogorov, 1941a, (17); Tatarskii, 1971, (12.4)]. This form is only valid for velocity fluctuations.

For larger scales or smaller wavenumbers, the energy spectrum is dominated by buoyancy
effects and thus called the buoyancy subrange. Therein, assuming that E(k) depends on the
Brunt-Viisild frequency N and the wave number k only, one finds that E(k) o< N2k~ [Liibken,
1993, (3.63); Lumley, 1964]. The breakpoint k;, between the buoyancy subrange and the inertial
subrange can be deduced by equalising the turbulent kinetic energy with the buoyancy energy,
ie.

ko €% k;* 50 ky E(k) 2 Equrp = Epor o< N2/,

yielding

N3
koo\/ = or h=c, % (A.32)

The length scale I}, is called outer scale. (Ozmidov, [1965] made a similar calculation considering
the vertical size of the largest eddies in a stably stratified fluid [cf. Thorpe, 2005, p. 175] and thus
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A.4 Energetics

introduced the Ozmidov scale

Lo = co % (A.33)
Note that in the literature the constants for I, and Ly are often chosen differently [Hocking,
1999]]. Particularly, for Lo, co is often set to 1 [e. g.|Gavrilov et al., 2005, |Clayson and Kantha,
2008, Wilson et al., 2014]]. For the outer scale 1,,, Weinstockl [1978, (29b)] set ¢;, = 277/0.62. Barat
[1982a, Table 1] finds the transition between inertial and buoyancy subranges mostly in good
agreement with ,. Lumley [1964, (13)] gave a Heisenberg type interpolation formula between
inertial and buoyancy subrange,

-4/3
E(k) = c ¥ (1 + (kk) ) k=5/>  for the buoyancy and inertial subranges. (A.34)
b

To plot the energy spectrum, the constants ¢;,, E, and ¢y, have to be determined. E, can be
deduced from the fact that for the inertial subrange (A.30)) has to equal Kolmogorov’s well-known

formula (A.29). For k < kg, (A.30) reduces to
E(k) = Egk™3  for the inertial subrange
and a comparison with (A.29)) gives

~ Eéf(%)sin(%)cz

= A35
33 2 v ( )

0
with the structure function constant C2 = a2¢?/3. A similar argument holds for (A.34)) and k >> ky;
therewith one obtains ¢; €23 = E,.

For the determination of the constant c;,, another constraint is needed. Liibken| [1993, Sec-
tion 3.3.10] and Theuerkauf [2012, Sections 2.2.6 and 2.2.7] used the condition of the structure
function at the origin

d’D;; 4 r
—”(0):—fk2E(k)dk (A.36)
dr? 3 J

[Tatarskii, (1971, p.50]. Into this equation, the form for the structure function for small r, i. e. in
the viscous subrange, D;;(r) = C,7? (see (A.16)) is inserted. However, a problem arises because
the integration on the right hand side goes over all wavenumbers. To the author’s knowledge,
no formula for the whole range exists. Furthermore, new parameters such as the outer scale k;
would be introduced. Liibken [1993] and Theuerkauf [2012] used a form of Heisenberg’s model
for the integration and therewith implicitly extended the inertial range to k = 0 (i. e. to all scales
larger than y). Presumably that was due to practical reasons and because they wanted to use the
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turbulent part only. A similar approach with (A.30) yields

4/3

- 55 (5
2 2C, = onkg/3 =T (—) sin(g) 2e23 ko

3y 4 "7 \3

Solving for Iy = 27t/k, gives the result

55_(5 34 13\ /A4
ZOZZH(—F(—)SH‘I(Z)CI\%) (V—) :
48 \3 3 I3

(A.37)

(A.38)

Using a2 = 2.0 [Bertin et al., 1997, (8);|Antonia et al., 1981, p. 580; Pope, 2000, p. 194] one finds

Clyv ® 9.73.

