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Chapter 1

Statement of the problem

By now it is widely acknowledged that internal gravity waves (GWs) play an important

role in both oceanic and atmospheric dynamics (Müller et al., 1986; Fritts and Alexander,

2003, e.g.). Nonetheless, for a long time they have been more or less a mere nuisance for

modern weather prediction. Each time an atmospheric state departs from the geostrophic

equilibrium between the pressure gradient force and the Coriolis force a corresponding

balance is reestablished by the radiation of GWs (Rossby, 1938; Cahn, 1945). Since the

equilibrated forces are each separately quite large this can have dramatic consequences.

Slight errors in the estimate of the initial atmospheric state, determined in some way

from observations, can lead to corresponding imbalances, and thus cause spurious GW

oscillations at amplitudes large enough for spoiling the whole forecast. In conjunction

with modern data assimilation techniques this is nowadays managed by normal mode

initialization (Machenhauer, 1977; Tribbia, 1984; Temperton, 1988). The leading GWs

are filtered from the initial state in such a way that the associated oscillations are reduced

to a minimum.

Simply filtering GWs from the fluid-dynamical fields, however, is not sufficient since

besides the artificially initialized waves many others are indeed radiated from spontaneous

flow imbalances (near frontal of convective systems), but also from flow over topography

and strong wind shear near upper-tropospheric jets1. These can transport momentum

1The troposphere extends from the ground to the tropopause, marked by a local minimum of the

large-scale temperature, at about 15km altitude. The adjacent atmospheric layer is the stratosphere

which ranges up to the stratopause near 50km altitude. That altitude exhibits a temperature maximum
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6 CHAPTER 1. STATEMENT OF THE PROBLEM

and energy over long distances. In case of an upwards propagation they can, due to

energy conservation in a vertically decreasing ambient density field, grow substantially

in amplitude. Unless they are absorbed at some critical layer (Bretherton, 1966; Booker

and Bretherton, 1967) or get deflected at wind or stratification gradients (Chimonas and

Hines, 1986; Fritts and Yuan, 1989a; Bühler and McIntyre, 1999) they eventually become

subject to instabilities and wave breaking. The associated effects are all but unimportant.

An experience many air plane travellers share is that of clear-air turbulence (CAT)

disturbing the flight. In fact, CAT remains a serious concern for the aviation industry,

and it also critically affects the mixing and stratosphere-troposphere exchange of chemical

constituents. Therefore its generation by breaking GWs is presently an intense field of

research (Shapiro, 1980; Pavelin et al., 2002; Whiteway et al., 2003; Lane et al., 2004;

Koch et al., 2005, e.g.). Another aspect is the impact of small-scale GWs of orographic

origin on the predicted larger-scale flow. It has been recognized that small-scale topog-

raphy, even if not resolved in weather-forecast or climate models, leads to the radiation

of nonnegligible GWs which typically break in the lower stratosphere, thus exerting, via

the corresponding momentum deposition, a drag on the flow which must be taken into

account for reasonable predictions or simulations. This is presently done via suitably for-

mulated parameterization schemes (Palmer et al., 1986; McFarlane, 1987; Scinocca and

McFarlane, 2000).

A region of the atmosphere not only influenced but really controlled by GWs is the

mesosphere. This altitude range (about 50–90km) is marked by a strong departure of the

temperature field from its radiative equilibrium. The coldest region of the atmosphere

as a whole is the summer (!) polar mesopause (near 90km altitude) with temperatures

approaching 100K, while the winter mesosphere is remarkably warm (Lübken and von

Zahn, 1991; Lübken, 1999, e.g.). This is probably the most prominent effect of GW

breaking and the associated momentum and energy deposition in the atmosphere (Hines,

1960; Houghton, 1978; Lindzen, 1981; Holton, 1982, 1983; Garcia and Solomon, 1985).

As an example, the left panel in Fig. 1.1 shows the zonal mean (i.e. averaged over

the geographic longitude) of the mean January temperature according to a simulation of

which is due the absorption of solar radiation by the ozone layer there
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Figure 1.1: For January, the zonal-mean temperature (left panel, in units of K) and the

mass streamfunction of the zonal-mean flow (right, contours in units of 109kg/s), according

to a simulation by Becker and Schmitz (2003). The direction of the movement along the

streamlines in the right panel can be inferred from the meridional (i.e. south-northwards)

velocity, which is indicated by shading, with a shading interval of 2m/s. Only regions

with positive meridional velocity are shown. In both panels the altitude is indicated by

pressure levels.

the atmosphere in a simplified general circulation model by Becker and Schmitz (2003).

In conjunction with the Coriolis force the momentum deposition causes a zonal-mean

flow from the mesospheric summer pole to the winter pole (right panel). The resulting

upwelling at the summer pole is accompanied by an expansion of the air masses, due to

the vertical decrease of the ambient pressure, and thus leads to strong adiabatic cooling.

This explains the extremely low temperatures in the mesosphere over the summer pole.

The downwelling and adiabatic heating over the winter pole leads at the same time to the

increased temperatures there. A conspicuous secondary effect of this is that the positive

gradient of the temperature from summer to winter causes, via the thermal-wind relation,

a strong vertical gradient in the zonal-mean zonal (i.e. west-eastwards) wind so that it

changes sign near the mesopause. This is shown in Fig. 1.2, where for a comparison

also the zonal-mean zonal wind is shown which results from an integration of the model

without a parameterization of the impact of the GWs. A further consequence of GW

breaking in the middle atmosphere is that turbulence can be excited (Lindzen, 1981)
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Figure 1.2: From the same simulation as shown in Fig. 1.1, the zonal-mean zonal wind

(left panel, in units of m/s). The right panel shows the corresponding result obtained in

an integration without GW parameterization.

which might be of relevance for the heat budget in the upper mesosphere (Lübken, 1997;

Becker and Schmitz, 2002; Müllemann et al., 2003).

Unfortunately, while this overall picture is commonly agreed upon, many details in

GW excitation, propagation, and finally breaking are not sufficiently understood yet, so

that one is confronted with an uncomfortably large number of widely accepted, but quite

different, schemes for the parameterization of the impact of GWs on the large-scale flow

in the middle atmosphere (Lindzen, 1981; Medvedev and Klaassen, 1995; Hines, 1997a,b;

Alexander and Dunkerton, 1999; Warner and McIntyre, 2001). A central problem is our

lack of sufficient knowledge about the final nonlinear GW breakdown, a process which is

also fundamental for the other GW effects described above. We do not sufficiently know

how the turbulence produced there behaves, which already poses problems to studies of

GWs in simulations with parameterized turbulent scales. Moreover, the GW breaking

itself has so far resisted all attempts to cast its essence into a trustworthy parameteriza-

tion.

Still, there is hope that numerical simulations will eventually help us in getting a bet-

ter understanding and, indeed, considerable progress has been made in this field. Early

studies have avoided an explicit description of the resulting small-scale turbulence by ei-

ther excessive diffusion or a parameterization of the smallest scales (Winters and D’Asaro,
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1994; Andreassen et al., 1994; Fritts et al., 1994; Isler et al., 1994; Lelong and Dunkerton,

1998a,b). Recent work, however, has employed direct numerical simulations (DNS) where

all scales are properly resolved (Fritts et al., 2003, 2006). While such calculations, at

Reynolds numbers in the range 103 – 105, will certainly yield the least ambiguous results

they also put a very high demand on presently available computer resources. Therefore,

and also for the sake of systematic insight, good a priori knowledge of the developing

scales and structures seems highly desirable. It thus appears important to have a very

good understanding of the initial linear phase of the wave instability: It sets the stage

for the nonlinear wave decay, and corresponding studies not only provide us with possible

instability thresholds but also with perturbation patterns and wavelengths to be focussed

on in the simulations.

Indeed much has already been learned in the past. A widespread misconception is

that instability does not set in before the wave amplitude causes local vertical gradients of

density (or potential temperature) and flow field allowing for static or dynamic instability.

In the former case, one needs an overturning of density or potential-temperature layers,

while in the latter case the local Richardson number Ri must fall due to sufficient vertical

shear below a certain threshold. This picture rests on the work of Howard (1961) and

Miles (1961) who have shown that in plane-parallel vertically stratified flow Ri < 1/4

is a necessary condition for instability. Strictly speaking this only applies locally to

monochromatic GWs with exactly vertical phase propagation. At least approximately

this is the case for monochromatic inertia-gravity waves (IGWs) with nearly vertical

propagation. A corresponding stability analysis has been done by Yau et al. (2004). At

statically unstable wave amplitudes, rapidly growing normal modes (NMs) are found.

At statically stable amplitudes NM growth is, even in the inviscid-nondiffusive limit,

rather weak, unless the IGW inclination angle is extremely steep. In that case one gets

an effect from the shear of the near-circularly polarized horizontal velocity field in the

wave. In high-frequency gravity waves (HGWs) with slantwise phase propagation (i.e.

at a non-vertical inclination angle to the horizontal) the static and dynamic instability

criteria are not applicable. Indeed we know by now that such waves show instabilities at

all amplitudes, unless damped by viscosity (Mied, 1976; Klostermeyer, 1982, 1983, 1991;
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Lombard and Riley, 1996; Sonmor and Klaassen, 1997).

A limitation of these studies is that they had to rely on the monochromaticity of the

wave, a condition seldom met in purity. Only in that case one can chose a reference system,

i.e. the one moving with the phase velocity of the wave, within which the GW is time

independent. This is a necessary condition for a rigorous NM analysis. In more general

cases one can either try to neglect the time dependence of the wave, as has been done in the

studies of IGW packets (Fritts and Yuan, 1989b; Yuan and Fritts, 1989; Dunkerton, 1997;

Kwasniok and Schmitz, 2003), or the stability theory must be generalized. This leads to an

additional aspect which is just beginning to get a systematic focus: Even for stationary

reference states NM analyses only provide information about possible time-asymptotic

wave instabilities at infinitely small perturbation level. It is however known from several

other fields of fluid dynamics that under conditions when no growing NMs exist rapid

transient growth of so-called optimal perturbations or singular vectors (SVs) can still be

possible (Farrell, 1988a,b; Boberg and Brosa, 1988; Butler and Farrell, 1992; Trefethen

et al., 1993). Provided a sufficiently high, but possibly yet small, initial perturbation level

is available this can lead to the onset of turbulence even when such a result would not

be expected from a NM analysis. Moreover, even if growing NMs exist, it may happen

that they take much longer in their amplification so that the incipient instability is better

characterized by transient growth leading directly into the nonlinear decay phase. Luckily,

a SV analysis by which such possibilities are examined does not rely on the stationarity

of the wave examined. A corresponding study of the GW stability problem thus seems to

be in place.

The application of the results from such a linear analysis to wave breaking leads

directly to another question of potential interest. In stressing the eventual three-

dimensionality of the developing turbulent spectrum previous studies have typically per-

turbed a GW by small random disturbances, and described the hence ensuing wave decay

process. Certainly this has already taught us a lot, but it still seems to be of conceptual

interest what time development the GW and its perturbation will take if the latter is

initially identical to a leading NM or SV. One might qualify this as a purely academic

problem, but indeed there is hope that corresponding studies might highlight paradig-
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matic features which might be useful both for the interpretation of measurements and

observations of GW breaking and for eventual progress in the parameterization of the

impact of wave breaking and turbulence on the larger-scale flow.

This thesis therefore addresses the following two main sets of questions:

• What can we learn from an extension of the linear stability theory from NM analyses

to the determination of characteristic optimal perturbations? Are SVs potential

candidates for the triggering of wave breaking and turbulence onset where NMs

cannot lead to such a development? How do NMs, if well-defined, and SVs compare

to each other in their linear dynamics.?

• What nonlinear development do we get if a GW is perturbed by its leading NM or

SV? What impact do different NMs have on the GW, and how does this compare

to the corresponding results from a perturbation of the GW by a leading SV? Are

the features observed comparable to available observations?

With this program the thesis is structured as follows:

In order to further prepare the ground, chapter 2 gives a short overview of the most

important properties of GWs under the Boussinesq approximation. With the same in-

tention chapter 3 reviews the concepts of NMs and SVs in linear instability theory so

that the reader can follow the ensuing analyses. These start with a study of the general-

ized stability of IGW packets in chapter 4. Due to their near-vertical propagation they

have a comparatively simple structure which allows two helpful levels of simplifications.

In one of those the IGW packet is locally approximated as a stratified shear layer with

reduced static stability. This even admits closed analytical solutions containing much

comprehensive information on the parameter dependence of optimal growth. They also

help understanding the responsible growth mechanisms. The second simplification of the

IGW, by its vertical profile at the statically least stable horizontal location, further clari-

fies the role of the elliptically polarized horizontal flow field in the IGW in modifying and

merging these mechanisms. The verification of the results follows in an examination of

the non-simplified IGW packet. As one might have guessed from the applicability of the

shear-layer theory it turns out that many results do not really hinge on the wave-packet
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envelope. Thus the question arises how much of the results from chapter 4 can be trans-

ferred to monochromatic IGWs. At the same time one might ask about the generalized

stability of monochromatic HGWs. This is done in chapter 5.

On the basis of the linear results the other major part of the thesis discusses the

breaking of GWs initialized by NMs or SVs. For reasons of practicality and conceptual

simplicity this is done for monochromatic waves. In chapter 6 this is first discussed for

IGWs. In corresponding 2.5D DNS, where the possible impact of secondary perturbations

with horizontal directions of propagation transverse to those of the primary NM or SV

is neglected, it is found that indeed SVs extend the range of possibilities for turbulence

onset. The chapter also profits from the previous linear analyses. Much of the nonlinear

behavior observed can only be well understood on that basis. Specifically this also refers

to the spatial distribution of the turbulent fields within the IGW, which turns out to be

controlled by the elliptic polarization of the flow field in the wave. In order to complete

the picture chapter 7 finally explores the dynamics of a HGW after a perturbation by its

NMs or SVs. Although the DNS is again 2.5D, many results from more comprehensive

3D simulations in the literature are re-identified, pointing at the applicability of such

an approach for further studies. Finally also here the characteristics of the nonlinear

development of SV perturbations is studied, pointing at a possible relation to layering of

turbulence as observed in the measurements. The thesis is concluded by a synthesis and

discussion of all results in chapter 8



Chapter 2

Gravity waves in a rotating

Boussinesq fluid

The problem is discussed in the simplest possible framework, i.e. the Boussinesq equations

on an f plane

∇ · v = 0 (2.1)

∂v

∂t
+ (v · ∇)v + fez × v +∇p− ezb = ν∇2v (2.2)

∂b

∂t
+ (v · ∇)b + N2w = µ∇2b . (2.3)

Here v = (u, v, w) denotes the three-dimensional velocity field. The buoyancy b = g(θ −
θ(z))/θ0 is a measure of the deviation of the potential temperature θ from a merely

vertically dependent reference profile θ(z), normalized by a characteristic value θ0. g is the

vertical gravitational acceleration. The squared background Brunt-Vaisala frequency is

N2 = (g/θ0)dθ/dz. An equivalent interpretation of buoyancy and Brunt-Vaisala frequency

is b = −g(ρ − ρ(z))/ρ0 and N2 = −(g/ρ0)dρ/dz where ρ, ρ(z), and ρ0 are density, a

corresponding reference field, and a characteristic value, respectively. p is the pressure

field, normalized by a constant reference density, f the Coriolis parameter, and ez the

vertical unit vector. The Boussinesq equations can be expected to give a reasonably good

approximation of the full GW dynamics as long as the focus is on processes with vertical

scales of the order or less than the atmospheric or oceanic scale height. This is the case

throughout this study. For viscosity and thermal diffusivity the typical upper-mesospheric

13
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values ν = µ = 1m2/s are taken (unless stated otherwise). For better readability for

a broader audience it has been decided not to nondimensionalize the equations. One

should, however, keep in mind that a non-dimensionalization, using the GW wavelength

Λ (specified below) and the Brunt-Vaisala period T = 2π/N as length and time scales,

would leave as the only controlling parameters the ratio f/N , the Reynolds number

Re = Λ2/(νT ), and the Prandtl number Pr = ν/µ. For later reference also the energy

density e = 1/2
(
|v|2 + b2/N2

)
is introduced which obeys

∂e

∂t
+∇ ·

[
v (e + p)− ν∇|v|

2

2
− µ∇ b2

2N2

]
= −ν

3∑

i=1

|∇vi|2 − µ

∣∣∣∣∣∇
b

N

∣∣∣∣∣
2

. (2.4)

In the inviscid-nondiffusive limit with typical (e.g. periodic) boundary conditions the

volume integral of energy density is obviously a conserved quantity.

The equations admit as exact solutions monochromatic GWs of the form




v

b


 = a<







ṽ

b̃


 eiφ


 . (2.5)

The amplitudes
(
ṽ, b̃

)
will be specified below. The phase is φ = K·x−Ωt, with wavenum-

ber K = (Kx, Ky, Kz) and frequency Ω satisfying the dispersion relation

Ω = ±
√

N2 cos2 Θ + f 2 sin2 Θ . (2.6)

Here Θ is the inclination angle of the GW vector with respect to the horizontal so that

(cos Θ, sin Θ) =
(
Kx/

√
K2

x + K2
z , Kz/

√
K2

x + K2
z

)
. Without loss of generality it is as-

sumed that Ky = 0. Then the wave amplitudes are

(
ṽ, b̃

)
= −cx

(
1,−i

f

Ω
,− cot Θ, iN

N

Ω
cot Θ

)
, (2.7)

where cx = Ω/Kx is the horizontal phase velocity. The nondimensional amplitude factor

a is defined so that the wave is statically stable for a < 1, i.e. at these values one

has N2 + ∂b/∂z > 0 everywhere. In other words it is the amplitude relative to the

overturning or static instability threshold. At Kz > 0 the minus-branch of the dispersion

relation represents a wave with upward directed group velocity cg = ∇KΩ, but downward

directed phase velocity c = (Ω/K) (K/K), where K = |K|.
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Figure 2.1: The rotated and translated coordinate system for the simplest representation

of a monochromatic GW. The (orthogonal) ξ- and φ-axes lie in the x − z plane. The

y-axis points vertically into that plane. The new coordinate system moves with the phase

velocity c of the GW, rendering the latter stationary.

Following Mied (1976) and Drazin (1977) a coordinate system can be introduced for

monochromatic GWs in which their representation is especially simple. It is obtained by

a rotation about the y-axis so that the new vertical coordinate points in the direction

of the wave number vector, a translation along this axis with the phase velocity, and a

rescaling of the vertical axis in units of the wave phase (see also Fig. 2.1). The new

coordinates are (ξ, y, φ) with

ξ = x sin Θ− z cos Θ (2.8)

φ = K (x cos Θ + z sin Θ)− Ωt . (2.9)

The rotated velocity components along the new axes being uξ, v, and uφ, the GW takes

in this representation the time-independent form

uξ = −a
Ω/K

sin Θ cos Θ
sin φ (2.10)

v = a
f/K

cos Θ
cos φ (2.11)
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uφ = 0 (2.12)

b = −a
N2/K

sin Θ
cos φ . (2.13)

For easier comparability to some of the literature (Klostermeyer, 1982; Yau et al., 2004)

it is noted that there the nondimensional uξ-amplitude 2A = − (aΩ/N) / (sin Θ cos Θ) is

used for a characterization of the wave. The phase convention (Yau et al., 2004, e.g.) is

such that the buoyancy gradient minimizes (maximizes) at φ = 3π/2 (π/2). The largest

shear due to uξ occurs at φ = 0, π, and the largest shear due to v (only relevant for

IGWs where R = |f/Ω| is not negligible) is at the extrema of the buoyancy gradient. The

relationship of a to the amplitude of uξ and to energy density integrated over one wave

train is given by

E =
∫ 2π

0
dφe = π

a2
(
f 2 sin2 Θ + N2 cos2 Θ

)

K2 sin2 Θ cos2 Θ
= π

(
2A

N

K

)2

. (2.14)

In view of its frequent application, the local Richardson number in the wave also

deserves a short discussion. It appears in a NM analysis of a shear flow obtained by

neglecting in the GW all vertical motions, its time dependence, and the horizontal depen-

dence. The resulting Taylor-Goldstein equation (Howard, 1961; Miles, 1961; Fritts and

Rastogi, 1985; Dunkerton, 1997) contains a height-dependent Richardson number which

also depends on the horizontal direction of propagation of the NM with respect to that

of the GW. A necessary condition for a NM to grow is that its respective Richardson

number is anywhere less than 1/4 (Howard, 1961; Miles, 1961). Of most interest therefore

is the minimum of the Richardson number, both over all horizontal directions of mode

propagation and over all altitudes (or phases). At a given phase, the minimum over all

directions of propagation is

Rim =
N2 + ∂b/∂z

(∂u/∂z)2 + (∂v/∂z)2 . (2.15)

Inserting the wave fields (2.10)–(2.13) and using the coordinate transformations (2.8)–

(2.9) and the dispersion relation (2.6) one finds

Rim =
1−R2

a2 (1− Ω2/N2)

1 + a sin φ

1− (1−R2) sin2 φ
. (2.16)



17

Figure 2.2: The minimal Richardson number Rimin in a monochromatic GW in its de-

pendence on the wave amplitude a with respect to static instability and its inclination

angle Θ with respect to the horizontal. The upper panel shows the range 30◦ ≤ Θ ≤ 90◦.