(A.39)

A theoretical energy spectrum for typical stratospheric conditions is plotted in Figure
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Figure A.1: Theoretical energy spectrum E (k) for typical stratospheric conditions (20 km altitude, ¢ =
1x10° Wkg™, v = 1.5x107*m?s™, N = 0.0257!) based on |[Heisenberg [1948, (28)] and Lumley [1964,

(13)]
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A.5 A form of the spectrum that can be fitted to experimental data

A.5 A form of the spectrum that can be fitted to ex-
perimental data

In order to derive energy dissipation rates ¢ from measurements, the theoretical spectrum is
needed in a form that can be fitted to observed power spectra. For a one-dimensional mea-
surement as is done with LITOS, the power spectral density of observed velocity fluctuations
corresponds to the spectrum V (k), which is related to the energy spectrum by (A.28). To obtain
V(k), thus E(k)/k has to be integrated. LITOS measures in the inertial and viscous subrange so
that the Heisenberg spectrum is taken for E(k). A possible solution for the integral i]

V=26 (nm 222 (£) ] - ()1 (2)) (40

with the hypergeometric function ,F,.

Liibken and Hillert [1992, (4)] and Liibken| [1993] used the form of E(k) directly for
the spatial spectrum V' (k). Taking into account that for power laws E and V have the same
power (see Section (A.28)), this can be justified with the argument that the transition is an
interpolation anyway so that the specific form is irrelevant. Therewith he obtained

8\ —2
V(k) = Vo k3 (1+ (kﬁ)) (A.41)
0
with
3Ysin( Z
Vo = Cz—r(3) sin(5) (A.42)
2

and, by inserting into the relation (A.1l) between the three-dimensional and one-dimensional
spectra,
8/3
1V 5+21(&
O (k) = ﬂ?(’k-gﬁ%. (A.43)
" 1+ (&)™)

The advantage is the simpler form of V.

The constant ¢, derived with this choice of V is different from the one deduced in (A.39). To
be consistent, one has to use the constant derived from the form of the spectrum that is actually
used. The value is needed because the spectrum contains both the inner scale k, and the energy
dissipation rate ¢ (in the structure function constant C?), but both are related by (A.31).

1 The author would like to thank Urs Schifer-Rolffs for finding the solution for the integral.
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Similarly to above, the condition of the structure function at the origin

2. 7
EDii ) - 8”fcl)ii(k)k4dk (A.44)
0

[Tatarskii, 1971, p. 491, p. 65; Liibken, 1993, (3.108)] together with the form of the structure func-
tion in the viscous subrange D;;(r) = Cr? is used. Again, the problem arises that the integra-
tion of the right-hand side goes over all wavenumbers. |Libken [1993, p. 43] and /Theuerkauf
[2012] inserted the three-dimensional Heisenberg spectrum and performed the integra-
tion. Therewith they implicitly extended to k = 0. The result is

. 4
2€ = gnVokg/3. (A.45)

Substituting Iy = 271/k, and solving for I, yields

3/4

e an () (MO ) n0

16 C

At this point it has to be distinguished between velocity and temperature fluctuations. For
velocity fluctuations, C? = a2e?/3 ((A.20) or Tatarskii|[1971, (12.7)]) and C = + ((A.16) or Tatarskii
(1971, (10.7)]). Thus,

C?  3alv
EZ o (A.47)
and
. 3/4 , 3\ 1/4
2 LCRD) ) ) nas
€

::Clo,v

[cf. Theuerkauf, 2012, (B.13)]. The value of a2 is usually determined from measurements. Theuer-
kauf [2012, Appendix B] used a2 = 2.0 [Bertin et al., 1997, (8);|Antonia et al., 1981, p. 580; Pope,
2000, p. 194] yielding

Clow = 5.7]. (A.49)

This value is used for the evaluation performed in this thesis.

The empirical constant a2 can also be determined with renormalisation group analysis tech-
niques. Yakhot and Orszag [1986, (2.62)] obtained for the energy spectrum

E(k) = 1.617e*3k 5/
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A.5 A form of the spectrum that can be fitted to experimental data

which, using (A.29), results in a2 = 2.13 and thus ¢, , = 5.98.

In contrast, [Wilson| [2004, Section 2.1] gave ¢, , = 12.8. Altogether, the different values of the
constant vary by a factor of ~ 2.2; due to the c?‘o,v dependence of the inversion of (A.48), that
results in an uncertainty in ¢ of a factor of ~ 25!

For temperature fluctuations, C? = a%g% ((A-23)) or|Tatarskii [1971, (13.33)]) and C = % ((A.19)
or Tatarskii| [1971} (13.28)]), so that

C? 3ala
and with Pry, == v/a
9r 5 3 . 3 3/4 3 1/4
lo :271( (5/3) sin(r/ )a%) (V—) (A.51)
16 Pt 01 £
=iClg,T

[cf.[Libken, 1993, (3.110); Theuerkauf, 2012, (A.23)].