Isolines are between 0.25 (leftmost contour) and -50.25 in steps of 5. The lower panel

shows the range 89◦ ≤ Θ ≤ 90◦. Here contours are between 0.25 and -0.5 in steps of 0.05.

The minimum of Rim over all phases is at

sin φ =




−1 if a > 2 (1−R2) / (2−R2)

−1/a +
√

1/a2 − 1/ (1−R2) else
(2.17)

This minimal value, Rimin, is shown as a function of a and Θ in Fig. 2.2. As is well

known, only for IGWs the Richardson-number criterion Ri < 1/4 for dynamic instability

can be satisfied for a ¿ 1.



Part II

Linear stability theory
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Chapter 3

Basic instability concepts: Normal

modes and optimal perturbations

In the linear stability analysis of some reference solution (V0, B0) (x, t) of the Boussinesq

equations, here given by a monochromatic GW or a GW packet, one asks for the time

development resulting from arbitrary perturbations at the initial time t = 0. For this

purpose the decomposition (v, b) (x, t) = (V0, B0) (x, t) + (v′, b′) (x, t) with the pertur-

bation (v′, b′) is inserted into the Boussinesq equations which are then linearized about

the reference solution. One then asks what initial perturbation leads within this linear

approximation to the strongest perturbation growth. Here the concepts of NMs and SVs

come into play. For reasons of practical simplicity it is assumed in the following discussion

that, as is usually the case, the linear equations have been discretized in a suitable man-

ner, so that the perturbation can be described by a (possibly complex, see below) state

vector x(t) containing as elements the values of v′ and b′ at all model grid points. The

dynamics of the linear model is then given by dx/dt = A(t)x with some model operator

A. Within this framework the concepts of NMs and SVs are explained in the two sections

below, while technical aspects are covered in the appendix A. An interested reader is

advised to read the latter after this chapter.

19
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3.1 Normal modes

NMs are strictly only defined for time-independent reference solutions, as e.g. a monochro-

matic GW in the transformed coordinate system (2.8) - (2.9). Under this condition they

are the eigenvectors nν of the model operator, satisfying

Anν = −i (ων + iγν)nν (3.1)

with an eigenvalue consisting of an eigenfrequency ων and a growth rate γν . An initial

state given up to an amplitude aν by a NM, i.e. x(0) = aνnν , leads to a time-dependent

solution

x(t) = aνe
γνteiωνtnν , (3.2)

so that the existence of a growing NM with γν > 0 implies linear instability. In addition,

in typical cases where all NMs form together a complete set, every initial state can be

written as a superposition of NMs behaving in time as given by (3.2) so that, if an initial

state projects even to the least onto the leading NM (if there is one, with largest γν), this

NM will be approached asymptotically as t →∞.

3.2 Singular vectors

While a NM analysis searches perturbations growing exponentially in time, a SV analysis

explores the possibility of rapid transient growth. For this one needs a definition of the

strength of a perturbation, i.e. a norm ‖x‖2 = xtMx where the metric M is positive

definite and symmetric. The upper index t denotes transposition, the overbar taking

the complex conjugate. Among the different possible choices the present study uses the

discretized version of

‖x‖2 =
∫ 2π

0
dφε =

∫ 2π

0
dφ

1

2
(|v|2 +

|b|2
N2

) , (3.3)

with an integrand ε which is proportional to the average of energy density over one

horizontal wavelength of the perturbation. The metric thus takes a simple diagonal form.

Given a norm, a SV analysis asks what initial perturbation x(0) would maximize for some

given finite time τ the ratio ‖x(τ)‖2 / ‖x(0)‖2. For an answer one needs the propagator
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matrix Φ(τ) mapping the initial perturbation to its state at t = τ via x(τ) = Φ(τ)x(0).

For time-independent reference states and A one has Φ(τ) = exp (Aτ). Variational

analysis tells us that the desired perturbation initializing strongest growth is the leading

eigenvector pν satisfying

M−1Φ
t
(τ)MΦ(τ)pν = σ2

νpν (3.4)

with the largest possible eigenvalue σ2
ν , which is the squared growth factor ‖x(τ)‖2 / ‖x(0)‖2

if x(0) = pν . M being symmetric and positive definite there is a Cholesky factorization

M = N tN where N is upper triangular (diagonal in the case here). Inserting the factor-

ization into (3.4) and defining qν = Npν the eigenvalue problem can be rewritten

LtLqν = σ2
νqν (3.5)

with L = NΦ(τ)N−1, showing that all eigenvalues are positive. The eigenvectors qν

are orthogonal with respect to the euclidian metric, and henceforth also the optimal

perturbations pν with respect to M. The time-dependent state Φ(τ)pν developing from

an optimal perturbation pν is the corresponding SV.

NMs and SVs differ in several regards. So one observes that NMs always have the same

oscillating structure which is simply growing or decaying in time. This is not the case

for SVs. Their structure can differ quite a lot between initialization and final time. As a

consequence, the exchange processes between perturbation and background responsible for

the change in amplitude are always the same for a NM, while they can vary considerably

in the development of a SV. For a nonnormal model operator (where AtA 6= AAt
) it can

also be shown that the leading SV and leading NM only agree as τ →∞. For more details

the reader is referred to Farrell and Ioannou (1996a,b) and Schmid and Henningson (2001)



Chapter 4

Linear stability of inertia-gravity

wave packets

We begin with an analysis of the stability of IGWs. Due to their near-vertical phase prop-

agation they allow under certain approximations an analytical treatment which clarifies

important aspects of the dynamics of optimal perturbations of IGWs. These will also be

helpful for an interpretation of significant features of the nonlinear wave-breaking process.

The content of this chapter has also been published in Achatz and Schmitz (2006a,b).

4.1 The wave packet and its approximation in a model

hierarchy

Having in mind an analysis of the stability of an IGW propagating from the lower at-

mosphere into the mesosphere, thereby gaining in amplitude due to the vertical ambient

density gradient, this chapter focusses on the stability of an IGW packet. The other, con-

ceptually interesting, case of a monochromatic IGWs is covered together with monochro-

matic HGWs in chapter 5. In all calculations in this chapter the Brunt-Vaisala frequency

was assumed to be N = 10−2s−1, and the f -plane is centered at 45◦.

The initial state of the wave packet is obtained from the solution (2.5) with upward

22
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directed group velocity, convolved by a Gaussian envelope, i.e.




V0

B0


 (x, 0) = a<







ṽ

b̃


 eiK·x+π/2−z2/σ2

z


 , (4.1)

where for convenience the phase has been shifted so that the statically least stable location

comes to lie at (x, z) = (Λx/2, 0) with the horizontal wavelength given by Λx = 2π/Kx.

As vertical extent σz of the packet one vertical wavelength Λz = 2π/Kz is used. For

the wavelengths we have chosen typical observed values: The horizontal wavelength is

500km, whereas the vertical wavelength was varied between 3, 6, and 9km in order to

get some information about the effect on the results here of varying the ratio R = f/ |Ω|.
For the examined wavelengths it is R = 0.86, 0.65, and 0.50, respectively. The time

dependent wave packet was obtained by integrating from the specified initial state a

nonlinear Boussinesq model, formulated in analogy to the model described in chapter 6.

The linear dynamics of perturbations of the wave packet are analyzed on three levels of

complexity.

4.1.1 The linear model for the general IGW packet

The most general treatment is obtained by linearizing the Boussinesq equations about

the general time dependent IGW packet. The latter is symmetric in y so that we can use

the ansatz (v′, b′, p′) = (v, b, p) (x, z) exp (ily) with an arbitrary wavenumber l, while p′

denotes pressure. This yields

∇2 · v = 0 (4.2)

Dv

Dt
+ u

∂V0

∂x
+ w

∂V0

∂z
+ fez × v +∇2p− ezb = ν∇2

2v (4.3)

Db

Dt
+ u

∂B0

∂x
+ N2

totw = µ∇2
2b , (4.4)

where∇2 = (∂/∂x, il, ∂/∂z), D/Dt = ∂/∂t+V0 ·∇2, and N2
tot = N2+∂B0/∂z. The model

equations have been discretized using second-order finite central differences on a staggered

C grid (Tapp and White, 1976). The boundary conditions are periodic in x and z. It was

always made sure that the boundaries are far enough from the instability in order not

to affect the results. The pressure Poisson equation, obtained by taking the divergence
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Figure 4.1: Squared total Brunt-Vaisala frequency in an IGW packet with a = 1.5 (left

panel, negative values are indicated by dashed contours), and at x = Λx/2 its vertical

dependence and that of the three-dimensional velocity field (right).

of (4.3) and using (4.2), is solved by standard techniques. The time integration is done

by two initial fourth-order Runge-Kutta time steps and a third-order Adams-Bashforth

scheme thereafter. These time-stepping schemes, as well as the solution of the Poisson

equation are discussed in Durran (1999). Further resolution details are given below.

4.1.2 Approximation of the IGW by a one-dimensional profile

As will be seen much of the dynamics of an incipient instability of an IGW is controlled by

the conditions near its statically least stable location. An interesting option simplifying

the problem is therefore to approximate the IGW packet by its state at the location

x = x0 = Λx/2 (= 250km) where initially the strongest static instability is to be expected.
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Vertical motion in the IGW is duely neglected since for IGW cot Θ ≤ f/N ¿ 1, i.e. we

assume W0 = 0 (see also Fig. 4.1). Due to a corresponding symmetry in the basic

wave packet, the resulting linear model does not couple different wave numbers in the

horizontally parallel (x) and transverse (y) direction. Thus one can as well set (v′, b′, p′) =

(v, b, p)(x, z) exp[i(kx + ly)] for arbitrary wavenumbers k and l. As others have done

before (Dunkerton, 1997, e.g.) the horizontal wavenumbers are expressed in terms of

parallel wavenumber k‖ and azimuth angle α as (k, l) = k‖(cos α, sin α). For the further

discussion it is also useful to introduce a modified coordinate system, obtained by rotating

the horizontal axes so that in the new coordinates (x‖, y⊥) the x‖-axis points into the

direction of the horizontal wave vector of the perturbation, i.e. one takes

x‖ = x cos α + y sin α (4.5)

y⊥ = −x sin α + y cos α . (4.6)

With the corresponding horizontal velocity components in perturbation and IGW being

denoted by (u‖, v⊥) and (U‖, V⊥) the model equations then become

ik‖u‖ +
∂w

∂z
= 0 (4.7)

Du‖
Dt

+ w
dU‖
dz

+ ik‖p− fv⊥ = ν∇2
1u‖ (4.8)

Dv⊥
Dt

+ w
dV⊥
dz

+ fu‖ = ν∇2
1v⊥ (4.9)

Dw

Dt
+

∂p

∂z
− b = ν∇2

1w (4.10)

Db

Dt
+ N2

totw = µ∇2
1b , (4.11)

where D/Dt = (∂/∂t + ik‖U‖), ∇1 = (ik‖, 0, ∂/∂z), and N2
tot = N2 + dB0/dz. Provided

the coriolis effect is weak, which is the case here, one sees from (4.7)–(4.11) that v⊥ is

coupled to the other model variables only passively.

Again the equations have been discretized using second-order finite central differences

on a staggered grid with u‖, v⊥, b on full and w on intermediate half levels. Boundary

conditions are periodic. Unless specified differently the model domain extension was

Lz = 3Λz and the number of grid points (512 or 1024) was chosen large enough to ensure

numerical convergence of all results.
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As preparation for the constant-shear-layer approximation below it shall also be noted

that there is, due to (4.7), a streamfunction ψ so that (u‖, w) = (−∂/∂z, ik‖)ψ. With this

the model equations can be written

Dζ

Dt
+ ik‖b = ν∇2

1ζ − ik‖
d2U‖
dz2

ψ + f

(
∂v⊥
∂z

+ ik‖u‖

)
ψ (4.12)

Dv⊥
Dt

+ ik‖
dV⊥
dz

ψ = ν∇2
1v⊥ (4.13)

Db

Dt
+ ik‖N

2
totψ = µ∇2

1b , (4.14)

where ζ = (k2
‖ − ∂2/∂z2)ψ is the vorticity component in y⊥-direction.

4.1.3 Approximation by a stratified constant-shear layer

Going one step further one can focus even more on the initial conditions near the statically

least stable location by approximating (see also Fig. 4.1) the IGW fields by their tangents

there at t = 0, i.e. by assuming

U0 = u0 = aΩ/K (4.15)

V0 = βz (β = afM/K) (4.16)

N2
tot = N2(1− a) , (4.17)

so that U‖ = uc + βsz and dV⊥/dz = βc, where we write βs,c = β(sin α, cos α) and

uc = uo cos α. Optimal growth in a corresponding nonrotating stratified constant-shear

layer with N2
tot = N2, i.e. without locally reduced static stability, has been studied by

Farrell and Ioannou (1993b) and Bakas et al. (2001) whose results are here used and

expanded on. We neglect in (4.12)–(4.14), but not in the basic state, the coriolis effect

and set

(ψ, ζ, v⊥, b) (z, t) =
∫ ∞

−∞
dm (ψm, ζm, vm, bm) (t) exp

[
i
(
mtz − k‖uct

)
−D

]
(4.18)

with mt = m− k‖βst a time dependent vertical wave number, and D = ν
∫ t
0 dτK2

t (τ) the

viscous-diffusive damping increment (assuming µ = ν), while K2
t = k2

‖ + m2
t . Thus one

obtains the independent three-component systems

dζm

dt
= −ik‖bm (4.19)
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dbm

dt
= −ik‖N

2
totψm (4.20)

dvm

dt
= −ik‖βcψm (4.21)

with ζm = K2
t ψm. Note that these equations conserve the quantity vm/βc− bm/N2

tot. One

should also be aware that the stratified-shear-layer approximation is as well applicable to

monochromatic IGWs as to IGW packets.

4.2 Analysis in the shear-layer approximation

Expressing kinetic energy in terms of ψ and v⊥ one finds that for the constant-

shear-layer case total energy is given, up to an irrelevant constant factor, by E =
∫∞
−∞ dk

∫∞
−∞ dl

∫∞
−∞ dmEklm with

Eklm =
e−2D

2

(
K2

t |ψm|2 + |vm|2 +
|bm|2
N2

)
, (4.22)

so that different k and l, i.e. k‖ and α, and different initial vertical wavenumbers m are

completely decoupled in the energy norm. Thus each of the subsystems (4.19)–(4.21) must

be considered separately in a SV analysis. This can be done numerically for arbitrary

azimuth angles, but the special advantage of the constant-shear-layer approximation is

that it admits several closed analytical solutions helpful in getting an oversight of the

dependence of optimal growth on the various parameters.

4.2.1 Normal modes and singular vectors

It is instructive to first neglect in (4.19)–(4.21) the time dependence of Kt and mt, yielding

a linear system with constant coefficients, and NM solutions

(ψm, bm, vm)± = (1,±NtotKt,±βcKt/Ntot) /(Kt
√

ε+) (4.23)

(ψm, bm, vm)v = (0, 0, 1) (4.24)

with eigenfrequencies ω± = ±Ntotk‖/Kt and ωv = 0, where ε+ = 1 + β2
c / |Ntot|2 +

|Ntot|2 /N2. The normalization has been chosen so that all three modes have the same

initial unit energy Eklm = 1. For a > 1 the convention is Ntot = i |Ntot| so that in this case
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the first NM is growing exponentially, unless damped at small wavelengths by viscosity

and diffusion, while at a < 1 all three modes are damped. One sees that two possibilities

for near-collinearity between the two first or all NMs arise. If βc = 0 and |Ntot| is small

the two first modes are in structure very close to (1, 0, 0), whereas for small |Ntot| and

large βc/ |Ntot| they are approximately collinear with the third mode. This collinearity is

the very reason for the strong optimal growth discussed below.

Getting back to the real case with time dependent Kt and mt it is useful to exploit

that the subsystem (4.19)–(4.20) always yields

d2ζm

dt2
= −N2

totk
2
‖

K2
t

ζm (4.25)

admitting for large enough |ω±| the WKB solution (Mathews and Walker, 1970; Farrell

and Ioannou, 1993b) ζm(t) ∝ √
Kt exp(±iφ) with φ(t) =

∫ t
0 dt′Ntotk‖/K(t′). Thus we

use for the solution of the general initial-value problem the ansatz, validated a posteriori

below,




ψm

bm

vm




(t) = a+e−iφ




ψ

b

v




+

+ a−eiφ




ψ

b

v



−

+ av




ψ

b

v




v

(4.26)

(ψ, b, v)± =
g3/4

K0
√

ε+

(1,±NtotKt,±βcKt/Ntot) (4.27)

(ψ, b, v)v = (0, 0, 1) (4.28)

with K0 = Kt(t = 0) and g = K2
0/K

2
t . Note that the WKB solution uses as basis time

dependent generalizations of the NMs discussed above, which are exact for the case βs = 0,

i.e. α = 0◦. As shown in appendix B the approximation yields analytical approximate

optimal-growth factors which in the two limit cases of parallel or transverse propagation

of the perturbation take an especially simple form.

Parallel singular vectors

In the case α = 0 one has βs = 0, i.e. mt and Kt are constant, and thus the WKB solution

is exact. The available basic shear is transverse to the wave vector, which corresponds

to the situation where the so-called roll mechanism (Moffat, 1967; Ellingsen and Palm,
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1975; Landahl, 1980) transfers kinetic energy from the basic state to a perturbation in

which an initial vertical velocity induces a transverse wind component in the presence of

a corresponding basic shear. The hence resulting growth factor for the leading optimal

perturbation, given in the appendix B, can be approximated for β2
c / |Ntot|2 = 1/ |Ri| À

1 À |Ntot|2 /N2 by

σ2
1 ≈ e−2D 4

|Ri|
N2

|N |2tot





sin4 φ
2

for a < 1

sinh4 |φ|
2

for a > 1
. (4.29)

Via an increase of the collinearity of the involved NMs both shear and reduced static sta-

bility act to enforce the transient growth, which is reduced by viscous-diffusive damping.

Most notably, it can be strong even for a < 1, when all three NMs decay.

Given a vertical wavenumber m and an optimization time τ one can ask oneself

about the dependence of σ2
1 on k‖, especially at which k‖ optimal growth maximizes.

For a > 1 one finds that due to |φ| = |Ntot| k‖τ/
√

k2
‖ + m2 the leading-term behavior

is σ2
1 = (4/ |Ri|)(N2/ |Ntot|2) exp

{
2τ

[
|Ntot| k‖/

√
k2
‖ + m2 − ν

(
k2
‖ + m2

)]}
so that growth

maximizes, just as for the unstable NM, at k‖ = km where

0 =
|Ntot|m2km

(m2 + k2
m)3/2

− 2νk2
m , (4.30)

i.e. km ≈ m (|Ntot| /2νm2)
1/4

for νm2 ¿ |Ntot| /2, and km ≈ m |Ntot| /2νm2 for νm2 À
|Ntot| /2. In this case the wavenumber location of optimal growth is independent of the

optimization time.