Theuerkauf| [2012, Appendix A] used a3 = 1.74 x 2 [Libken, 1992, (37)] (the factor 2 is the
normalisation factor f, from |Liibken|[1992]) and Pry,, = 0.73 [Liibken, 1993, Appendix A]. This
yields

(ar=109) a2

Wilson et al.| [2014, Section 3.3.4] used a% = 3.2 which results in ¢;, r = 10.3, i.e. a value quite
similar to (A.52). Hill and Clifford [1978, (7)] gave a different value of ¢;, 1 = 7.4.

The different values of ¢, r cause an uncertainty in ¢ by a factor of ~ 4.7.

LITOS measures a time series while flying through the turbulent field. Thus, the fit to the mea-
sured spectra has to be done with the temporal spectrum. Using Taylor’s frozen field hypothesis
for the balloon flying through the turbulent patch with constant velocity uy,, spatial and temporal
spectra are related by

W(w)zi—z [ oKk (A.53)

|| /141
[Tatarskii, 1971, eq. (6.13)] and

up dW
b =7 A.54
(k) Sk d (kuy) ( )
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[Tatarskii, 1971, eq. (6.14)]. Inserting (A.11) into (A.53)) results in

W(w) = uibv(uﬂb) (A.55)

which gives for the Heisenberg spectrum (A.41)

) (ofu)
- 27U w \8/3)2
b1+ (5%) )

upko

W(w) (A.56)

[Lubkenl 1993, (3.109)]. To eliminate the interrelation between k, and ¢, the formula for
the breakpoint, e = ¢} v*/Ij, is inserted into that for the structure function constant C?, i.e.
C? = aZe? for velocity fluctuations or C} = a}j; for temperature fluctuations. The result is
plugged into (A.56). The ascent velocity uy, and the kinematic viscosity v are known from the ra-
diosonde measurement. That way, the only remaining parameters are [, for velocity fluctuations
or [y and y for temperature fluctuations. Thus the resulting equation can readily be used to fit to
experimental data.

116



B A new family of wavelets for spec-
tral analysis using the continuous
wavelet transform

As mentioned in Section [4.1.3} the general advantage of wavelets compared to the Fourier trans-
form is that the window size is adapted to the scale. To visualise this advantage, notice that the
analysing function for the windowed Fourier transform of a signal g with window w,

(Fug)(@) = [ g(tyw(t)expiot) dt

is in fact w exp(iw-), where the centre dot denotes the active variable. For the wavelet trans-
form (42) it is the scaled mother wavelet y (=2). Figuredepicts both analysing functions for
two different resolutions. Therein it can clearly be seen that the wavelet transform resolves lo-
cal details at high frequencies, while the windowed Fourier transform “averages” high-frequency
features over the fixed window length.

For spectral analysis of geophysical data with wavelets, a common choice is the Morlet wavelet

Vo, (1) = m % exp(iwgt) exp(-2/2) (B.1)

[Grossmann and Morlet, 1984 which consists of a plane wave modulated by a Gaussian. That
means using that wavelet is related to a windowed Fourier transform with a Gaussian window.
However, the Morlet wavelet has infinite support,

Supp ¥, == {t € R:y,, () #0} = R,

which is problematic for numerical applications because computers cannot handle infinite do-
mains (which would comprise of an infinite amount of numbers). Furthermore, shorter support
means less “smoothing” of local details of the time series. As wavelet theory has substantially
advanced over the last decades, wavelets with compact support have become standard.

The problem with infinite support can be remedied while still keeping the spectral properties;
the solution is to construct new wavelets by modulating a plane wave with a finite window. In
light of the differences between windowed Fourier and wavelet transform described above, use
of such a wavelet with compact support is more related to the classical (finite) windowed Fourier
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Figure B.1: Typical shapes of windowed Fourier transform (top) and wavelets (bottom) for coarse (left)
and fine (right) resolutions. Figure analogous to|Daubechies| [1992, Fig. 1.2].

transform than the Morlet choice.