The situation differs for a < 1. For Ntotτ/2π > 1 there are local maxima of σ2
1 where

φ ≈ (2n + 1)π for some positive integer n < (Ntotτ/π − 1) /2, i.e. at k‖ ≈ kn where

kn =
m√[

Ntotτ
(2n+1)π

]2 − 1

. (4.31)

The number of extrema thus rises with increasing τ where always the one at longest

horizontal wavelength, i.e. k‖ = k0, is least damped by diffusion and viscosity, so that

there σ2
1 ≈ (4/ |Ri|)(N2/N2

tot) for not too strong damping. For Ntotτ/2π < 1 only one

maximum remains which is near

k0 = m

[
Ntot

2νm2 tan (Ntotτ/2)

]1/4

, (4.32)
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Figure 4.2: For the shear-layer approximation of optimal growth of parallel perturbations

(α = 0, vertical wavelength λz = 600m) in an IGW packet (Λz = 6km), for two different

amplitudes a the leading growth factors for optimization times τ = 10min and 1h, in

dependence of the horizontal wavelength λ‖ = 2π/k‖ of the perturbation. Shown are both

the exact values and the approximation given by equation (4.29). In the case (a, τ) =

(1.1, 1h) the growth factors have been divided by a factor 1000.

as long as in this approximation k0 À m, reducing for Ntotτ/2 ¿ 1 to k0 = m/ (τνm2)
1/4

,

i.e. only slowly increasing with decreasing ν and τ . In contrast to the case a > 1 one thus

here has a dependence of the growth factor on optimization time. For λz = 0.1Λz = 600m

and four representative combinations of a and τ the leading growth factors are shown in

Fig. 4.2, giving also a good confirmation of approximation (4.29).

The structure of the optimal perturbations is quite interesting. In appendix B it

is also shown that under the same approximations as used for (4.29) one has for the

strongest-growing structure

a± ≈ ∓1

2

Ntot

|Ntot|
βc

|βc|av . (4.33)
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Inserting this into (4.26)–(4.28) yields for βc/ |Ntot| À 1 and |Ntot| /N ¿ 1

ψm =
av

2K0

|Ntot|
|βc|

Ntot

|Ntot|
βc

|βc|
(
eiφ − e−iφ

)
(4.34)

bm = −av

2
N
|Ntot|
|βc|

Ntot

N

Ntot

|Ntot|
βc

|βc|
(
eiφ + e−iφ

)
(4.35)

vm = −av

2

(
eiφ + e−iφ

)
+ av , (4.36)

so that ones sees that it is composed in such a way from the three NMs that both ψm

and vm are initially approximately cancelled, whence due to subsequent removal of this

cancellation especially the latter quickly rises in amplitude. This case of transient growth

is thus a clear example of the interference effect behind optimal growth in general, here

acting to produce rapid growth in the transverse flow field.

Transverse singular vectors

For α = 90◦ one has βc = 0 and thus the two first WKB NMs have no parallel-velocity

component vm. The leading optimal perturbation is composed from these so that optimal

growth is restricted to ψm and b. Now the available shear is parallel to the horizontal

wavenumber vector of the perturbation, so that the so-called Orr mechanism (Orr, 1907)

can extract energy from the transverse flow-field component V0 of the shear layer. In this

case the perturbation leans initially against the shear and intensifies as it is sheared over,

thus producing strong vertical velocities. Kt is time dependent so that the variation of g

has an important impact. As also shown in appendix B one has at |Ntot|2 /N2 ¿ 1

σ2
1 ≈ e−2Dg1/2 N2

|N |2tot





sin2 φ for a < 1

sinh2 |φ| for a > 1
. (4.37)

Also for this case both shear (via g) and reduced static stability (via an enhanced collinear-

ity of the involved NMs) act to enforce the transient growth, which is reduced by viscous-

diffusive damping. Once again a = 1 is no real instability threshold.

At fixed initial vertical wavenumber m the squared growth factor σ2
1 peaks at the

maximum of g where K2
t minimizes. This is at k‖ = m/βτ . There

g = 1 + β2τ 2 (4.38)
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Figure 4.3: For the shear-layer approximation of optimal growth of transverse perturba-

tions (α = 90◦, vertical wavelength λz = 600m) in an IGW packet (Λz = 6km), for two

different amplitudes a the leading growth factors for optimization times τ = 10min and

1h, in dependence of the horizontal wavelength λ‖ = 2π/k‖ of the perturbation. Shown

are both the exact values, their WKB approximation by equation (B.5), and the approx-

imation given by equation (4.37). In the case (a, τ) = (1.1, 1h) the growth factors have

been divided by a factor 2.

D = νm2τ

(
1

β2τ 2
+

1

3

)
(4.39)

φ = −Ntot

β
ln

(√
1 + β2τ 2 − βτ

)
, (4.40)

so that the growth factor is of the order N2/ |Ntot|2 for small τ , and diverges for large

τ as long as viscous-diffusive damping is unimportant. This divergence is ∝ τ for a <

1 and ∝ τ
√

4/|Ri|+1 for a > 1, i.e. in contrast to the parallel case algebraic and not

exponential. For λ‖ = 0.1Λz = 600m and four representative combinations of a and τ the

leading growth factors are shown in Fig. 4.3, giving also a good confirmation of the WKB
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Figure 4.4: For the same four cases as shown in Figs. 4.2 and 4.3, the optimal growth

factors for the azimuth angles α = 0◦, 30◦, 60◦, and 90◦.

approach and approximation (4.37). For the exact values the propagator matrix has been

determined from numerical integration of (4.19)–(4.21), followed by a numerical solution

of the eigenvalue problem (3.4).

The structure of the leading optimal perturbation reveals a similar interference effect

as in the case above. To lowest approximation in |Ntot|2 /N2 ¿ 1 one finds (appendix B)

a+ ≈ −a− so that

ψm = −a+
g3/4

K0

(
eiφ − e−iφ

)
(4.41)

bm = a+Ntotg
1/4

(
eiφ + e−iφ

)
, (4.42)

i.e. there is initially near-cancellation in ψm after which it rapidly rises in amplitude due

to removal of the destructive interference, so that this structure is dominated by growth

in kinetic energy in ψm. For both cases, i.e. parallel and transverse propagation, one finds

the buoyancy growth to be relatively weak.
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Dependence on azimuth angle

In order to give an impression of the general dependence of optimal growth in the shear-

layer approximation Fig. 4.4 shows for the same four cases as in Figs. 4.2 and 4.3 the exact

growth factors for the azimuth angles α = 0◦, 30◦, 60◦, and 90◦. In a comparison between

the growth of parallel and transverse perturbations one finds the former to dominate for

a > 1. This is a result of the exponential dependence on optimization time in the parallel

case, while optimal growth of transverse perturbations only rises algebraically with τ . At

a < 1 parallel optimal growth dominates for small τ , due to the additional factor 4/ |Ri|
in σ2

1, while transverse optimal growth takes the lead for larger τ , since the growth factors

of parallel perturbations cannot be larger than (4/ |Ri|) (N2/N2
tot), while σ2

1 ∝ τ in the

other case. Interestingly for a < 1 the growth factor gets largest for intermediate azimuth

angles. This is in good agreement with the synergism between Orr mechanism and roll

mechanism observed by Farrell and Ioannou (1993a) in unstratified shear layers. Only at

larger a and τ the growth of parallel perturbations dominates as a result of the strong

exponential dependence of the corresponding growth factor on τ . The dependence of the

optimal wavenumber, at which optimal growth maximizes, on optimization time is for

oblique SVs, due to the factor g, quite similar to the behavior in the transverse case,

i.e. one finds optimal growth near k‖ = m/βsτ , so that the optimal wavelength rises in

proportion with the optimization time. One also recognizes the dependence of the optimal

wavelength of parallel optimal growth on τ as predicted for a < 1 by (4.31) (n = 0 for

τ = 1h) and (4.32) (for τ = 10min). The only case where the optimal wavenumber stays

independent of τ is for parallel SVs at a > 1.

4.2.2 Energetics and temporal development

The mechanism by which the identified patterns extract their energy from the basic shear

layer deserves further attention. For this purpose it seems worthwhile to look explicitly

at the relevant energy exchange terms in their time development and examine what they

can teach us about the process. For each combination of k and l, i.e. k‖ and α, and m in
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the stratified shear layer one can derive from 4.19–4.21

dEklm

dt
= r‖ + r⊥ + rb + rd (4.43)

r‖ = mtk‖βs |ψm|2 e−2D (4.44)

r⊥ = −k‖βc=
(
vmψm

)
e−2D (4.45)

rb = k‖

(
1− N2

tot

N2

)
=

(
bmψm

)
e−2D (4.46)

rd = −2νK2
t Eklm , (4.47)

containing successively the Reynolds exchange terms due to the fluxes of momentum

in x‖- and y⊥-direction and of buoyancy against the respective gradients in the shear

layer, and viscous-diffusive damping. Defining an instantaneous amplification rate Γ =

(1/2Eklm) (dEklm/dt), which for a NM is identical with its growth rate, one obtains the

respective components Γ‖, Γ⊥, Γb, and Γd, so that Γ = Γ‖ + Γ⊥ + Γb + Γd. On the basis

of these terms the time development of the leading optimal perturbations is analyzed,

focussing on the two cases of parallel (α = 0◦) and transverse (α = 90◦) propagation

where the simple closed analytical solutions of the initial-value problem exist.

Parallel singular vectors

From βs = 0 follows r‖ = 0. Furthermore, in the limit β2/ |Ntot|2 = 1/ |Ri| À 1 À
|Ntot|2 /N2 the approximations (4.34)–(4.36) apply, yielding for a < 1, under consistent

assumptions,

Eklm =
|av|2

2
e−2D

[
4 sin4

(
Ω̂

2
t

)
+ |Ri| |Ntot|2

N2

]
(4.48)

r⊥ = 2
k‖
K0

|Ntot| |av|2 e−2D sin
(
Ω̂t

)
sin2

(
Ω̂

2
t

)
(4.49)

rb = |Ri| k‖
K0

|Ntot|
(

1− N2
tot

N2

) |av|2
2

e−2D sin
(
2Ω̂t

)
, (4.50)

where it has been used that φ = Ω̂t with Ω̂ = Ntotk‖/K0. In (4.48) the small term

|Ri| |Ntot|2 /N2 has been kept for consistency with the calculated growth factor, while

in (4.50) N2
tot/N

2 has not been neglected in comparison with 1 in order to ensure that

rb = 0 for N2
tot = N2. For a < 1 one thus sees the energy of the SVs to perform a damped
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Figure 4.5: For the shear-layer approximation of optimal growth of parallel perturbations

(α = 0, vertical wavelength λz = 600m) in an IGW packet (Λz = 6km), for two different

amplitudes a the time-dependent amplification-rate decomposition from an integration of

the leading optimal perturbation (i.e. at optimal horizontal wavenumber) for optimization

times τ = 10min and 1h. The contributing terms are the instantaneous amplification rates

due to vertical counter-gradient fluxes of momentum in y⊥-direction and buoyancy b, and

viscous and diffusive damping. For the case (a, τ) = (0.9, 1h) twice the amplification rates

are shown.

oscillation with period T = 2π/Ω̂. Note that for the perturbation growing at fixed m most

strongly over the optimization time τ one has for τ > 2π/Ntot the identity Ω̂τ = π and

hence T = 2τ . Similar oscillatory behavior is exhibited by the exchange terms. Generally

r⊥ is the larger term besides near t = nT for some integer n, where both vanish but r⊥

has zero time derivative and thus the increase in rb is steeper.

The corresponding relations for a > 1 are obtained by the replacements sin → sinh

and Ω̂ →
∣∣∣Ω̂

∣∣∣. Then no oscillation results but a convergence of the total amplification

rate towards the growth rate of the corresponding NM, i.e. Γ →
∣∣∣Ntotk‖/K0

∣∣∣, which is

due to the convergence of the optimal perturbation towards the structure of the NM. It is

interesting to observe that as a result of the strong NM component in v⊥, induced by the
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Figure 4.6: As Fig. 4.5, but now for the leading transverse perturbations (α = 90◦).

Instead of the counter-gradient flux of momentum in y⊥-direction one here has a contri-

bution from the flux of momentum in x‖-direction.

shear gradient, Γb/Γ⊥ = rb/r⊥ → |Ri| (1−N2
tot/N

2) ¿ 1 although the total growth rate

of the NM is not influenced by the shear. The exact amplification-rate decomposition,

obtained from an integration of the exact optimal perturbations (i.e. at optimal k‖) at

λz = 2π/m = 0.1Λz = 600m and four representative combinations of a and τ , is shown in

Fig. 4.5. Note that in the case (a, τ) = (0.9, 10min) the optimal value of k‖ ≈ 2π/380m

yields T ≈ 3.9τ , which is in quite good agreement with the observed exact behavior.

Transverse singular vectors

As discussed above the time-dependent leading transverse SV is a two-dimensional struc-

ture in the velocity field. On has vm = 0, and in a WKB approximation in the limit

|Ntot|2 /N2 ¿ 1 the approximations (4.41) and (4.42) apply. One obtains generally r⊥ = 0

(since βc = 0), and for a < 1 under the assumptions above
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Eklm = 2g1/2 |a+|2 e−2D

(
sin2 φ +

|Ntot|2
N2

cos2 φ

)
(4.51)

r‖ = 4g3/2k‖mt

K2
0

β |a+|2 e−2D sin2 φ (4.52)

rb = 2g
k‖
K0

|Ntot|
(

1− N2
tot

N2

)
|a+|2 e−2D sin 2φ . (4.53)

The corresponding relations for a > 1 result from the replacements (cos, sin) → (cosh, sinh)

and φ → |φ|. One sees that for |Ri| ¿ 1 growth and decay are generally dominated by

r‖. As discussed above, at fixed initial vertical wave number m largest growth over τ

is obtained at k‖ = m/βτ , implying mt = m (1− t/τ) so that decay sets in at t = τ .

Only near t = 0, when both r‖ and rb approximately vanish, the latter dominates since

the former there has zero time derivative. The large-time asymptotic behavior, incor-

rectly predicted by the WKB approximation, is best determined directly from the model

equations (4.19)–(4.21) whence one finds, similarly to Farrell and Ioannou (1993b), that

(ψm, bm) ∝ t
√

1/4−N2
tot/β2−1/2 (t−1, 1) for t → ∞ so that Eklm ∝ t

√
1−4N2

tot/β2−1 exp (−2D).

Thus even in the absence of viscosity and diffusion energy eventually decays for a < 1,

while for a > 1 a final decay is caused by viscous-diffusive damping. For the same

four cases as used before the exact time-dependent amplification-rate decomposition

of the optimally growing perturbation (i.e. with optimal k‖) is shown in Fig. 4.6.

One sees that the relative importance of Γb decreases with increasing τ , which can

be understood by noting that, up to the phase factors, at the optimal wavenumber

rb/r‖ ∝
(√
|Ri|/2

) [
1/β2τ 2 + (1− t/τ)2

]1/2
/ (1− t/τ) so that near t = 0 the ratio de-

creases with increasing τ .

Dependence on azimuth angle

For general azimuth angles the behavior is a transition between the two cases discussed

above. Fig. 4.7 shows for the same four combinations of a and τ as above the exact time

dependence of energy for four representative azimuth angles. One observes for α = 0

the damped oscillation at a < 1, and the exponential divergence at a > 1 which only is

obstructed by viscous-diffusive damping if D >
∣∣∣Ω̂

∣∣∣. For larger azimuth angles one sees at

t = τ the peak or sudden reduction of further growth as predicted by WKB theory. The
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Figure 4.7: For the same four combinations of a and τ and the same λz and Λz as in Fig.

4.5 the time-dependent energy in the integration of the leading optimal perturbations for

the azimuth angles α = 0◦, 30◦, 60◦, and 90◦.

general large-time asymptotic behavior is similar to the transverse case, i.e. (ψm, bm) ∝
t
√

1/4−N2
tot/β2

s−1/2 (t−1, 1) and vm → vm(t = 0) − βc/N
2
totbm(t = 0) + o

(
t
√

1/4−N2
tot/β2

s−1/2
)

for t → ∞ so that the energy in ψm and bm is ∝ t
√

1−4N2
tot/β2

s−1 exp (−2D) while that in

vm asymptotes towards a constant in the inviscid-nondiffusive limit (following from the

conservation of vm/βc − bm/N2
tot, see also Bakas et al., 2001). In the general case viscous

and diffusive damping eventually prevails since D ∝ t3 for large times, but a transition

phase of algebraic growth at a > 1 for t > τ is visible for the two intermediate azimuth

angles.

4.3 Analysis of the 1D profile

In the approximation of an IGW by a one-dimensional vertical profile one obtains the

independent subsystems (4.7)–(4.11), one for each combination of k and l, i.e. k‖ and
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Figure 4.8: For the vertical profile at the horizontal location of maximal static instability,

of a statically unstable (a = 1.5) IGW packet with vertical wavelength Λz = 6km, the

growth factors of the most unstable NMs (left panel) and leading SVs (right panel),

propagating in the horizontal at various azimuth angles α with respect to the basic wave,

as a function of the parallel wave length λ‖ = 2π/k‖. Integration time is τ = 10min.

α. Moreover total energy can be written, up to an irrelevant constant factor, as E =
∫∞
−∞ dk

∫∞
−∞ dlEkl with Ekl = |v|2 /2+|b|2 /2N2, so that the energy norm also does not cou-

ple different horizontal wave vectors. Thus both the NMs and the SVs must be determined

separately for each combination of k‖ and α. This has been done using sparse-matrix tech-

niques, as described in appendix A. Since the largest similarities to the results on SVs

from the shear-layer approximation are to be expected for short optimization times, where

the time-dependence of the 1D profile can be neglected, the analysis first focusses on that

case. Longer optimization times are studied separately.

4.3.1 Normal modes and short-term singular vectors

Short-term normal-mode growth vs singular-vector growth

First a statically unstable IGW packet (a = 1.5) is analyzed with vertical wavelength

Λz = 6km. NMs are determined from the profile at t = 0. The development time
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considered is τ = 10min, i.e. approximately one Brunt-Vaisala period. The growth

factors (exp γντ for the NMs and σν for the SVs) of the leading patterns (with largest

growth factors, i.e. for ν = 1) obtained in both analyzes are shown for different azimuth

angles and parallel wavelengths in Fig. 4.8. Because of the Coriolis effect there is a weak

asymmetry in the growth factors between (for any β) α = 90◦ ± β. It is however so

small that only results for 0◦ ≤ α ≤ 90◦ are shown. In comparing the NM growth curves

to corresponding results by Dunkerton (1997) and Kwasniok and Schmitz (2003) minor

differences are to be expected, since in those studies the impact of the Coriolis effect was

taken into account as far as the shape of the basic wave is concerned, but not in the

linear model itself. However, we actually find quite good agreement for this value of a.

Thus, also two main features in the growth curves obtained there are reproduced. First,

at parallel wavelengths of the order of the vertical wavelength of the basic wave one finds

a local maximum which is especially pronounced for transverse propagation (α = 90◦).

Secondly, towards shorter wavelengths the growth factors for non-transverse propagation

rise again to an even higher level. Most pronounced here is the growth factor for parallel

propagation (α = 0◦), maximizing at λ‖ = 2π/k‖ ≈ 400m to a value near 30. At even

shorter scales viscosity takes over and leads to weaker growth rates, and finally decay.

This is in close correspondence to the strong growth of small-scale parallel NMs in the

constant-shear layer discussed above.

The two peaks, as well as the general finding that instability exists at all azimuths,

can also be interpreted via the local Richardson number Ri = N2
tot/(∂U‖/∂z)2. As also

noted above, motivation for the use of the local Richardson number is that for a purely

z-dependent background without vertical wind the well-known Taylor-Goldstein equation

can be derived from the linear equations (4.7) – (4.11) without rotation, which has been

the basis of the analysis by Fritts and Yuan (1989b), Yuan and Fritts (1989), Dunkerton

(1997), and Kwasniok and Schmitz (2003). This equation had previously been analyzed

by Howard (1961) and Miles (1961) who showed that no NM growth can exist if Ri > 1/4

everywhere. As a necessary condition for NM instability the local Richardson number

should therefore be less than 1/4 anywhere in the domain. Neglecting viscosity and

diffusivity, setting K · x− ωt = Kx0 + Mz = π + Φ with local phase Φ = Mz one finds,
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Figure 4.9: As a function of instability azimuth α and wave phase Φ, the local Richardson

number in the vertical IGW profile used in the analysis shown in Fig. 4.8. Only values

−2 ≤ Ri ≤ 1/4 are shown.

in analogy to (2.16),

Ri =
(1−R2)(1− a cos Φ)

a2(R sin α cos Φ + cos α sin Φ)2

1

1− Ω2/N2
. (4.54)

For (R, a) = (0.65, 1.5) Ri(α, Φ) has been plotted in Fig. 4.9 (assuming Ω2 ¿ N2).

The instability at all azimuths is consistent with the observation that for all α there is

a wave phase where Ri < 1/4. Furthermore one finds at Φ = 0 negative singularities at

α = 0,±π, and saddle points at α = ±π/2, indicating the most pronounced instabilities

to occur at parallel propagation. Lelong and Dunkerton (1998a) show a similar plot for

a < 1 where the minimum of Ri lies at α = ±π/2. It appears that the growth rate peaks

found for transverse propagation are related to these minima which here at a > 1 become
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masked by the negative singularities at α = 0,±π.

Now turning to the SVs (right panel of Fig. 4.8) one observes conspicuous similarities

to the NMs. Again one finds the most intense growth at short scales and parallel prop-

agation with a secondary peak at longer scales and transverse propagation. The peaks

are less pronounced, and the azimuth dependence is also somewhat weaker. Furthermore,

the most rapidly growing transverse SVs have smaller scales. Whereas the most rapid

transverse NM growth is at λ‖ ≈ 8km, the respective nonmodal growth maximizes at

5km. The most important difference, however, is that nonmodal growth within τ =10min

is more rapid, by about a factor 3, than NM growth. At other wave amplitudes one gets

the same result. Figure 4.10 shows the NM and SV growth curves for parallel and trans-

verse propagation at a = 0.9 and 0.5. At slightly subcritical amplitudes (a = 0.9) optimal

growth is still quite strong (nearly a factor 10 for parallel propagation) while the NMs

grow only by an insignificant rate. The largest growth factor one finds is exp (γ1τ) = 1.006

at
(
α, λ‖

)
= (90◦, 8.9km). The slightly more intense NM instabilities found by Yau et al.

(2004) for subcritical monochromatic IGWs seem to be due to their neglect of viscosity

and diffusion, and their use of larger values for a and R than here. Even at rather small

amplitudes (a = 0.5) optimal growth still exists. This, however, should perhaps not be

overrated, since growth by a factor 2 might usually not be sufficient for really destabilizing

the basic wave packet. These results verify the prediction from the constant-shear-layer

approximation that at short optimization times strong transient growth of nonmodal per-

turbations can exist, dominated by near-parallel propagation. This persists for a < 1,

while there modal growth is basically suppressed. Also the scales of parallel and trans-

verse optimal perturbations are reproduced, the former being considerably shorter than

the latter. A major difference is that no synergism between the roll and Orr mechanisms

is seen in the sense that it is always the parallel perturbations which grow most rapidly,

while the shear layer would predict most rapid growth for slightly oblique directions of

propagation, as also visible in Fig. 4.4.

The impact of the vertical wavelength of the basic wave on optimal growth can be

seen in Fig. 4.11. There the leading growth factors (for parallel and transverse SVs) for

different basic wave amplitudes and vertical wavelengths are shown. As R is increased
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Figure 4.10: As Fig. 4.8, but just for transverse and parallel perturbations, and the basic

wave amplitudes a = 0.9 and 0.5.

or Λz decreased (R = 0.86, 0.65, and 0.50, for Λz = 3, 6, and 9km, respectively) the

SV growth gets stronger. It appears that the tendency for subcritical growth (at a <

1) occurs mainly in IGWs with smaller vertical wavelengths (i.e. large R). This is in

close analogy to the predictions from NM theory (Fritts and Rastogi, 1985; Dunkerton,

1997). Once again one finds this also to be a prediction from the constant-shear-layer

approximation where it is found that parallel optimal growth obeys the proportionality

σ1 ∝
√

4/ |Ri| = 2β/ |Ntot| while for transverse perturbations one has σ1 ∝ (1 + β2τ 2)
1/4

.

Thus smaller vertical wavelengths with larger shear in the transverse wind β = afM/K

lead to stronger nonmodal instabilities. Furthermore, also here one finds for all examined

waves stronger short-term growth for parallel SVs. One also sees a tendency for longer

instability wavelengths λ‖ as Λz is increased. At least partially this might be explained as

an effect of viscosity and diffusion since the shear-layer approximation would predict, due

to the corresponding damping, strongest growth at smallest m which, however, is limited
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Figure 4.11: For the basic-wave vertical wavelengths Λz = 3km and 9km, the wavelength-

dependence of the leading SV growth factors (τ = 10min) for parallel and transverse

perturbations, at basic-wave amplitudes a = 0.7, 0.9, 1.1, and 1.3.

below by the vertical wavenumber of the wave packet. Smaller Kz thus allow smaller m

not in contradiction to the basic assumption that the perturbative scales are smaller than

those of the IGW, while the optimal k‖ scales roughly with m.

4.3.2 Singular vectors for long optimization times

In the analysis of SVs for longer optimization times the focus is on the subcritical case

(a, Λz) = (0.9, 6km). For all calculations the model resolution used is 1024 grid points per

5Λz, where the model domain size was always chosen large enough so that potentially radi-

ating structures (see below) never reached the model boundaries. Examined optimization

times are τ = 1h, 2h, 5h, and 10h. The last value approaches the IGW period T ≈ 11h.

The time dependence of the wave packet makes the results from the constant-shear-layer

approximation the less applicable the larger τ/T is. It is nice to see how much it can
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Figure 4.12: For the approximation of an IGW with (a, Λz) = (0.9, 6km) by a one-

dimensional profile, the wavelength dependence of the growth factors of the strongest

growing optimal perturbations at azimuth angle α = 0◦, 30◦, 60◦, and 90◦ for four different

long optimization times τ .

nonetheless still be used for qualitative explanations of SV behavior in these cases.

Figure 4.12 shows the wavelength dependent growth-factor curves. In agreement with

the expectations from the constant-shear-layer theory the SVs are to be found at pro-

gressively increasing wavelengths as τ is increased. At large τ , however, for all azimuth

angles an important growth-factor peak at rather short scales (of the order Λz) appears

with values as large as nearly 50 at α = 30◦ for τ = 10h. Another prediction one finds

verified is that the largest growth factor at α = 0◦ is approximately independent of τ ,

i.e. σ2
1 ≈ (4/Ri) (N2/N2

tot) ≈ 238 as determined from the conditions at the statically least

stable altitude. Also as expected, at least for intermediate τ transverse optimal growth

gets larger than its parallel counterpart. Most important at large τ are, however, oblique

azimuth angles, which dominate at nearly all scales. For these cases neither the statically
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enhanced roll or Orr mechanisms act alone but always a combination of the two.

It is interesting that even for τ = 10h the growth factor is near 50. The time the corre-

sponding perturbations take for their amplification is quite large so that their appearance

might be prevented by nonlinear modifications of the IGW under the influence of other

perturbations rising in amplitude more quickly. The oblique directions of propagation

of these SVs, however, suggest that they might be related to the diagonal shear modes

found by Lelong and Dunkerton (1998a) in their simulations of a case with a = 0.95 and

a ratio between inertial frequency and IGW frequency R = 0.7, which is rather near to

our combination (R, a) = (0.65, 0.9). A one-two-one comparison is difficult since in that

study an artificially increased ratio f/N = 0.1 was used, but it is striking that there an

asymmetry in perturbation growth about α = 90◦ was found, so that if the findings here

were related to that work, we should also see a corresponding asymmetry in the growth

factors. Indeed this is the case. So one finds that SV growth over τ = 10h is not larger

than by a factor 9 if determined for the azimuth angles α = 120◦ and 150◦ (not shown

here). Moreover, those authors also found a vacillation of energy growth about a mean

value. This seems to be related to a damped vacillation found here (see below) which is

due to the movement of the perturbation through the periodic IGW fields.

4.3.3 Energetics and temporal development

As in the case of the shear-layer approximation the dynamics of the SVs is studied also

here using energy considerations. From (4.7)–(4.11) one finds
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∣∣∣
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∂

∂t

|w|2
2

+ <
(
w

∂p

∂z

)
− ν

∂2

∂z2

|w|2
2

= ebw − ν


k2

‖ |w|2 +

∣∣∣∣∣
∂w

∂z

∣∣∣∣∣
2

(4.57)
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yielding for the energy density ekl = 1/2
(
|v|2 + |b|2 /N2

)
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Integrating (4.59) in the vertical one sees that total energy Ekl =
∮
Lz

dzekl is subject

to changes by the flux of momentum in x‖- and y⊥-direction against the corresponding

gradients in the IGW (r‖ and r⊥), the counter-gradient flux of buoyancy (rb), and viscous

and diffusive damping (Dv and Db). In the same manner as above we calculate from

these terms and energy an instantaneous amplification rate Γ = 1/ (2Ekl) dEkl/dt and its

decomposition.

Short optimization times

For the analysis of the dynamics of optimal perturbations at short optimization times

we look at τ = 10min and focus on the two exemplary cases α = 0◦ and α = 90◦.

Intermediate azimuth angles can be seen as a transition between theses two cases.

Parallel singular vectors In the left column of Fig. 4.13 one sees for the leading

parallel optimal perturbation (i.e. at optimal horizontal wavelength) the energy for a =

0.9 and 1.1, and the amplification-rate decomposition for a = 0.9 from integrations over
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Figure 4.13: For the leading (i.e. at optimal horizontal wavelength) parallel SV (left

column) and transverse SV (right column) in the approximation of the IGW with Λz =

6km by a 1D profile, time-dependent total energy for a = 0.9 and a = 1.1 (top row) and

for a = 0.9 the instantaneous amplification rate and its decomposition (bottom), from

integrations over four optimization periods τ = 10min.

four optimization periods. Because in the supercritical case a = 1.1 at the horizontal

wavelength of the leading SV also an unstable NM exists one sees the energy to eventually

diverge exponentially, indicating that the structure of the SV has approached that of the

NM. Figure 4.14 gives a comparison between the altitude dependent contributions to the

total amplification rate at t = 0 and t = τ for the leading parallel optimal perturbation and

NM (at the same horizontal wavelength) at a = 1.1, i.e. e.g. γ‖ = r‖/ 〈2ekl〉 for the flux

of parallel momentum so that Γ‖ =
〈
γ‖

〉
and likewise for all other terms (angle brackets

indicate a vertical average multiplied by Lz/Λz). Two aspects are notable there. First, the

NM does not exhibit any time dependence in its amplification-rate decomposition. This

is due to its time-independent structure which in turn precludes a dynamic development
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Figure 4.14: For the 1D-profile approximation of an IGW with (a, Λz) = (1.1, 6km), the

altitude-dependent amplification-rate decomposition at t = 0 (left column) and t = τ

(right) of the leading parallel SV (i.e. at the optimal horizontal wavelength) for the opti-

mization time τ = 10min (top row), and the leading parallel NM at the same horizontal

wavelength (bottom).

as seen in the SV which can thereby extract energy from the basic wave in a much more

efficient manner. Secondly, in the later stages the exchange processes do not differ any

more between SV and NM, so that obviously the SV then has developed into the structure

of the NM. Detailed comparisons between the SV and NM structure in the various dynamic

fields further bear this out (not shown).

Details of the SV exchange processes for the subcritical case a = 0.9 are shown in

the lower panel of Fig. 4.13. At least in part these are in interesting correspondence to

those seen in the constant-shear-layer approximation (Fig. 4.5). Buoyant energy exchange

seems to trigger the energy growth. This is followed by a strong contribution Γ⊥, indi-

cating that also here the roll mechanism is the most important process at work by which
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Figure 4.15: As the bottom row in Fig. 4.13, but now for Λz = 3km (top row here) and

Λz = 9km (bottom).

energy is transferred from the shear in the transverse wind component in the IGW (V0)

to the perturbation. In contrast to the predictions from the shear-layer approximation,

however, there is no damped oscillation in the energy. This oscillation, a result of the

repeated destructive and constructive interference between two damped NMs, seems to

be obstructed by the probably more complex modal decomposition of the SV in the more

general approximation. One growth cycle is followed by decay which to about equal parts

results from along-gradient momentum flux (Γ⊥) and viscous-diffusive damping (Γd).

For an impression of the impact of the ratio Kz/Kx in the IGW the left column of

Fig. 4.15 shows for a = 0.9 and the vertical wavelengths Λz = 3km and 9km, but always

Λx = 500km, the time dependent amplification-rate decomposition from integrations of

the leading parallel SV. In the shear-layer picture larger Kz/Kx means larger β and thus

a more important contribution from the shear-related exchange term Γ⊥ in comparison

to Γb. Likewise one would expect an increase of the total growth factor and thus also the
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Figure 4.16: For the leading (i.e. at optimal horizontal wavelength) parallel SV in the

approximation of the IGW with Λz = 6km and a = 0.9 by a 1D profile, the time-

dependent real parts of all four model variables from integrations over two optimization

periods τ = 10min. Contour intervals are in arbitrary units, but five times larger for v⊥

than for the other variables. The zero contour is not shown. Negative values are indicated

by dashed contours.

instantaneous amplification rate. Both expectations are verified here while also in these

cases no damped energy oscillation is observed.

The space-time dependence of the leading parallel SV for (a, Λz) = (0.9, 6km) is shown

in Fig. 4.16 where on can see the time development (between t = 0 and t = 2τ) of the real

parts of all four model variables. At all stages the structure is extremely confined to the

statically least stable altitude region, which might be an explanation why for this case the

constant-shear-layer approximation works so reasonably. Notable is also the dominance of

growth in v⊥ (note the different contour intervals), resulting from the exchange via the roll

mechanism, while the buoyancy perturbation is initially losing energy. The rapid time-
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Figure 4.17: From the same integration as shown in Fig. 4.16 the corresponding altitude-

dependent amplification-rate contributions. The contour interval is 2 · 10−4s−1. The zero

contour is not shown. Negative values are indicated by dashed contours. In the lower right

panel the viscous-diffusive damping is recognizable from its negative values throughout.

oscillation is due to the advection of the small-scale structure (λ‖ ≈ 660m) in the parallel

wind in the IGW which reaches a minimum U0 ≈ −11m/s at z = 0, also in agreement with

the shear-layer picture (i.e. all variables are ∝ exp
(
ik‖U‖t

)
). The corresponding time

development of the amplification-rate contributions can be seen in Fig. 4.17, showing

the strong exchange γ⊥ due to the roll mechanism. It is interesting to see that the

energy in b decays while γb is positive initially. This is a result of a buoyant exchange

εbw = ebw/ 〈ekl〉 between the perturbation energy in b and w, while the latter then leads

via γ⊥ to the growth in v⊥, showing how in this chain both reduced static stability (via

γb) and the transverse wind shear (via γ⊥) together lead to the strong overall growth of

the perturbation in v⊥. Note that rb = (1−N2
tot/N

2) ebw, implying that near the initially

statically least stable altitude z = 0 buoyancy must necessarily decay via ebw for a < 1 if
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rb > 0. In fact Fig. 4.16 clearly shows that the energy in w increases if that in b decreases

and vice versa.

Transverse singular vectors Now turning to the leading transverse SVs one sees in

the right column of Fig. 4.13 the energy for a = 0.9 and 1.1, and the amplification-

rate decomposition for a = 0.9, also from integrations over four optimization times. In

contrast to the parallel case, at the respective horizontal wavelength no unstable NM

exists so that, as in the constant-shear-layer approximation, energy eventually decays.

Details of the SV exchange processes for the subcritical case a = 0.9 are shown in the

lower panel of Fig. 4.13. At least in part these are again in interesting correspondence

to those seen in the constant-shear-layer approximation. Buoyant energy exchange seems

to trigger the energy growth, followed by another contribution from Γ‖, indicating the

Orr mechanism to be at work, in which the counter-gradient flux of u‖ = v interacts

with the corresponding shear dU‖/dz = dV0/dz in the IGW. In contrast to the shear-layer

approximation, however, there also is a final important contribution from Γ⊥, so that

also here the roll mechanism seems to be active. The impact of the ratio Kz/Kx in the

IGW (right column in Fig. 4.15) is again in reasonable correspondence to the predictions

from the constant-shear-layer approximation. Larger Kz/Kx, and hence larger β lead to

a more important contribution from Γ‖ in comparison to Γb, and also stronger overall

growth. In all examined cases, however, we also see a significant contribution from the

roll mechanism, as not predicted in the shear-layer picture.

The space-time dependence of the SV together with its energetics are shown in Figs.

4.18 and 4.19. Since U‖ = V0 vanishes near z = 0 no corresponding high-frequent advection

is visible as in the case of the parallel SV. A strong contribution from γ‖ at z = 0 shows

the Orr mechanism to work near the strongest gradient of U‖ = V0. Similarly to the case

of the parallel SV one finds, however, also a large initial γb while b decays, indicating

that ebw is immediately transferring buoyant energy into kinetic energy in w, thereby

enforcing the roll mechanism which via γ⊥ leads to a considerable increase in the energy

in v⊥. Note that the latter process here works at some distance from z = 0 where it

would be forbidden due to ∂V⊥/∂z = −∂U0/∂z = 0. The remaining behavior looks more
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Figure 4.18: As Fig. 4.16, but now from an integration of the leading transverse SV over

ten optimization periods τ = 10min. Here all variables are shown with identical contours.

complex, with apparent vertical radiation from the statically least stable altitude, ending

in small-scale structures near z = ±Λz/2 and z = 0. We also note that the vertical

scales of the developing structures are progressively decreasing, leading to strong viscous-

diffusive decay in the late stages of the development, and that they are considerably

shorter than the ones set by the IGW packet. While the behavior near z = 0 is consistent

with the picture of an Orr mechanism leading to diverging vertical wavenumber in the

source region, one might speculate that the development near z = ±Λz/2 is related to the

approach of a small-scale wave towards a critical layer, as first described via WKB theory

by Bretherton (1966). This is a hypothesis which shall be tested here in a quantitative

manner.

We observe that in comparison to the perturbation the spatial and time dependence

of the basic wave is weak. In the case of a constant background one would obtain from

the model equations plane gravity waves with no component in v⊥. Therefore a scaling
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Figure 4.19: From the same integration as shown in Fig. 4.18 the corresponding altitude-

dependent amplification-rate contributions. The contour interval is 2 · 10−4s−1. The zero

contour is not shown. Negative values are indicated by dashed contours.

parameter ε is introduced and we use the modified WKB ansatz

(
U‖, V⊥, N2

tot

)
(z, t) =

(
Ũ‖, Ṽ⊥, Ñ2

tot

)
(εz, εt) (4.66)

(
u‖, v⊥, w, b, p

)
(z, t) =

(
ũ‖, εṽ⊥, w̃, b̃, p̃

)
(εz, εt) eiη(εz,εt)/ε . (4.67)

We define

ω = −1

ε

∂η

∂t
(4.68)

m =
1

ε

∂η

∂z
, (4.69)

while the model equations (neglecting the Coriolis effect) yield to lowest order in ε

u‖ = −i
ω̂

N2
tot

m

k‖
b (4.70)

v⊥ =
b

N2
tot

∂V⊥
∂z

(4.71)
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Figure 4.20: From the same integration as shown in Fig. 4.18 the real parts (top row)

and imaginary parts (bottom) for v⊥ (left column) and u‖ (right) at t = 3τ = 30min, as

well as the prediction of these fields from WKB theory using the two branches δ = ±1.

w = i
ω̂

N2
tot

b (4.72)

ω̂ = ω − k‖U‖ = δ

√√√√ N2
totk

2
‖

k2
‖ + m2

, δ = ±1 . (4.73)

(4.68) – (4.69) can be combined with (4.73) to give a predictive equation for the local

vertical wavenumber

∂m

∂t
= −cgz

∂m

∂z
− ∂Ω

∂z
(4.74)

with the vertical group velocity cgz = ∂Ω/∂m = −ω̂m/
(
k2
‖ + m2

)
and the frequency func-

tion Ω
(
k‖,m, z, t

)
= k‖U‖ + ω̂

(
k‖, z, t

)
. Once buoyancy b and the vertical wavenumber

m have been diagnosed from the linear model one can examine whether u‖, v⊥, and w are

for any δ consistent with the WKB theory via (4.70) – (4.72). Having verified this, it is

then possible to go to (4.74) and identify the process responsible for the apparent increase
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Figure 4.21: From the same integration as shown in Fig. 4.18 the vertical wavenumber

(left panel) and the absolute value of the intrinsic frequency according to WKB theory

(right) at four characteristic times.

of the vertical wavenumber in the layer formation. This is what has been done here. The

vertical wavenumber has been determined from the buoyancy fields by first determining

exp (iη/ε) = b/ |b| and hence m = = [exp (−iη/ε) ∂/∂z exp (iη/ε)].