An example of a finite window is the von Hann or raised cosine window for [-1,1],

w(t) = T (1+cos(mt)), ifte[-1,1], (B2)
0, otherwise.
The resulting wavelet is
2 1 , ifte[-1,1],
Wy, (1) = §cos(ﬂvot) w(t) = \/; cos(mvot) (1 +cos(t)), ift € [-1,1] (B.3)
3 0, otherwise,

for the frequency parameter 2 < v, € IN. It is normalised such that |y,,[;, = 1. Its Fourier

118



transform is

~ 2, sin(7vy + w)
Fym(@) = _\/;ﬂ ((ﬂvo +w)(mvg+m+ ) (v — 1+ )

sin(7vy — w)

+ ) (B.4)

(mvo — ) (mvy — 1 — W) (Ve + 1 — W)

(1)t 2\/g m?sin(w)w(372v3 — 2 + w?)

(w-mvo)(w—mvo— 1) (w—1vo + ) (w+ 7)) (w + vy — 1) (W + TVg + 7T)

Plots of the mother wavelet and its Fourier transform are shown in Figure

Each wavelet function must satisfy the admissibility condition [Daubechies, 1992, (2.4.1)] to
ensure that the continuous wavelet transform is an isomorphism. That means the condition
enables the reconstruction of the original function from the wavelet transform. For the mother

wavelet (B.3) it is

Cy,, = —|FW|VZU(|CU)|2 dx

- (] 1_ ICE) (In(vo —1) = In(v +1) + 8vyIn(vy — 1) + 1¥3 In(vo — 1)
- 8viIn(vy +1) = 1v¢In(vy + 1) = 12v5In(ve — 1) + 12v In(vy +1)
+16v3 In(vo) + 8voIn(vy +1) = 16voIn(vy) — 8v; In(vy — 1)
+16vy Ci(27vo) — 16V Ci(27vy ) + 8v; Ci(27v, — 271)
+12vg Ci(2mvg — 27) + 8 Ci(27vg + 27) — 12v Ci(27vg + 271) (B.5)
— 1 Ci(27vy — 27) — 8v, Ci(27vy — 27) — 8v,y Ci(27vg + 277)
+ 1193 Ci(27vg + 2m) + 87 Si(27vo) + 327v] Si(27vy)
+ Ci(27mvg + 27) + 27v Si(27mvg + 27) — 27v Si(27vg — 271)
= 2mvE Si(27v + 27) — Ci(27vy — 27) + 87vy Si(27vy — 27) — 407v] Si(27vy)
- 87 Si(27vy + 27) — 2vim Si(2mvy — 27) + 87vy Si(27vg + 27r)
+ 87vg Si(2mv, - 211))

< 00

where
X .
Si(x) = f @dt (B.6)

0
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Figure B.2: Plot of the mother wavelet (left) and its Fourier transform (right) for vy = 2 (red) and vy = 8
(green)

and

o] X

Ci(x) ::—fCost(t)dt=y+ln(x)+[&?_ldt withyz—[exp(—t)dt (B.7)
x 0 0

are the sine and cosine integral functions, respectively.

An important property of a wavelet is its smoothness. Classically it is given as continuous
differentiability; the symbol C" denotes that a function is n times continuously differentiable.
Each branch of the piecewise definition of the wavelet is C>, thus it is sufficient to check
the condition at the critical points —1 and 1. Since

dy, 6 6 -
A7) = —iﬂvo sin(7vot)(1+ cos(mt)) — —m cos(mvyt) sin(7mt) =
dt ., 3 3
but
d2y, 6 2\/6
dll{’zo _ _iﬂzv% cos(mvot)(1+ cos(mt)) + T\/_nzvo sin(7vot) sin(7rt)
[-1L1]

t—+1 \/g 2

6
- éﬂz cos(mvot) cos(mt) — (—1)”0?7[ #0

¥, from is C! but not C2. The smoothness is of courses given by that of the window w at
the boundaries. For a smoother wavelet that is, e. g., C?, a window function with vanishing first
and second derivative at the boundaries is necessary. This is not possible with standard windows
that are designed with piecewise sine and cosine functions.