For illustration some results for z > 0 are shown, while in the other altitude range

they support at the same accuracy the final conclusions. For t = 3τ Fig. 4.20 shows the

real and imaginary parts of the two horizontal wind components, as well as the prediction

of these quantities from the basic-wave fields, b, and m, for both cases δ = ±1. The time

dependent vertical wave number and intrinsic frequency are shown in Fig. 4.21. One sees

that m < 0 near z = 0 and m > 0 else. The agreement between the horizontal wind in the

perturbation and the prediction from WKB theory is very good for δ = −1 near z = Λz/2

and reasonable for δ = 1 near z = 0. This indicates that the data can be interpreted

by the WKB model as resulting from small-scale GWs radiating away from the statically
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Figure 4.22: From the same integration as shown in Fig. 4.18 the tendency of vertical

wavenumber at z = 0.45Λz, its prediction by WKB theory (long-dashed), and the part

of the latter due to the transverse-wind gradient in the IGW ∂U‖/∂z = ∂V0/∂z (short-

dashed).

least stable location.

Returning now to the critical-layer hypothesis we first note that the local frequency

ω (z, t) = Ω [m (z, t) , z, t] satisfies

∂ω

∂t
= −cgz

∂ω

∂z
+

∂Ω

∂t
, (4.75)

i.e. for a time-independent background the frequency would be conserved along rays

defined by the local group velocity. Under such circumstances a critical layer arises as in

the course of propagation along a ray k‖U‖ → ω, and hence ω̂ → 0 and |m| → ∞. In

(4.74) this should express itself in a dominance of ∂Ω/∂z ≈ k‖∂U‖/∂z on the right-hand

side. Here we have a time-dependent background so that this picture can only be satisfied

approximately. Still, however, one finds the layer near z = Λz/2 to be characterized by an

increase of vertical wavenumber and corresponding decrease of intrinsic frequency ω̂, as

visible in Fig. 4.21. In passing we also note the sign change in m near z = 0 from t < τ to

t > τ , as predicted from the shear-layer theory. Finally Fig. 4.22 shows for the altitude
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z = 0.45Λz the diagnosed tendency of vertical wavenumber (estimated from central 10-sec

differences), the prediction of this by WKB theory, and the contribution to the latter by

the vertical shear in the transverse wind of the basic IGW. Indeed WKB theory seems to

give a useful approximation of the complete wavenumber dynamics during the formation

of the small-scale layer. It slightly overestimates the wavenumber increase but the basic

effect is reproduced, where it is mostly the vertical shear in U‖ = V0 which causes the

scale collapse observed at the shear layer. In summary, although the time-dependence of

the background precludes a robust critical layer (Broutman and Young, 1986, e.g.), one

sees a strongly related effect due to the propagation of the excited perturbation towards

the zero lines z = ±Λz/2 of the transverse wind in the basic IGW packet.

Long optimization times

For τ = 2h one sees in Fig. 4.23 the time dependent amplification-rate decomposition of

the optimally growing structure at each of the four examined azimuth angles (see above).

The behavior of the parallel optimal perturbation is still very similar to the one at short

optimization times, albeit on a longer time scale. Again one sees the statically enhanced

roll mechanism at work, with an initial trigger by buoyancy related energy exchange with

the IGW. Γ‖ rises at larger α in importance over Γ⊥, while the initial contribution from

Γb is always there, giving an indication of a statically enhanced Orr mechanism. Again

one does not find the damped energy oscillation from the constant-shear-layer picture

at α = 0◦. At α > 0◦ damped oscillatory behavior is visible, but from the next two

figures one can see that the process behind this is not the same as in the shear-layer

approximation.

In Fig. 4.24 one can see for all azimuth angles the development of the real part of

the vertical wind in the perturbation, while Fig. 4.25 shows for α = 60◦ the space-time

dependence of the four amplification-rate contributions. One sees that for all α < 90◦ the

SVs radiate small-scale GWs into the far field where the IGW does not influence the prop-

agation conditions any more. In Fig. 4.25 one can recognize that the damped oscillatory

behavior of the amplification-rate contributions results from the movement of the radiated

waves through the IGW. In the course of this propagation it gets successively into contact
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Figure 4.23: From an integration of the leading SVs (i.e. at most rapidly growing parallel

wavelength), at azimuth angle α = 0◦, 30◦, 60◦, and 90◦ and optimization time τ = 2h, in

an approximation of an IGW with (a, Λz) = (0.9, 6km) by a one-dimensional profile, the

instantaneous amplification rate and its decomposition.

with differing shear and stratification conditions. As the static energy exchange Γb is only

important initially it is concentrated in the packet center, but the shear-related exchange

terms γ‖ and γ⊥ are correlated with the respective gradients ∂U‖/∂z and ∂V⊥/∂z. The

corresponding oscillation in the energy exchange (Fig. 4.23) gets weaker as the radiated

waves move away from the center of the IGW packet into regions where the IGW gradients

are negligible.

It is interesting to note that the fact that we here find wave radiation by the SVs,

while this is not visible for the shorter optimization time τ = 10min (see Figs. 4.16

and 4.18), can be understood in terms of simple linear GW dynamics. As shown above,

but also visible in Fig. 4.24, all but the transverse SVs show a rapid time oscillation
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Figure 4.24: From the same integrations as shown in Fig. 4.23, the space-time dependent

real part of the vertical wind in the perturbation. The contour intervals are in nondimen-

sional units. Negative values are indicated by dashed contours. The zero contour is not

shown.

in all fields with a period determined by advection of their small-scale structure in the

wind U‖ in the IGW near the statically least stable location, i.e. their frequency is

ω ≈ k‖U‖. In the external region (where the IGW fields are essentially zero) GWs at

such a frequency can only propagate if |ω| < N so that non-evanescent wavenumbers are

limited to k‖ < N/
∣∣∣U‖

∣∣∣. Since the scales of SVs at short optimization times are too small

for this (e.g. λ‖ ≈ 660m for α = 0◦ and τ = 10min, see above) they cannot radiate,

while the opposite holds for longer τ . The same rationale can also explain the vertical

scales of the radiated structures themselves. From the far-field GW dispersion relation

ω = ±Nk‖/
√

k2
‖ + m2 follows for α < 90◦ (neglecting the Coriolis effect)

m =

√
N2

u2
0 cos2 α

− k2
‖ , (4.76)
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Figure 4.25: From the integration for α = 60◦ shown in Figs. 4.23 and 4.24, the space-time

dependent IGW fields (shaded with shading interval 1m/s), and the respective contribu-

tions to the instantaneous amplification rate, as well as that of viscous-diffusive damping.

For the amplification-rate contributions the contour interval is 2·10−4s−1. Negative values

are indicated by dashed contours. The zero contour is not shown.

since near the statically least stable location U‖ = u0 cos α. From this relation one

finds for the radiated structures in Fig. 4.25 the predicted vertical scales 2π/m ≈
2.7Λz, 1.1Λz, 0.61Λz for α = 0◦, 30◦, 60◦, where the optimal wavelengths are 7.9km, 16km,

and 16km, respectively (see Fig. 4.12) . These are in quite good agreement with the

numerical results shown here. As a consequence one can expect as far-field behavior of

slightly subcritical IGW the radiation of high-frequent GWs with increasingly shorter

periods and longer vertical wavelengths as the azimuth angle decreases. From the same

reasoning one can also expect transverse radiation to be basically obstructed, since the

resulting waves will always be evanescent.
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4.4 General inertia-gravity wave packets

Dropping all simplifications we finally get to the most general SVs in the IGW packet with

complete time and space dependence. As discussed above these are of the form (v′, b′, p′) =

(v, b, p) (x, z) exp (ily) with an arbitrary wavenumber l = 2π/λy in y-direction. One would

expect that in a survey of the SV dependence on λy the parallel SVs from above leave

their traces among the general SVs for λy = ∞, whereas oblique and transverse SVs are

to be found among λy < ∞. For illustration here the two cases τ = 10min and 1h, for

a = 0.9 each, are discussed.

Expecting the resulting features to be located near the location of least static stability

the IGW packet, from a nonlinear integration in a periodic box with dimensions (Lx, Lz) =

(Λx, 5Λz) = (500km, 30km), was stored for greater numerical efficiency for the analyzes of

λy < ∞ in the inner sub-domains with (Lx, Lz) = (Λx/2, 3Λz) and tapered to zero with

a cosine profile in the outer regions therefrom with horizontal extent Λx/8 and vertical

extent Λz. For τ = 10min and l = 0 the stored inner sub-domain is of extent (Lx, Lz) =

(Λx/2, Λz) with tapering over the horizontal extent Λx/8 and over the vertical extent Λz/8,

while for τ = 1h and l = 0 the stored inner sub-domain is of extent (Lx, Lz) = (Λx/2, 5Λz)

with tapering over the horizontal extent Λx/8. In each case the chosen resolution was made

sure to well resolve all essential resulting features. In several experiments it was also made

sure that the limitation to the central least stable region was of no effect on the results.

For the wavelength range between λy = 1km and 6km the growth factors found for

the leading SVs are shown in Fig. 4.26. One sees for τ = 10min a local optimum with

growth by σ1 = 6.8 at λy = 3.9km. This seems to be related to optimal transverse

growth, i.e. at α = 90◦, in the 1D profile by σ1 = 7.0 at λ‖ = 3.8km (see above). For

the same τ the general SV at l = 0 grows by σ1 = 8.9, just as the leading parallel SV,

i.e. for α = 0◦, found for the 1D profile. The wavelength λ‖ = 660m of that pattern

also is in good agreement with the scales of the general SV (see below). For τ = 1h

an optimum at (λy, σ1) = (5.5km, 26.3) is found which seems to correspond to optimal

transverse growth in the 1D approximation at
(
λ‖, σ1

)
= (5.0km, 24.1). At l = 0 optimal

growth by σ1 = 14.7 is found, seemingly corresponding to the leading parallel SV in the
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Figure 4.26: For the general IGW packet at (a, Λz) = (0.9, 6km) with complete time and

space dependence, the growth factors of the leading SVs for optimization times τ = 10min

and 1h, in their dependence of the wavelength λy in y-direction.

1D approximation at
(
λ‖, σ1

)
= (7.1km, 13.7). Also here the scales of the general SV and

the one from the 1D approximation are in good agreement (not shown).

Also the energetics of the identified patterns indicates their relation to the SVs from the

1D approximation. In general one can derive for the energy density el = 1/2
(
|v|2 + |b|2 /N2

)

∂el

∂t
+∇y ·

[
V0el + < (vp)− ν∇y

|v|2
2
− µ∇y

|b|2
2N2

]
= ru + rv + rw + rb −Dv −Db (4.77)

with

ru = −< (uv) · ∇yU0 (4.78)

rv = −< (vv) · ∇yV0 (4.79)

rw = −< (wv) · ∇yW0 (4.80)

rb = −< (bv) · 1

N2
∇yB0 (4.81)
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Figure 4.27: From integrations of the leading SVs, for τ = 10min and at λy = ∞ (left

column) or 3.8km (right), of the general IGW packet at (a, Λz) = (0.9, 6km) with com-

plete time and space dependence, the time dependence of kinetic, potential, and total

energy (top row), and the corresponding instantaneous amplification-rate decomposition

(bottom).

Dv = ν

[
l2 |v|2 +

3∑

i=1

|∇yvi|2
]

(4.82)

Db =
µ

N2

[
l2 |b|2 + |∇yb|2

]
, (4.83)

where ∇y = (∂/∂x, 0, ∂/∂z). Energy exchange between w and b is given by the same

term ebw as in (4.63). As before one can calculate from the exchange terms corresponding

instantaneous amplification rate contributions Γu etc. For τ = 10min and a = 0.9 the

time-dependence of these and the total energy in the identified SVs is shown in Fig.

4.27. The latter is split into the kinetic energy K ′ =
∫

dxdz |v|2 /2 and the available

potential energy A′ =
∫

dxdz |b|2 /2N2. The negligible contribution from Γw is not shown.

Comparison with Fig. 4.13 further stresses the similarity between the general SVs and the
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Figure 4.28: For the leading SV at τ = 10min and λy = ∞, of the general IGW packet at

(a, Λz) = (0.9, 6km) with complete time and space dependence, the four dynamic fields

at t = τ (identical isolines in arbitrary units for u,w and b/N , but five times contour

interval for v, zero contour not drawn), together with the transverse-wind field V0 of

the IGW packet (shaded with interval 1m/s, for better orientation the zero contour is

indicated by a solid line), in the central region where the SV has significant amplitude.

ones from the analysis of the 1D profile, where for the case λy = ∞ or α = 0◦ one obviously

has to compare Γu with Γ‖ and Γv with Γ⊥, while in the case λy = 3.8km or α = 90◦

the corresponding pairs are Γu and Γ⊥, and Γv and Γ‖. It thus is also no surprise that

closer inspection also shows that in the general case the gradients in x-direction do not

contribute to the energy budget in any significant way (not shown). Similar conclusions

also hold for the case τ = 1h (also not shown).

Of largest remaining interest therefore is the horizontal distribution of the general SVs,

since the horizontal limitation of the statically weakly stable location should be expected

to have some impact. Indeed this is found to be the case. Figure 4.28 shows for τ = 10min
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Figure 4.29: For the leading SV at τ = 10min and λy = 3.8km, of the general IGW

packet at (a, Λz) = (0.9, 6km) with complete time and space dependence, the buoyancy

field at four characteristic time instances (identical isolines in arbitrary units, zero contour

not drawn), together with the transverse-wind field V0 of the IGW packet (shaded with

interval 1m/s, for better orientation the zero contour is indicated by a solid line), in the

central region where the SV has significant amplitude.

the leading SV at l = 0 and at t = τ in the region where it has significant amplitude. One

observes that it is a wave packet both vertically and horizontally closely confined near

the location of least static stability. In the course of the time integration one observes

its rapid leftwards advection to smaller x by the U0-wind in the IGW (not shown). Note

that near a = 1 this advection is approximately at the horizontal phase velocity of the

IGW so that the SV follows the movement of the statically least stable location, thereby

enabling longer transient growth. Also here the overwhelming contribution to this growth

is from the amplification of v. For τ = 10min and λy = 3.8km Fig. 4.29 shows the time

development of buoyancy in the leading SV between t = 0 and t = 3τ . Once again one
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finds it to be confined to the location of least static stability, but of larger extent than

the patterns at l = 0. This is consistent with the expectation, from the 1D picture, of a

structure with comparatively weaker dependence on x than on y. Clearly visible is also

the critical-layer behavior near the zero lines of V0.

Observations for τ = 1h are quite analogous (not shown). Also these patterns are

closely confined to the region of least static stability. The structure at l = 0 is advected

by U0 towards smaller x, thereby following the least stable location. As was to be expected

from the previously said it is also found to radiate small-scale GWs into the exterior range

not affected by the IGW where they can propagate freely. Also as expected, the more

strongly growing structure at λy = 5.5km cannot radiate but exhibits similar critical-layer

behavior near the zero-lines of V0 as visible in Fig. 4.29.

4.5 Summary

This chapter works itself upwards through a hierarchy of three models with increasing

complexity, each of them providing instructive pieces of information to the whole picture

of modal and nonmodal growth in IGW packets. The most important result is that for

statically and dynamically stable IGWs near the instability limit, where no NMs can

grow, SVs can exhibit a temporary energy growth by nearly two orders of magnitude.

Beyond that, however, it is also pleasing to recognize that many features, especially

of SVs for optimization times considerably shorter than the IGW period, can already

be understood on the basis of a stratified constant-shear-layer approximation where only

the initial local stratification N2
tot and transverse-wind gradient β = ∂V0/∂z near the

statically least stable location of the IGW packet enter. Based on previous related work

by Farrell and Ioannou (1993b,a) and Bakas et al. (2001) it is found that the two cases

of perturbations most accessible to closed analytical treatment, i.e. propagating in the

horizontal parallel (i.e. at azimuth angle α = 0◦) or transverse (α = 90◦) with respect to

the IGW, can be understood in terms of a roll or Orr mechanism, respectively, both con-

trolled by the shear, however significantly amplified by the locally reduced static stability.

The latter serves as a catalyst for buoyant energy exchange between IGW and vertical
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wind in the perturbation, thus further enforcing the shear-related exchange processes. In

addition, both parallel and transverse optimal growth can be explained explicitly via a

simple interference effect between contributing NMs.

Going more into the details, the scale-difference between the two types of optimal

perturbations is reproduced correctly by the shear-layer theory, i.e. at a given vertical

wavenumber the growth of parallel optimal perturbations maximizes at shorter wave-

lengths than that of transverse perturbations. Also the relative amplitudes of the respec-

tive growth factors can be understood based on the simple theory. One finds that the

energy amplification of parallel perturbations in the statically stable case (a < 1) has an

upper limit (4/ |Ri|) (N2/N2
tot), with Ri = N2

tot/β
2, while that of transverse perturbations

increases algebraically with optimization time, as long as viscosity and diffusion are of

weaker importance.

The short-term SV energetics in an approximation of the IGW by its time dependent

vertical profile at the horizontal location with initially least static stability basically is in

agreement with the findings from the stratified shear-layer theory. It further highlights a

basic distinction between NMs and SVs that the former are structurally fixed while the

latter can adjust their fields instantaneously so that over a finite time a more efficient

energy exchange with the IGW is possible than in the NM case, thus giving a further

explanation of the more rapid transient growth of SVs than admitted for NMs.

The 1D approximation of the IGW fields also shows a close initial confinement of the

optimal perturbation to the altitude of least static stability. The leading parallel SV,

having an intrinsic short time scale set by the advection of its small-scale fields by the

parallel horizontal wind in the IGW, stays there as it is prevented from outwards radiation

by a linear wave duct. Similar observations hold for oblique SVs which, however, have

at fixed optimization time progressively larger intrinsic time scales as the azimuth angle

increases.

The leading transverse SV therefore is not affected by the wave duct. In contrast to

the shear-layer picture it is driven by a mixed statically enhanced Orr and roll mechanism.

Its early development, when the statically enhanced Orr mechanism is at work (via the

gradient of the transverse horizontal wind component V0, as also in the stratified shear
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layer), is characterized by radiation away from the statically least stable location. At the

time when the SV has moved into regions of strong gradients in the parallel horizontal

wind component U0, a corresponding roll mechanism takes over, and further enhances

the growth of the structure. Finally, its further vertical propagation is blocked by a

critical-layer interaction at the zero line of the transverse wind in the IGW.

As predicted from the shear-layer theory, for larger optimization times oblique and

transverse SVs prevail. Simply the time scale of the long-term transient growth behavior

of all SVs, ending in algebraic or viscous-diffusive decay when no growing NM exists,

but exhibiting asymptotic convergence towards the leading unstable NM if there is any,

is to the most part set by τ . Also the spatial scale of long-term SVs turns out to be

proportional to τ . Subject to these modifications, for a wide range of optimization times

considerable optimal growth is allowed, even without any unstable NMs. For optimization

times approaching the IGW period transient growth by an amplitude factor as large as

50 is still observed. The oblique SVs found there might be related to the diagonal shear

modes diagnosed by Lelong and Dunkerton (1998a) in their simulations of the breakdown

of a statically stable IGW.

An interesting result is the observation that SVs for longer optimization times tend

to radiate GWs into the exterior field where the IGW has no direct impact any more.

This offers an alternative mechanism for a mesospheric GW source to the excitation of

gravity waves by ageostrophic body forcing resulting from GW breakdown (Vadas and

Fritts, 2001; Zhou et al., 2002) or by normal-mode instabilities of statically unstable IGWs

(Kwasniok and Schmitz, 2003). Specific features of the radiation mechanism identified

here are that it does not require the basic IGW to be unstable in the normal-mode sense

and that the vertical wavelength and the frequency of the radiated waves get larger the

more parallel the direction of propagation of the radiated waves is with respect to the

IGW.

Similar behavior is also found in the most general treatment of the problem where also

the horizontal spatial dependence of the IGW is taken into account. The SVs from the

1D approximation are basically reproduced, then however with a horizontal modulation

of their amplitude so that they tend to be confined to the statically least stable horizontal
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location. From this one can expect a certain patchiness in the turbulence onset in an

IGW packet propagating upwards through the mesosphere, as would be consistent with

turbulence measurements from rocket soundings (Müllemann et al., 2003, e.g.).

The parameter dependence of the results seems worth some discussion. Since the value

of the Brunt-Vaisala frequency used here is actually a bit low for the middle atmosphere,

although it has e.g. also been employed by Fritts et al. (2003, 2006), also calculations

with N = 2 · 10−2s−1 at 70◦ latitude have been done. The results there have been very

similar to the ones reported here, with the major difference that the overall instability

time scale was shorter by a corresponding factor 2. As noted in chapter 2, after a non-

dimensionalization of the Boussinesq equations, with the Brunt-Vaisala period as time

scale, the main controlling parameter at zero viscosity and diffusion is the ratio f/N .

Thus, at fixed f/N and spatial IGW scales, varying N simply implies a proportional

variation of the inverse time scale of the problem, thus explaining the above mentioned

factor 2. The remaining influence of the different ratio f/N found in the second set of

calculations is due to a corresponding variation of the ratio R = f/ |Ω| between the inertial

frequency and that of the IGW. As a result of that the identified growth factors (within

5min now) are slightly weaker, while the results described here would strictly rather apply

to a basic wave with longer horizontal wavelength, i.e. approximately 650km.



Chapter 5

General monochromatic gravity

waves

The previous chapter has shown that a generalization of the stability problem for IGW

packets towards the inclusion of optimal growth leads to a larger scope of possible in-

stability scenarios. The identified mechanisms, however, do not seem to hinge on the

wave packet envelope given the examined IGWs. One might assume that similar findings

can also be made for monochromatic IGWs. In addition, the question arises what the

generalized stability theory implies for HGWs. These questions shall be answered in the

present chapter where monochromatic GWs of arbitrary inclination angles are analyzed.

Its content has also been published by Achatz (2005).

5.1 The linear model

For the stability analysis the Boussinesq equations are linearized about the GW fields

(2.10)–(2.13), henceforth denoted by (V, B). Due to the symmetry of the problem in

ξ and y different perturbation wavenumbers in the corresponding plane are not coupled

by the linear equations. It therefore makes sense to use for the perturbations the ansatz

(Mied, 1976; Drazin, 1977; Klostermeyer, 1982) (v′, b′) = <{(v, b) (φ, t) exp [i (κξ + λy)]}
so that the componentwise equations in the rotated and translated coordinate system

73
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become with v = (uξ, v, uφ)

iκuξ + iλv + K
∂uφ

∂φ
= 0 (5.1)

Duξ

Dt
+ Kuφ

dUξ

dφ
+ iκp + b cos Θ− sin Θfv = ν∇2uξ (5.2)

Dv

Dt
+ Kuφ

dV

dφ
+ iλp + f (sin Θuξ + cos Θuφ) = ν∇2v (5.3)

Duφ

Dt
+ K

∂p

∂φ
− b sin Θ− cos Θfv = ν∇2uφ (5.4)

Db

Dt
+ Kuφ

dB

dφ
+ N2 (sin Θuφ − cos Θuξ) = µ∇2b , (5.5)

using the shortcuts D/Dt = ∂/∂t − Ω∂/∂φ + i (κUξ + λV ) and ∇2 = − (κ2 + λ2) +

K2∂2/∂φ2. Unless specified differently the Brunt-Vaisala frequency is N = 2 · 10−2s−1,

and the f plane is centered at 70◦N.

Since the coefficients of the equations (5.1)–(5.5) are periodic in φ with period 2π,

Floquet theory (Bender and Orszag, 1978; Lombard and Riley, 1996) tells us that it is

possible to consider independently solutions of the form (v, b) = exp (iηφ)
(
ṽ, b̃

)
(φ, t)

with (ṽ, b̃)(φ + 2π, t) = (ṽ, b̃)(φ, t) and −1/2 ≤ η ≤ 1/2. In line with Lombard and Riley

(1996) the present analysis is restricted to η = 0, so that it is assumed that (v, b) = (ṽ, b̃)

with a periodicity of 2π in φ. At least for IGWs Yau et al. (2004) have shown that this

generally captures the leading NM. Obvious respective generalizations are left to future

studies.

For a numerical treatment (5.1)–(5.5) have, as above, been discretized on a standard

staggered grid in φ (uξ,v, p, and b on full levels, and uφ on intermediate half levels)

with periodic boundary conditions. The model domain extends from 0 to 2π. Pressure is

obtained by applying the divergence on the momentum equations, using (5.1), and solving

the resulting Poisson equation by a Fourier transform technique. The time integration is

done by two initial fourth-order Runge-Kutta time steps, followed by third-order Adams-

Bashforth time steps. The number of grid points used in the model discretization, usually

1024, was always chosen so as to well resolve all relevant scales.
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Θ/◦ a A R Rimin

89.5 0.71 0.45 0.62 0.88

70 0.85 0.45 2.0 · 10−2 1.2

50 0.69 0.45 1.1 · 10−2 3.1

30 0.45 0.45 7.9 · 10−3 19

89.5 0.87 0.55 0.62 0.28

70 1.0 0.55 2.0 · 10−2 0

50 0.84 0.55 1.1 · 10−2 1.9

30 0.55 0.55 7.9 · 10−3 12

89.5 1.2 0.76 0.62 -0.23

70 1.4 0.76 2.0 · 10−2 −5.8 · 102

50 1.2 0.76 1.1 · 10−2 −2.1 · 103

30 0.76 0.76 7.9 · 10−3 5.7

Table 5.1: For all examined GWs, their inclination angle Θ with respect to the horizontal,

their amplitude a with respect to the overturning threshold, the nondimensional amplitude

A of the uξ-wind, the ratio R = f/ |Ω| between Coriolis parameter and wave frequency,

and the smallest Richardson number in the whole phase range and among all directions

of propagation of a perturbation, Rimin.

5.2 Growth factors

In the following a comparison is given between the NMs and SVs for typical GW scales.

The wavelength of the GW has been chosen to be Λ = 2π/K = 6km, implying a Reynolds

number Re = 1.1 · 105. In comparing the results for different inclination angles a choice

had to be made about how to treat the wave amplitude a with respect to static instability.

One option would be keeping a fixed. This, however, leads to infinite energy, and corre-

spondingly infinite gradients, at Θ = 0◦ and Θ = 90◦. This study therefore follows Yau

et al. (2004) and keeps in comparisons between different inclination angles the amplitude
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in Uξ (or equivalently the energy) fixed so that, using (2.14),

a (Θ) =
2A sin Θ√

1 + (f/N)2 tan2 Θ
. (5.6)

For an overview of the effects of the wave amplitude and the inclination angle on the

intensity of the respective NM and SV instabilities the study focusses on the representative

inclination angles Θ = 89.5◦, 70◦, 50◦, and 30◦. This way an IGW is included (Θ = 89.5◦)

with not too extreme a value for R (0.62), as well as three HGWs with periods 2π/Ω =

920s, 490s, and 360s. The examined amplitudes A = 0.45, 0.55, and 0.76 have been chosen

so that the IGW is either well below (a = 0.71), slightly below (a = 0.87), or above

(a = 1.2) the overturning threshold. For the reader’s convenience the most important

parameters of all examined waves are also listed in table 5.1.

As described before, again a separate set of NMs or SVs belongs to each horizontal

perturbation wave vector, which will in the following be defined by its wavelength λ‖ (or

wavenumber k‖ = 2π/λ‖) and the azimuth angle α between wave vector and ξ-axis, so

that

(κ, λ) = k‖ (cos α, sin α) . (5.7)

In a complete analysis it is not necessary to survey the whole κ − λ plane. Due to the

invariance of the equations (5.1)–(5.5) under the simultaneous transformations (κ, λ) →
− (κ, λ) and complex conjugation (v, b) →

(
v, b

)
it is sufficient to consider the subrange

0 ≤ α ≤ 180◦. In addition, in the absence of rotation, so that both f and V vanish, one

would also have invariance under the transformations λ → −λ and v → −v. It turned out

that, although this symmetry is broken by rotation, there is not much difference in the

results between α = 90◦ ± β. Therefore here only the subrange 0 ≤ α ≤ 90◦ is discussed.

Since optimal growth should show the largest differences from NM behavior at short

optimization times this study mainly focusses on τ = 300s, which is approximately one

Brunt-Vaisala period. Longer optimization times are discussed briefly in order to give a

rough overview of the various possibilities. Note, however, that here NMs are well defined

for all time scales since in the chosen reference system the basic GW is time independent.
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5.2.1 Short optimization times

Looking first at the shorter optimization time τ = 300s, the reader will find many results

for the IGW highly reminiscent of the findings from chapter 4. Figure 5.1 shows for A =

0.45 the growth factors σ1 = eγ1τ of the leading NMs of the four GWs, as a function of the

wavelength (or wavenumber) and the azimuth angle of the horizontal wavenumber vector

of the mode. A glance at table 5.1 shows that in none of the four cases an instability would

have to be expected from an (inappropriate) application of the theory of Howard (1961)

and Miles (1961). Indeed the IGW case, best approaching the conditions examined by

these authors, has no growing NM. It might be that in the inviscid-nondiffusive limit weak

instabilities like the ones published by Yau et al. (2004) exist, but as in the IGW-packet

case (chapter 4) these seem to be damped by viscosity and diffusion. The other three

cases are in agreement with previous findings on waves with slantwise phase propagation

(Lombard and Riley, 1996, e.g.). All three examined GWs are unstable. While parallel

perturbations (i.e. with α = 0◦) grow most rapidly, there also is a second important

azimuth-angle range 50◦ ≤ α ≤ 70◦. Moreover, the instability increases with decreasing

inclination angle Θ.

A quite different picture is presented by the most rapidly growing SVs. Their growth

factors σ1 are shown in Fig. 5.2. Although it has no unstable NM at all, even the IGW

admits optimal growth by nearly a factor 4. In agreement with the results in chapter

4 the most rapidly amplifying SVs propagate parallel to the IGW, but at a somewhat

larger wavelength transverse perturbations (α = 90◦) also amplify. From the NM analysis

it does not come as a surprise that the three HGWs exhibit stronger instabilities. The

ratio between optimal growth and growth of the leading NM increases with increasing

inclination angle, ranging between 2 for Θ = 30◦ and 4 for Θ = 70◦. The most active

wavelengths and azimuth angles are quite different from those for the NMs. In all HGW

cases transverse instabilities are favored over parallel ones. At intermediate inclination

angles they are the most vigorous ones in the whole azimuth-angle range, but for Θ = 30◦

a propagation at α = 70◦ with respect to the ξ-axis is favored. Another difference is that

here it is not the smallest inclination angle which leads to the strongest instability. The

strongest transient instabilities are found for Θ = 50◦. Finally, the leading SVs tend to
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Figure 5.1: The growth factors σ1 = exp (γ1τ) (integration time τ = 300s) of the leading

NMs of four GWs with different inclination angles but identical energy or uξ-amplitude (in

nondimensional units A = 0.45), as a function of the wavelength λ‖ (or the corresponding

wavenumber normalized by that of the basic wave, see the top axis) and the azimuth angle

α of the horizontal wave vector of the mode with respect to the ξ-axis. Inclination angle

and wave amplitude with respect to the static overturning threshold of the four waves

are (Θ, a) = (89.5◦, 0.71) (top-left panel), (70◦, 0.85) (bottom-left), (50◦, 0.69) (top-right),

and (30◦, 0.45) (bottom-right). The contour interval is 0.2, values less than 1, i.e. the

regions without NM growth, are indicated by shading. In the graph for Θ = 89.5◦ the

contour range is between 0.2 (leftmost contour) and 0.9 (rightmost) in steps of 0.1.

be at smaller wavelengths (between a few 100m and 1km) than the most unstable NMs

which have scales more of the order of the wavelength of the basic wave.

Increasing the wave energy so that A = 0.55, i.e. a = 0.87 at Θ = 89.5◦, leads to the

NM and SV growth factors shown in Figs. 5.3 and 5.4. The main effect is to intensify

the instabilities while leaving the favored scales and azimuth angles the same. Still the

IGW case shows no growing NM. Its optimal perturbations, however, amplify by nearly

an order of magnitude. The growth-factor ratio between leading SV and NM for the
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Figure 5.2: As Fig. 5.1, but now the growth factors σ1 of the leading SVs (optimization

time τ = 300s). The contour interval is 0.2 everywhere.

HGWs ranges between 2 at Θ = 30◦ and 6 at Θ = 70◦.

An essential modification is caused by a further increase of the wave energy to a value

A = 0.76, corresponding for the IGW to a = 1.2. The growth factors for these cases can be

seen in Figs. 5.5 and 5.6. Due to a considerable static and dynamic instability the IGW

now has unstable NMs (see also Yau et al., 2004). The distribution of the instabilities

over the α− λ‖ plane is very similar to the one of optimal growth for the two IGWs with

smaller amplitudes, favoring parallel propagation over a secondary maximum at transverse

propagation. The SV growth factors for this IGW are, however, still larger than those

for the NMs by a factor 5. In addition, the wavelengths of the leading SVs are smaller

than those of the most rapidly growing NMs. With regard to the HGWs, the NM growth

maximum for Θ = 70◦ now has shifted to transverse propagation, but at a wavelength

which is about an order of magnitude larger than the one of the leading, also transverse,

SV. In a comparison between the different inclination angles the NM instability still is
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Figure 5.3: As Fig. 5.1, but now with an increased wave energy so that A = 0.55. For

the IGW (Θ = 89.5◦) the leftmost contour is at 0.2, the rightmost contour at 0.9, and the

contour interval 0.1. For the other cases the contour interval is 0.5

most intense at the smallest inclination angle Θ = 30◦, although this is the only case not

satisfying the instability criteria of Howard (1961) and Miles (1961) (see table 5.1). In

contrast to the other two weaker wave amplitudes now, however, oblique propagation at

α = 50◦ is favored there over parallel propagation. At all inclination angles the optimal

perturbations are found to amplify by more than an order of magnitude, with the most

intense instability encountered at Θ = 70◦. The growth-factor ratio between SVs and

NMs ranges between 2.5 at Θ = 30◦ and 10 at Θ = 70◦.

5.2.2 Longer optimization times

For longer optimization times one must distinguish between the two main cases where

either growing NMs exist or not. In the latter case, one typically searches for the so-

called global optimal, i.e. one attempts to find a value for τ where optimal growth



5.2. GROWTH FACTORS 81

Figure 5.4: As Fig. 5.3, but now for the leading SVs.

maximizes. Such an analysis suggests itself for the subcritical (a < 1, Ri > 1/4) IGW

examined here. In the former case nearly all initial perturbations eventually converge

towards the set of leading NMs so that within the linear approximation perturbation

growth usually is not limited. This is the case for all HGWs examined here. Instead of

searching for a global optimal it seems for these to be more meaningful to consider the

longest time scale of dynamical relevance within the model framework. In the present

context this could be the time needed by the basic wave to cover one atmospheric scale

height, after which its amplitude would have changed by a factor e1/2, an effect not

described within the Boussinesq approximation. Another interesting time scale is the

HGW period P = 2π/ |Ω|. Since it is here also not too far from the time needed by the

wave to cover one atmospheric scale height, it has instead been chosen as examined long

optimization time.

The SV growth factors for the slightly subcritical IGW (a = 0.87) are shown in Fig.

5.7 for τ = 15min, 30min, 1h, and 2h. Three aspects are interesting. First, at longer
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Figure 5.5: As Fig. 5.1, but now with an increased wave energy so that A = 0.76. The

contour interval is 1.0 everywhere

optimization times transverse SVs are favored. Secondly, optimal growth is strongest

around τ = 30min, with a value near 20. Thirdly, the dominant scales generally increase

with τ . For the IGW packet case the increase in the growth factors for longer τ (here

between 5min and 30min), as well as the increase in horizontal wavelength and the ten-

dency of transverse perturbations to grow most rapidly at larger τ , is analyzed in detail

in chapter 4. Under the assumption that only the local conditions near the statically least

stable location φ = 3π/2 enter, it is found that the roll mechanism responsible for optimal

growth at α = 0 allows a maximal growth, approached for large τ , of σ2
1 = 4/RilN

2/N2
tot,

where Ril = N2
tot/β

2 is the local Richardson number, determined by the local vertical

gradient of the transverse velocity in the IGW β = af tan Θ and the local total squared

Brunt-Vaisala frequency N2
tot = (1− a) N2. At fixed vertical scale the horizontal scale

is λ‖ ∝ τ . Transverse perturbations, on the other hand, are amplified by a mixed roll

and Orr mechanism which allows optimal growth to increase without bounds over a wider

span of τ (before viscous-diffusive effects become important). For these one has the rough
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Figure 5.6: As Fig. 5.5, but now for the leading SVs. The contour interval is 1 everywhere.

identity τ = m0/(βk‖), where m0 is an initial typical vertical scale of the perturbation.

Indeed it is found that e.g. the structure of the leading transverse optimal perturbation

for τ = 15min is that of a wave packet near the statically least stable location with vertical

scale about twice that of the corresponding structure for τ = 30min (not shown), which

fits well since the horizontal scale of both optimal perturbations is about the same. The

present calculations thus seem to reproduce the behavior described in chapter 4. There

also a local optimum in SV growth near the same nondimensional τN has been found as

here, however with the modification that at very long τ of the order of the IGW period

optimal growth seems to rise again to even larger values (in an approximation of the IGW

packet by its vertical profile at the initially statically least stable horizontal location).

Corresponding calculations (not shown) indicate no such effect for the monochromatic

IGW. The reason for this discrepancy could be either in the slightly different wave pa-

rameters, the packet envelope, or the 1D approximation used in chapter 4 for the longest

τ .

Figure 5.8 shows for the two HGWs at Θ = 70◦ and 50◦ and A = 0.55 the SV growth
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Figure 5.7: As function of the parallel wavelength λ‖ (or wavenumber k‖, top axis) and

the azimuth angle α, the growth factors of the leading SVs of the slightly subcritical IGW

(Θ = 89.5◦ and (a,A) = (0.87, 0.55)), for the optimization times τ = 15min, 30min, 1h,

and 2h. The contour interval is 1, and values less than 1, i.e. the regions without SV

growth, are indicated by shading.

factors, along with those of the NMs, for τ = P . As expected, one observes a greater

similarity between NM and SV growth than at τ = 300s, especially with regard to the

λ‖−α distribution. SV growth maximizes near the locations of largest NM growth. Thus

the SVs also have much larger horizontal scales than the SVs at shorter optimization

times. Still, however one finds about the same ratio between the growth factors as for

smaller τ

5.3 Energetics and time development

For an analysis of the growth and decay behavior of the respective identified perturbations

it is again helpful to resort to energy considerations. For this purpose it is noted, in close
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Figure 5.8: For A = 0.55, and as function of parallel wavelength λ‖ (or wavenumber

k‖, top axis) and azimuth angle α, the growth factors of the leading NMs (top row) and

leading SVs (bottom) for growth over one wave period τ = P , for the HGW cases Θ = 70◦

(left column, P = 920s), and Θ = 50◦ (right, P = 490s). The contour interval is 2, and

values less than 1, i.e. the regions without NM or SV growth, are indicated by shading.

analogy to the procedure in chapter 4, that the energy density eκλ = 1/2
(
|v|2 + |b|2 /N2

)

satisfies due to (5.1)–(5.5)

∂eκλ

∂t
+K

∂

∂φ

[
−Ω

K
eκλ + < (uφp)− νK

∂

∂φ

|v|2
2
− µK

∂

∂φ

|b|2
2N2

]
= rξ+ry+rb+Dv+Db (5.8)

with

rξ = −< (uξuφ) K
dUξ

dφ
(5.9)

ry = −< (vuφ) K
dV

dφ
(5.10)

rb = −<
(
buφ

) K

N2

dB

dφ
(5.11)

Dv = −ν




(
κ2 + λ2

)
|v|2 + K2

∣∣∣∣∣
∂v

∂φ

∣∣∣∣∣
2

 (5.12)
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Db = − µ

N2




(
κ2 + λ2

)
|b|2 + K2

∣∣∣∣∣
∂b

∂φ

∣∣∣∣∣
2

 . (5.13)

Integrating (5.8) over a wave period in φ removes, due to the periodic boundary conditions,

the phase derivative on the left-hand side so that growth and decay can be attributed

to contributions from integrals over the right-hand side terms over the wave phase φ.