Summarising, the new wavelets for the CWT introduced above combine similar spectral prop-
erties as the Morlet ones with compact support. Short support is favourable for resolving local
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details without unwanted smoothing. This make the new construction a promising choice for
spectral analysis. However, due to the chosen window the new wavelet is only C'. More regular-
ity, e. g. C2, would be better. Potentially that can be improved by using a smoother (non-trivial)
window function. Such a construction would be not as straight forward and effortless as the one
at hand. A quantitative comparison of the performance of the Morlet wavelet and the new
wavelet would be complicated and is outside the scope of this work.
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C Validation of attitude reconstruc-

tion

As mentioned in Section gondola movements
disturb the measurement. Thus the attitude is re-
constructed. To this end, rotation, acceleration and
magnetometer are measured, and the data are post-
processed after flight. The algorithm from
[2008] was implemented. For each time step, the dis-
placement and azimuth angles defined in Figure
are computed.

To validate the results, the electronics box was
put in known attitudes on a table. When correcting
temperature-induced drifts of the gyroscope, the an-
gles were reconstructed with a precision of $2°.

As a more realistic test, the box was attached to a
3 m cord, pulled back to an angle of 40° and then let
go to perform pendulum motions (see Figure [C.).
The result of the algorithm is plotted in Figure|[C.2}

Bearing in mind that the manual displacement
with a set square is not that precise, the initial dis-
placement is reconstructed with satisfactory accu-
racy. During the pendulum motions, the displace-
ment angle is larger because the attachment of box to
the rope allows bending. The amplitude decreases as

Figure C.1: Photograph of the pendulum
test performed as validation for the attitude
reconstruction

expected, and the oscillation period in the reconstructed data differs by ~0.1s to the theoretical
one of 3.5s (assuming a mathematical pendulum with small displacements). Furthermore, the
duration of 10 periods was measured with a stop watch to be 36 s; the deviation from the theoret-
ical value is 0.1s for a period. The variation of the azimuth angle is small, just as observed by the
experimenter. All results fit together. Other tests consisted e. g. in rotation around the azimuth

axis. The results had a similar accuracy.

Summing up, the validation tests confirmed that the attitude reconstruction works with the
expected accuracy of 1° to 2°. During balloon flight, additional pseudo forces may occur which

complicate things, but these are difficult to test.
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Figure C.2: Results of the pendulum test for attitude reconstruction validation
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thermal diffusivity, page 8

thermal dissipation rate of the turbulent fluctuations, see equation (2.17), page 10
Kronecker delta §;; = 1, if i = jand §;; = 0 otherwise, page 107

periodogram of measured fluctuations, page 36

spatial three-dimensional spectrum, see equation (A.9), page 106

structure function, see equation (A.12), page 107

kinematic viscosity, page 7

mean trend-to-noise ratio for the Thorpe analysis, see equation (4.17), page 58
gravitational potential, page 7

density, page 7

spatial correlation function, see equation (A.1), page 105

temporal correlation function, see equation (2.19), page and equation (A.1), page 105
deformation tensor, page 7

potential temperature, page 52

thermal dissipation rate of the turbulent fluctuations, see equation (2.16), page 10
thermal dissipation rate of the mean flow, see equation (2.16), page 10

thermal dissipation rate of the total flow, see equation (2.10), page 9

kinetic energy dissipation rate of the turbulent fluctuations, see equation (2.15), page 10
kinetic energy dissipation rate of the turbulent fluctuations, see equation (2.13), page 9
kinetic energy dissipation rate of the mean flow, see equation (2.13), page 9

kinetic energy dissipation rate of the total flow, see equation (2.7), page 8



lo

Ly

Re
Ri

Rig

Nomenclature

heat flux, page 7

fluid velocity, page 7

Thorpe displacement, page 52

internal energy, page 7

saturation pressure of water over ice, page 55

kinetic energy per unit mass, page 8

saturation pressure of water over liquid water, page 55
acceleration of gravity, page 7

Index set I,, :={1,...,n}, page 52

eddy diffusivity, page 68

Inner scale [, = ¢, {/Vg , see equation (2.22)), page and equation [A.31} page 110

Thorpe length Ly := rms(Dr), page 53

Ozmidov length scale Lo = co+/ 55, see equation (2.29)), page [13} and equation (A.33)),
page 111

pressure, page 7

Reynolds number, see equation (2.1), page 6
Richardson number, page 65

Flux Richardson number, see equation (5.2), page 68
wind shear, page 65

Entropy per unit mass, page 8

Thorpe signal, page 52

fluid temperature, page 7

spatial one-dimensional spectrum, see equation (A.10), page 107

temporal spectrum, see equation (2.20), page[l} and equation (A.8), page 106
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