These describe the shear-related energy exchange with the basic wave due to counter-

gradient fluxes of uξ and v (rξ and ry), convective exchange by counter-gradient buoyancy

fluxes (rb), and viscous and diffusive losses (Dv and Db). This decomposition is again

represented in terms of contributions to the instantaneous amplification rate Γ (t) =

1/ (2 〈eκλ〉) d 〈eκλ〉 /dt, which takes the time-independent value Γ = γν for a NM. Here

angle brackets denote an average over a wave phase. Using the instantaneous amplification

rate and its decomposition

Γ = Γξ + Γy + Γb + Γd

= 〈γξ〉+ 〈γy〉+ 〈γb〉+ 〈γd〉 , (5.14)

where γξ = rξ/ 〈2eκλ〉, likewise for the γ⊥ and γb, and γd = (Dv + Db) / 〈2eκλ〉, the

following gives an analysis of the processes responsible for the growth and decay of the

leading NMs or SVs.

With respect to NMs a caveat shall be mentioned concerning a possible misinterpreta-

tion of the amplification-rate decomposition. It can happen that one of the amplification-

rate contributions introduced above is large and still the corresponding gradient in the

basic-wave field does not cause the NM growth behavior. To show this the further coordi-

nate transformation is applied in which the axes in the ξ−y plane are rotated so that the

axes for the new coordinates, denoted by x‖ and y⊥, point in the direction of the horizon-

tal wavenumber vector of the perturbation and orthogonal to it, i.e. x‖ = ξ cos α+ y sin α

and y⊥ = −ξ sin α + y cos α. The corresponding velocity components of v and V are
(
u‖, v⊥

)
and

(
U‖, V⊥

)
. One obtains from (5.1)–(5.5)

ik‖u‖ + K
∂uφ

∂φ
= 0 (5.15)

Du‖
Dt

+ Kuφ

dU‖
dφ

+ ik‖p + b cos α cos Θ + f (sin α cos Θuφ − sin Θv⊥) = ν∇2u‖ (5.16)
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Dv⊥
Dt

+ Kuφ
dV⊥
dφ

− b sin α cos Θ + f
(
sin Θu‖ + cos α cos Θuφ

)
= ν∇2v⊥ (5.17)

Duφ

Dt
+ K

∂p

∂φ
− b sin Θ− f cos Θ

(
sin αu‖ + cos αv⊥

)
= ν∇2uφ (5.18)

Db

Dt
+ Kuφ

dB

dφ
+ N2

[
sin Θuφ − cos Θ

(
cos αu‖ − sin αv⊥

)]
= µ∇2b ,(5.19)

where here D/Dt = ∂/∂t − Ω∂/∂φ + ik‖U‖. Note the close relationship of these equa-

tions to (4.7) – (4.11). It thus turns out that v⊥ is coupled to the other variables only

passively provided that the Coriolis terms are negligible for the perturbation dynamics,

which seems always to be the case here, and cos Θ sin α ≈ 0. The latter implies either

the IGW case or parallel horizontal propagation of the perturbation with respect to the

GW. Then u‖, uφ and b can be considered independently from v⊥, and taking all these

to be proportional to exp (−iωνt + γνt) the eigenfrequencies and growth rates of all NMs

can be determined from the equations (5.15), (5.16), (5.18), and (5.19) alone. Thus, in

the IGW case they do not depend on V⊥. A contribution of the corresponding shear

term to the amplification rate indicates something different: Since in a NM up to the

oscillating phase factor all fields grow or decay in strict proportion one also has for IGWs

(cos Θ ≈ 0), with the obvious transformations (rξ,y, Γξ,y) → (r‖,⊥, Γ‖,⊥), and neglect-

ing for the moment the generally weak impact from viscosity and diffusion, the identity
〈
r‖ + rw + rb

〉
/

〈∣∣∣u‖
∣∣∣
2
+ |w|2 + |b|2 /N2

〉
≈ r⊥/

〈
|v⊥|2

〉
so that

Γ⊥
Γ‖ + Γw + Γb

≈
〈
|v⊥|2

〉
〈∣∣∣u‖

∣∣∣
2
+ |w|2 + |b|2 /N2

〉 . (5.20)

Thus a large contribution from Γ⊥ tells us that the NM contains a correspondingly large

part of its energy in the flow field v⊥ which indeed is extracted from the wave via a

momentum flux against the shear in V⊥, but at a rate independent from this gradient.

In the case of SVs the interpretation of the amplification-rate decomposition must be

somewhat different. In some way it turns out to be less subtle. There the dynamical fields

do not grow in strict proportion. A single growth rate, characterizing the identical rate

at which energy is transferred from the basic wave into the various perturbative fields,

does not exist. On the contrary the energetics of the perturbation is determined by the

sum of all the contributions listed above which can be highly time-dependent not only
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in their magnitude but also in their relative importance. This time dependence must be

traced in order to comprehend the full dynamics. Still, in the IGW case one finds that v⊥

reacts only passively to changes in the other perturbative fields. In contrast to the NM

case, however, a large Γ⊥ does not simply tell us that much energy is in v⊥, which yet

grows at a rate determined by all fields in the basic wave except V⊥. It rather indicates

that the growth or decay of the energy in the SV is to a large part to be attributed

to a corresponding growth or decay in the energy in v⊥, which indeed is induced by the

gradient in V⊥ and a corresponding momentum flux < (v⊥uφ) in the perturbation. In fact,

this is the essence of the roll mechanism described in chapter 4, and widely differing values

in the amplification-rate contributions are often a sign of considerably disproportionate

amplifications of the energy content in the various dynamical fields.

5.3.1 Inertia-gravity waves

In the investigation of the dynamics of the identified perturbations the beginning shall

be made by a discussion of those found in the stability analysis of the IGW (Θ = 89.5◦).

Basically most results from chapter 4 are retrieved.

Short optimization times

To begin with the case of τ = 300s, Fig. 5.9 shows for the statically unstable case (a = 1.2)

the spatial dependence of energy density eκλ and the IGW-phase dependent amplification-

rate decomposition (i.e. the RHS terms of (5.8), normalized by 2 〈eκλ〉) of the leading

parallel (α = 0◦) and transverse (α = 90◦) NM. The structures are quite different. The

parallel mode is highly confined to the region of strongest static instability due to the

wave-related negative buoyancy gradient. The main contribution to its positive growth

rate is apparently from γ⊥, with another one from γb. However, since we are looking

at the stability problem of an IGW the caveat from above applies, and thus its growth

rate is only determined by the gradients of U‖ = Uξ and B. Therefore the convective

exchange seems to dominate the dynamics of this mode while much of its energy turns

out to be in v⊥ = v. In comparison to this NM, the leading transverse mode is much

broader, but it also obtains its energy to an important part via the convective exchange
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Figure 5.9: IGW-phase dependence of energy density (top row) and growth-rate decom-

position (bottom) of the leading parallel and transverse NM for the statically unstable

IGW (a = 1.2, Θ = 89.5◦). The IGW-phase average of the sum of all growth-rate parts

yields the total growth rate Γ = γ1. The unimportant contribution from viscous and

diffusive losses is indicated by a dotted line. The amplitude of the NM (in meaningless

units) has been chosen to normalize the IGW-phase average of energy density (〈eκλ〉 = 1).

term γb in the region of strongest static instability (near φ = 3π/2). As is seen in table

5.2, where the IGW-phase averaged amplification-rate decomposition is listed, Γu = Γ⊥

makes the largest contribution, but also here in reality Γv = Γ‖ and Γb are the essential

terms in determining (to about equal contributions) the growth rate of the NM. The large

contribution from Γu = Γ⊥ indicates that much of the energy of the mode is contained in

u = −v⊥.

In comparison to NMs, the IGW-phase dependence of energy density and amplification-

rate decomposition in a SV is time dependent. Figure 5.10 shows for the optimal pertur-

bation (t = 0) and the resulting SV at the optimization time (t = 300s) these fields for
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Θ/◦ a α/◦ Γξ/10−3s−1 Γy/10−3s−1 Γb/10−3s−1 Γd/10−3s−1

89.5 0.87 0 -0.15 5.4 1.4 -0.31

89.5 0.87 90 1.1 0.76 0.83 -0.01

70 1.0 0 -1.1 0.01 3.1 -0.65

70 1.0 90 1.1 0.0 0.26 -0.17

50 0.84 0 0.7 0.0 3.9 -0.21

50 0.84 90 1.6 0.0 0.33 -0.30

30 0.55 0 1.2 0.0 4.6 -0.11

30 0.55 70 1.4 0.0 1.6 -0.23

Table 5.2: For A = 0.55, the growth-rate decomposition of the leading NMs for GW incli-

nation angle Θ, amplitude a, and mode azimuth angle α at the perturbation wavelength

of strongest NM growth for the IGW (Θ = 89.5◦), and strongest SV growth else.

the leading parallel perturbation (α = 0). At first sight it looks similar to the leading

NM, since it is also highly confined to the statically most unstable phase region. The

amplification-rate contributions are, however, quite different. At initialization virtually

all of the energy transfer from the basic wave to the SV is done convectively, while by

t = τ the state of the NM has been approached, where the shear-related exchange γy = γ⊥

is largest, followed by the convective contribution. In Fig. 5.11 one can see the leading

transverse SV (α = 90◦). This perturbation is much more confined to the statically most

unstable region than the corresponding NM. Also here the convective energy exchange

makes the largest contribution at the initialization, followed by another important one

from γv = γ‖, while by the optimization time γu = γ⊥ also contributes significantly, and

γv = γ‖ has become rather unimportant. It is to be noted that in this case at the pertur-

bation wavelength where SV growth maximizes no growing NM exists (see Figs. 5.5 and

5.6) so that by t = τ the SV structure cannot be explained in terms of a related NM.

This distinction gets even clearer as one looks at the time-dependent amplification-

rate decomposition, according to (5.14), and energy density eκλ from somewhat longer

integrations. These are shown for an integration over 6τ = 30min in Fig. 5.12. The
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Figure 5.10: IGW-phase dependence of energy density (top row) and amplification-rate

decomposition (bottom) of the leading short-term parallel singular vector (α = 0) for the

statically unstable IGW (a = 1.2, Θ = 89.5◦) at initialization (t = 0) and optimization

time (t = τ = 300s). The IGW-phase average of the sum of all amplification-rate parts

yields the total instantaneous amplification rate Γ. The unimportant contribution from

viscous and diffusive losses is indicated by a dotted line. The amplitude of the perturbation

(in meaningless units) has been chosen to normalize the IGW-phase average of energy

density (〈eκλ〉 = 1) at t = 0. Only the IGW-phase range π ≤ φ ≤ 2π is shown where the

SV has a significant amplitude. At t = 0 the total effective amplification rate is nearly

identical to the convective contribution γb.

parallel SV exhibits a time-dependent amplification-rate decomposition with a maximum

total value around t = 0.2τ , when the initially dominant contribution from convective

energy exchange is supplemented by that from the counter-gradient flux in v = v⊥. By

t = 2τ a state is reached where the amplification rate does not vary anymore, both in its

total value and in its decomposition in the various contributions (a leading contribution



92 CHAPTER 5. GENERAL MONOCHROMATIC GRAVITY WAVES

Figure 5.11: As Fig. 5.10, but now for the leading transverse SV (α = 90◦).

from shear in V = V⊥ with an additional weaker term from convective energy exchange).

This indicates that the perturbation has assumed the structure of the leading NM and

keeps on growing from there on. The energy density supports this picture. One sees

a perturbation basically invariant in structure which is simply growing exponentially in

time. The leading transverse SV, on the other hand, does not approach such an asymptotic

behavior. Its amplification rate maximizes around t = 0.4τ , then decreases until decay

sets in at about t = 1.8τ which at late times is dominated by viscous and diffusive losses

(Γ ≈ Γd). But even then the amplification-rate decomposition stays time dependent.

The energy density shows that the SV is split up into two main substructures, one of

these at the original location of the initial perturbation, i.e. near the strongest static

instability, and the other one near the other zero-line of the transverse wind in the IGW

(φ = π/2). As is also discussed in chapter 4 for a similar case the SV radiates GWs

which are approaching a quasi-critical layer near the transverse-wind zero-line, where

their propagation is blocked and very small scales develop, thus explaining the observed
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Figure 5.12: Time-dependent amplification-rate decomposition (top row) and energy den-

sity (bottom) from 30-min integrations of the leading short-term parallel (left column)

or transverse (right) SV for the statically unstable IGW (a = 1.2, Θ = 89.5◦). The op-

timization time is τ = 5min. Viscous and diffusive losses are indicated by a dotted line.

The contour interval in the lower panels is 0.5 in log10 (eκλ) (starting at -1). Negative

contours are dashed.

behavior. A further short discussion of this effect is given in appendix C.2.

At a weaker IGW amplitude (a = 0.87), where NMs can no longer grow, basically the

same type of parallel and transverse SVs are found. Their time-dependent behavior is

plotted in Fig. 5.13. Now one sees both eventually decaying in time, with a maximum

in energy around t = 1.4τ . The time-dependent decomposition of the instantaneous

amplification rate is very similar to the one seen at the stronger IGW amplitude. In

both cases static instability seems to act as a trigger of the instability, while later shear-

related exchange plays an important, if not even dominant, role, as in the parallel SV.

Although only nonmodal growth is possible the gain in energy covers about two orders

of magnitude, indicating that at a suitable initial perturbation level SVs might be able
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Figure 5.13: As Fig. 5.12, but now for an IGW amplitude a = 0.87 excluding the

possibility of NM instabilities.

to initialize nonlinear behavior and onset of turbulence. Another interesting observation

is that also here in all cases the shear in V⊥ plays an important role, indicating that the

amplification of the SVs is to a large part due to energy growth in v⊥, and thus the roll

mechanism discussed in chapter 4.

Longer optimization times

Getting to the case of the longer optimization times the focus shall be on the global

optimal τ = 30min for a = 0.87. The time dependent amplification-rate decomposition

and energy density of the leading parallel and transverse SV for a = 0.87 are shown in Fig.

5.14. Similarly to the results in chapter 4 the time-dependence scales with τ , i.e. energy

growth persists until t = τ , after which decay sets in (the same behavior is also seen for

all other τ , not shown). Also here convective exchange acts as a trigger, followed by the

action of the counter-gradient fluxes in the horizontal velocity field. In comparison to the
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Figure 5.14: As Fig. 5.12, but now for an IGW amplitude a = 0.87 excluding the

possibility of NM instabilities (as in Fig. 5.13), and optimization time τ = 30min.

Figure 5.15: Corresponding to Fig. 5.14, the development of the buoyancy field in the

respective SVs. Contour intervals are constant in arbitrary units. The zero contour has

not been drawn.
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short optimization time, the flux in v takes a less prominent role for the leading parallel

SV (where v = v⊥). In the transverse case (where v = u‖) its role is dominant, indicating

a main impact from the Orr mechanism. The energy density indicates in the latter case

similar critical-layer interactions as for τ = 300s. Indeed the time dependent buoyancy

field in Fig. 5.15 shows this behavior, i.e. a tendency towards increasingly smaller scales

near the zero-lines of V , a behavior which has been analyzed in depth in chapter 4 (but see

also appendix C.2). For the leading parallel SV a quite different behavior can be seen. In

contrast to the transverse SV the vertical scales progressively increase near φ = π/2. This

is different to the behavior seen in chapter 4, where the wave-packet envelope allowed the

outwards radiation of high-frequency GWs. Here one sees a dynamics modified essentially

by the periodic flow field in the basic IGW, leading to a ducting effect, where the SV,

oscillating at a frequency ω = κUξ(φ = 3π/2), is prevented from radiating through the

maximum of Uξ. Details are also given in the appendix C.2.

A comparison of the relevance of the SVs for short and long optimization times,

although desirable, must remain incomplete on the level of the present linear analysis.

Note that, although showing larger overall growth, the long-optimization-time SVs grow

at a smaller growth rate than the SVs for shorter τ . This makes cases conceivable where,

at sufficiently large initial perturbation level, the latter SVs lead the IGW into nonlinear

behavior, before the ones for longer τ have fully developed. More on this below.

5.3.2 High-frequency gravity waves

In contrast to the two subcritical IGW cases examined here, i.e. with a < 1 and Ri > 0.25

(see table 5.1), HGWs show NM activity at virtually all amplitudes. Thus after nearly

every initialization of the linear model eventually the set of most unstable NMs will emerge

as the final asymptotic state. The question only is how long it takes until this state is

reached. As will be seen below, this time can be quite long.

Short optimization times

The focus shall first be on the short optimization time τ = 300s. At least qualitatively

the different HGW cases turn out to be very similar in the comparative dynamics of NMs
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Figure 5.16: HGW-phase dependence of the energy density (top row) and the growth-

rate decomposition (bottom) of the leading parallel (left column) and transverse (right)

NM for the HGW with (Θ, a) = (70◦, 1), at the perturbation wavelength where optimal

growth over τ = 300s maximizes. The HGW-phase average of the sum of all growth-rate

parts yields the total growth rate Γ = γ1. The negligible contribution to the growth rate

from shear in the transverse wind of the wave is indicated by a short-dashed line. The

amplitude of the NM (in meaningless units) has been chosen to normalize the HGW-phase

average of energy density, i.e. 〈eκλ〉 = 1.

and SVs. As an example here the case Θ = 70◦ and a = 1 (i.e. A = 0.55) is discussed

in some detail. Figure 5.16 shows for these parameters the HGW-phase dependence of

energy density and amplification-rate decomposition for the leading parallel and transverse

NM, each for the wavelength at which optimal growth maximizes (see Fig. 5.4). In

addition, table 5.2 also lists the HGW-phase integral of the growth-rate decomposition.

The results agree with those from Lombard and Riley (1996) in that the parallel mode is

mainly excited convectively, while the transverse mode extracts it energy from the GW



98 CHAPTER 5. GENERAL MONOCHROMATIC GRAVITY WAVES

Figure 5.17: Time-dependence of the amplification-rate decomposition (top row) and

energy density (bottom) from integrations of the leading parallel (α = 0) and transverse

(α = 90◦) short-term (τ = 300s) SV, for a HGW with (Θ, a) = (70◦, 1), over two HGW

periods P = 920s. The initial amplitudes in the patterns (in meaningless units) have been

chosen to normalize the HGW-phase average of energy density, i.e. 〈eκλ〉 = 1. Contouring

starts at log10 (eκλ) = −1. The contour interval is 1. Negative contours are dashed. For

better orientation the time axis is shown both normalized by τ (top) and P (bottom).

predominantly via shear-related exchange. Only dUξ/dφ enters the latter since the GW

amplitude in V is negligible. The HGW-phase dependence of the leading exchange terms

is consistent with the wave structure: For the parallel mode the convective exchange is

strongest near φ = 3π/2 where dB/dφ is most negative, and the shear exchange for the

transverse mode peaks near φ = 2π where the wave shear reaches one of its two extrema.

As for the complementary exchange terms, one sees wave shear near φ = 2π to act

against the growth of the parallel mode, while the transverse mode experiences convective

excitation at φ = π/2, where dB/dφ becomes largest, an effect which is however quite
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Figure 5.18: As Fig. 5.17, but for a later phase 160h ≤ t ≤ 160h + 2P . eκλ has been

normalized so that its phase average 〈eκλ〉 = 1 at t = 160h.

eliminated by strong negative contributions near the flanks of this region so that there is

no essential net convective impact on the transverse mode. The respective dominance of

the different exchange terms is also reflected in the HGW-phase distribution of the energy

density of the NM: The parallel NM is concentrated near φ = 3π/2, where the convective

exchange is largest, and the transverse mode peaks in energy density near φ = 2π where

the shear-related exchange also maximizes.

The time dependence of the amplification-rate decomposition, according to (5.14), and

the energy density eκλ are shown in Fig. 5.17 for integrations of the corresponding SVs

over two HGW periods. If a single leading NM exists, the final asymptotic behavior can be

expected as a time-independent amplification-rate decomposition identical to that of that

NM (table 5.2) and an energy density growing in time but not moving with respect to the

wave. One notes a slow approach towards this state in two regards: The amplification-

rate contributions oscillate with slowly decaying amplitude about the NM values (see
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Figure 5.19: As Fig. 5.17, but for a later phase 8h ≤ t ≤ 8h+2P . eκλ has been normalized

so that its phase average 〈eκλ〉 = 1 at t = 8h.

table 5.2), and the energy densities of the two SVs, which indicate highly peaked pulses

propagating upwards through the wave, are slowly broadening. As expected from the

growth factors, the transverse SV shows more intensive growth than the parallel SV (note

the logarithmic color and contour scale). The corresponding behavior after a long time

(160h) is shown in figure 5.18. Indeed the parallel SV has approached the structure of the

leading NM, while the transverse SV has split up into finer pulses still moving through

the wave, however with an amplification-rate decomposition seemingly oscillating about

the corresponding values of the leading NM. The difference between the two cases arises

from the fact that for α = 0◦ a single leading NM exists, while for α = 90◦ two leading

NMs are found which are very close to each other in growth rate (exp (γ1τ) = 1.4494 and

exp (γ2τ) = 1.4491) and in their growth-rate decomposition (not shown). Seemingly those

two together constitute the basis of the late stage of the development of the corresponding

SV. In any case it seems interesting that the eventual approach of the leading NM is rather
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Figure 5.20: As Fig. 5.17, but now showing for one sub-cycle, corresponding to one

passage of the GW over the perturbation, the time-dependent structure of the real parts

of uφ (upper row) and b (bottom). Both the shading scale for the parallel perturbation

and the contour intervals for the transverse perturbation are linear in arbitrary units. In

the latter case the zero contour has not been drawn, and negative values are indicated by

a dashed contour.

slow (e.g. by t = 8h the NM state has by far not been reached yet, see Fig. 5.19) so

that the transition from SV to NM might take longer than one can expect the linear

approximation to hold before nonlinear effects become important. Another main feature

one also notes is that the time both SVs need for once covering the distance ∆φ = 2π

agrees with the period of the GW, which means that the perturbation actually does not

move in the original reference system, while the GW passes over it, at the same time

repeatedly invigorating and damping the SV. In the case of a transition to the leading

NM one would see the wave gradually picking up the slowly broadening perturbation until

its energy-density distribution no longer moves in the translated coordinate system, and

is basically swept along with the wave, as observable for the parallel SV.
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Figure 5.21: As Fig. 5.17, but now for one sub-cycle corresponding to one passage of the

GW over the perturbation.

Besides this general observation the details of the two time series are also interesting,

especially as they reveal impacts from the structures of both the NM and the basic wave.

Although the parallel NM grows due to convective exchange the corresponding optimal

perturbation is triggered by shear-related exchange. Initially Γ ≈ Γu which is consistent

with the perturbation being concentrated at φ = π where the wave shear maximizes.

By t ≈ 0.8τ convective exchange takes over, which is the time when the SV passes the

statically most unstable HGW-phase φ = 3π/2. Shortly later, when φ = 2π is reached

where dUξ/dφ is largest, shear-related exchange is strong again, now however damping the

perturbation. As the perturbation passes φ = π/2 strong viscous and diffusive damping

sets in. This is due to a scale contraction of the SV which for one sub-cycle in the

movement between φ = 0 and φ = 2π is shown in Fig. 5.20. This behavior can be

explained in terms of a WKB-type propagation of the perturbation in the flow field of the

GW (see appendix C.3). The succession of processes sketched above is repeated many
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times as the wave repeatedly passes over the perturbation (not shown). An interesting

feature also becomes visible in a comparison of the time-dependent amplification rate of

the parallel SV (Fig. 5.17) with the HGW-phase dependent analogue in the parallel NM

(Fig. 5.16): It appears that in its moving from φ = 0 to φ = 2π the SV experiences the

same exchange processes as the NM exhibits at the respective HGW phase. This goes as

far as even expressing itself in the HGW-phase dependent energy density, i.e. the NM

peaks at φ = 3π/2 while the SV also shows a local maximum in energy density as it

passes this HGW phase. So in some sense the SV already follows the NM energetics in

its development towards that structure.

Very similar observations can also be made for the transverse perturbations (α = 90◦,

right columns in Figs. 5.16 – 5.20). Also the transverse SV is triggered by shear instability

at φ = π. As it passes φ = 3π/2 convective exchange takes over, followed by another

peak of Γu as φ = 2π is reached. This double peak in Γu, responsible for the stronger

overall growth of the transverse SV between t = 0 and t = τ than that of the parallel SV,

occurs only once. In the following cycles it is not repeated. Then growth due to shear is

only observed at φ = 2π, preceded by convective growth at φ = 3π/2, just as observed

in the NM. One conspicuous difference between the parallel and transverse SV is that,

while the former is a rather small-scale wave packet in its dependence on φ, the latter is

a larger-scale pulse changing its sign several times in its apparent movement through the

HGW. This is the reason (see Fig.5.20) why viscosity and diffusion are of less importance

for the transverse SV than for the parallel SV. Besides this, as the transverse SV moves

from φ = 0 to φ = 3π/2 the instantaneous amplification rate undergoes rapid oscillations

which are once again a good copy of corresponding behavior in the NM, as is also the

phase distribution of the energy density. In order to facilitate a better comparison a cycle

between φ = 0 and φ = 2π has been redrawn for each SV in Fig. 5.21.

Longer optimization times

As seen above, the parallel wavelength λ‖ of the SVs for longer optimization times (τ = P )

is larger than for τ = 300s, and their growth-factor distribution in the λ‖ − α plane is

more similar to that of the corresponding NMs. Interestingly however, it turns out that
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Figure 5.22: As Fig. 5.17, but now for the leading SVs for τ = P = 920s and azimuth

angles α = 0◦, 60◦, and 90◦.

their dynamics is still quite similar to that of the SVs for τ = 300s. Being once again, at

least qualitatively, representative for all cases, here the SVs for the HGW with (Θ, a) =

(1.0, 70◦) are discussed shortly. Figure 5.22 shows the time-dependent amplification-rate

decomposition and energy-density distribution for the leading SVs at azimuth angles 0◦,

60◦ (the case of strongest optimal growth), and 90◦. The similarity of the behavior of

the leading parallel and transverse SV to that seen in Fig. 5.17 is obvious. As a major

difference, in comparison to there the initial amplification rates are smaller, so that initial

growth is not as rapid. Also the patterns are broader in structure, and thus nearer to the

structure of the corresponding NMs. Remarkably, however, also here the transition to the

NM is far from complete after two HGW periods.

As discussed in the comparison between short- and long-optimization-time SVs for

IGWs, also for HGWs the respective relevance of the corresponding SVs can be expected

to depend on the properties of the available perturbation spectrum. Mainly its overall
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intensity will probably be of importance, but also the scales available in it, since the

various SVs differ not only in optimization time but also in their intrinsic wavelengths.

5.4 Impact of the controlling parameters

For a complete picture one also needs an overview of what happens as the chosen external

model parameters are varied. In the atmosphere, e.g., the inverse proportionality of

kinematic viscosity and diffusivity with the background density implies that at fixed

wavelength of the GW the Reynolds number decreases from the surface of the earth to the

mesopause (at about 90km altitude) by nearly six orders of magnitude. Likewise varying

at fixed altitude the basic-wave wavelength would also imply a variation of the Reynolds

number. Another external parameter deserving some examination is the factor f/N .

While here f has been chosen to be the Coriolis parameter at 70◦N and N = 2 · 10−2s−1,

which is typical for the middle atmosphere, in the tropics, where f ≈ 0, or in the lower

atmosphere, where N = 1 · 10−2s−1 is more appropriate a choice, a different dynamics

might occur. Without going into too great depth corresponding effects shall be estimated

here.

5.4.1 Reynolds number

In varying the Reynolds number the above-mentioned six orders of magnitude are not

covered. Instead, for reasons of computational economy, viscosity and diffusion have been

increased to ν = µ = 5m2/s, or decreased to ν = µ = 0.1m2/s (corresponding to a

mid-mesospheric altitude near 70km), and then the optimal growth over τ = 300s has

been determined for A = 0.55. Figures 5.23 and 5.24 show the results. The main effect

is as expected: Larger Reynolds numbers mean stronger instabilities. Concerning the
(
λ‖, α

)
-dependence one finds that there is not much of an effect on the azimuth angles

where optimal growth is most vigorous. However, in agreement with similar findings

by Lombard and Riley (1996) on the dependence of the leading NMs for f = 0 on the

Reynolds number, the scales are affected so that the wavelength of strongest optimal

growth gets smaller as the Reynolds number is increased. For IGWs the results from the
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Figure 5.23: As Fig. 5.4, but now with decreased values of viscosity and diffusivity

ν = µ = 0.1m2/s.

shear-layer theory in chapter 4 suggest for parallel SVs a dependence as λ‖ ∝ Re−1/4. This

is consistent with the results here. An exception to the Reynolds-number dependence of

the wavelengths is the leading transverse SV of the IGW. For this one both the growth

factor and its wavelength are found to be basically the same for all three Reynolds numbers

examined. This is consistent with the identification of a comparable NM growth-rate

peak for a > 1 by others (Dunkerton, 1997; Kwasniok and Schmitz, 2003) in calculations

for IGW packets with infinite Reynolds number. The main effect here is that, as is

visible from a cut at α = 90◦ which is not shown here, while the Reynolds number is

increased slowly, a secondary growth-factor peak at a shorter wavelength emerges which

is at λ‖ ≈ 600m for ν = µ = 0.1m2/s. One might expect that this one gets stronger

and moves to smaller scales as the Reynolds number is increased even further, while the

one at the larger wavelength stays unaffected. Decreasing the Reynolds number would at

some stage, however, also damp the growth of that branch. Similarly one also finds for
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Figure 5.24: As Fig. 5.4, but now with increased values of viscosity and diffusivity

ν = µ = 5m2/s.

Θ = 30◦ at λ‖ ≈ Λ a parallel SV which is not much affected by viscosity and diffusion,

but also here at even smaller Reynolds numbers the SV will probably be damped. For the

high-Reynolds-number case NM growth factors (not shown) are found to slightly increase

in comparison to Fig. 5.3 (maximal growth factors 2.2, 4.0, and 5.8, at Θ = 70◦, 50◦, and

30◦, with an overall λ‖−α dependence as before). This case, however, still shows no NM

instabilities of the IGW.

5.4.2 Rotation

For an estimation of the impact of variations in f/N the determination of the SVs for

A = 0.55 has been redone for different latitudes. As expected only the IGW case showed

an impact so that only this one shall be given some attention. Figure 5.25 shows the
(
λ‖, α

)
-dependence of the growth factors of the leading SVs obtained for the latitudes

0◦, 30◦, 50◦, and 90◦, to be compared to the upper left panel in Fig. 5.4. One sees two
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Figure 5.25:
(
λ‖, α

)
-dependence of the growth factors of the leading SVs for a slightly

subcritical ’IGW’ ((Θ, a) = (89.5◦, 0.87)) at the latitudes Φ = 0◦, 30◦, 50◦, and 90◦, deter-

mining the magnitude of the Coriolis parameter. The contour interval is 0.5. Values less

than one are indicated by shading.

main effects: As rotation becomes smaller optimal growth gets weaker and the leading

azimuth angle moves from parallel to α = 60◦. The former is consistent with the previous

observation that the energy exchange with the IGW via shear in V plays an important

role. As rotation gets less the strength of this wind component in the wave is reduced

so that the energy reservoir its kinetic energy provides for the SVs is reduced. In time

integrations (not shown) the SVs are found to finally decay in all cases, as also follows

from the absence of growing NMs. It seems that optimal growth is rather less important

for subcritical IGWs in the tropics.

5.5 Mean growth from random initial conditions

A critical question one might ask about rapid transient growth from optimal perturbations

is how relevant they are for realistic circumstances where a GW will encounter perturba-
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Figure 5.26: Similar to Fig. 5.4, but now showing the mean growth (within 300s) in

the square root of energy from initial random perturbations with a 5/3 power law in the

wavenumber in φ-direction. The contour interval is 0.1 for the IGW case (Θ = 89.5◦) and

0.2 everywhere else. Values less than one are indicated by shading.

tions from ambient fluctuations which most probably will not project to the largest part

onto a single optimal perturbation (Lott, 1997). If there is only one SV structure having

rapid growth, it may not be sufficient to compete with the leading normal mode (if there

is any). If, however, the number of growing optimal perturbations is large enough, and

if these are similar enough to each other, optimal growth might play a role in explaining

observed behavior of turbulence onset in its linear phase.

In order to get some insight into this problem the linear model has been integrated

over 300s from random initial conditions. A possible option for a source spectrum would

be just white noise, but this would not be overly realistic. Rather it is to be expected that

a gravity wave will encounter fluctuations with a typical turbulent spectrum, as observed

(Lübken, 1997) and modelled (Werne and Fritts, 1999; Fritts et al., 2003) by others. It

has therefore been attempted to mimic a spectrum in the wavenumber in φ-direction
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Figure 5.27: Corresponding to Fig. 5.26, the mean energy density (top row) and

IGW-phase dependent amplification-rate decomposition (bottom) at t = 300s for par-

allel and transverse perturbations at the wavelength of strongest optimal growth for

(Θ, a) = (89.5◦, 0.87). In the upper panels the mean energy density is indicated by

the solid line while the dashed line shows the same field for the corresponding SV. Both

are normalized to have a unit IGW-phase average.

with a typical 5/3 power law. For this energetically equipartitioned flow and buoyancy

fields have been obtained from a random number generator. The Fourier transforms of

these have then been modified to follow a 5/3 power law, and the resulting random initial

states have then been used in the model. For each pair of azimuth angle and perturbation

wavelength in the ξ − y plane the number of integrations has been doubled, starting at

a minimum of 16, until the observed mean growth or decay in the square root of energy

changed by less than a percent.

For A = 0.55 the resulting mean growth is shown in Fig. 5.26. This is to be compared

to Fig. 5.4. It is not surprising to find that, in comparison to the optimal growth factors,
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Figure 5.28: As Fig. 5.27, but now for (Θ, a) = (70◦, 1).

these mean growth factors are smaller. On the other hand one also finds even mean growth

of random perturbations to be possible for the IGW case, although this one does not have

a single growing NM. Moreover, in all cases one sees a reasonable reproduction of the

dependence of the growth factors on azimuth angle and horizontal wavelength. So also

here the strongest mean growth is observed in the IGW case for parallel perturbations.

The HGW cases show transverse perturbations to extract most of the energy from the

wave. For Θ = 70◦ and Θ = 50◦ this is in agreement with the optimal-growth results.

In these cases also the scale of the strongest growth matches quite well that of strongest

optimal growth. In the case Θ = 30◦ the leading optimal perturbation is at α = 70◦,

while strongest mean growth is found at α = 90◦, but also here one finds a trace of the

optimal-growth results in that at the respective azimuth angle no maximum exists but a

plateau which is not found at the other inclination angles. This is to be seen in contrast

to Fig. 5.3, where the corresponding NM growth factors are shown, with no instability in

the IGW case, and strongest growth for parallel perturbations in the HGW cases.
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For the IGW case one sees in Fig. 5.27 for t = 300s the mean energy density and

amplification-rate decomposition of parallel and transverse perturbations at the wave-

length of strongest optimal growth. A comparison with the energy density of the SV,

indicated by the dashed line in the upper row, suggests that many of the features seen

can be explained in terms of optimal growth. This is further supported by the fact

that NMs cannot be used here, since they all decay. For the case (Θ, a) = (70◦, 1) the

same fields are shown in Fig. 5.28. For the transverse perturbations once again optimal-

perturbation theory seems to give a useful explanation. The energy density is much more

strongly peaked near the location of the SV than in the NM (see Fig. 5.16). The same

disparity between NM and mean structures is also found for the HGW-phase dependent

amplification-rate decomposition. On the other hand, the parallel perturbations do not

indicate SV behavior. This is probably an effect of the small-scale structure of the cor-

responding SV (see also Fig. 5.20 and appendix C.3). By using a source spectrum with

suppressed small-scale activity such a perturbation is prevented to appear. Indeed, in a

parallel calculation with random initial states with a white spectrum the parallel SVs can

be identified (not shown).

5.6 Summary

As an extension to the investigation in chapter 4 on SVs of IGW packets, here optimal

perturbations of monochromatic GWs, including HGWs, have been determined and com-

pared to the corresponding NMs. The viscous-diffusive parameters have been chosen so

as to agree with the conditions in the middle to upper mesosphere (between 70 and 90km

altitude). Among the results the most important ones are the following.

First, the findings from chapter 4 are reproduced that IGWs can support rapid tran-

sient growth by several orders of magnitude (in energy) when no NM instability exists.

This is the case for IGWs slightly below the overturning threshold (a = 0.87, say), where

NM instabilities are prevented by viscous-diffusive effects. For such cases, optimal pertur-

bation theory suggests, in contrast to the predictions from NM analyses, the possibility

of turbulence onset, certainly subject to the condition that the ambient perturbations
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encountered by such an IGW are already sufficiently strong so that a further amplitude

growth by at most a factor 20 can lead into nonlinear development. The most important

growth mechanisms are the same as described in chapter 4: The parallel SVs growing

most rapidly for short optimization times are driven by the roll mechanisms. The leading

transverse short-term SVs, with larger scale than the parallel SVs, are subject to a mixed

Orr and roll mechanism. A global optimal at an optimization time of 30min is found,

certainly conditioned on the specific wave parameters. At such longer optimization times

the transverse SVs grow most strongly, as can also be understood based on the shear-layer

theory in chapter 4.

Secondly, the leading SVs of all examined HGWs with weak to moderate amplitude,

if determined for optimization times shorter than a wave period, show propagation char-

acteristics with respect to the gravity wave, which differ from that of the leading NMs.

The latter propagate preferentially in the x − z plane while the former generally favor

transverse propagation. Calculations of mean growth from random perturbations indicate

just this behavior, which could not be explained with the help of NMs.

Thirdly, the leading SVs of the examined HGWs differ structurally in an interesting

manner from the identified NMs. Initially, they have the form of sharply peaked pulses

which are nearly immobile in the geostationary reference frame. In its passage over its SVs

a HGW repeatedly invigorates the perturbations as they get into contact with suitable

buoyancy and velocity gradients in the wave. In the long run the SV structure is often

transformed into the broader structure of the leading NM, which moves with the wave

phase, but this transition is typically a very long process. Thus, although eventually the

leading NM might take over, SVs seem to highlight the possibility of rapid growth of local

perturbations, which might get strong enough to initialize turbulence onset before the

leading broader NM has had time to develop from a SV. Certainly this does depend on

the specific initial perturbation encountered by a HGW in the real atmosphere (or ocean).
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Nonlinear dynamics
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Chapter 6

Monochromatic inertia-gravity waves

Chapters 4 and 5 seem to support the view that SVs might be a relevant factor in the

dynamics of turbulence excitation by GWs. A conclusive statement, however, is not

possible on the linear level. For a full assessment one needs investigations of the nonlinear

dynamics of these perturbations. Also the turbulence impact on the basic GW must

to be estimated. Related numerical studies of the nonlinear GW breaking process have

traditionally resorted to simulations with either excessive viscosity or a sub-grid-scale

scheme for the parameterization of the smallest turbulent scales. (Winters and D’Asaro,

1994; Andreassen et al., 1994; Fritts et al., 1994; Isler et al., 1994; Lelong and Dunkerton,

1998a,b). Direct numerical simulations (DNS) with their least ambiguous results on the

corresponding turbulence dynamics have only recently become possible (Fritts et al., 2003,

2006). While a DNS of wave breaking initialized by purely random perturbations, as done

in these studies, sheds light on some aspects of the process, an alternative, conceptually as

interesting, approach seems to be the direct study of the nonlinear interaction between a

gravity wave and its leading NMs or SVs. Such studies might promote additional insight

into the process by identifying its most paradigmatic features. Corresponding DNS are

discussed in the following two chapters. Given their obviously different dynamics, IGWs

and HGWs are examined separately. This chapter looks at the IGW case, while HGWs

perturbed by their leading NMs or SVs are discussed in chapter 7.

A study of the nonlinear dynamics of an IGW packet would have to deal with es-

pecially large model volumes encompassing the whole wave packet. The computational

115



116 CHAPTER 6. MONOCHROMATIC INERTIA-GRAVITY WAVES

costs of such calculations would be especially high. Moreover, the comparative conceptual

simplicity of a monochromatic IGW in itself also argues for first studying the nonlinear

dynamics of such a wave after being perturbed by its leading SVs or NMs. The present

chapter therefore focuses on this type of scenario. Interestingly, the corresponding non-

linear development has not really been looked at yet in a DNS. Among the three studies

coming nearest to this, Lelong and Dunkerton (1998a,b), on the one hand, have simu-

lated IGW breaking in a large-eddy simulation without explicit treatment of the turbulent

scales. In addition, they have used a ratio f/N between inertial and Brunt-Vaisala fre-

quency which exceeds typical values for the MLT by about an order of magnitude. Fritts

et al. (2003), on the other hand, have treated either the case of HGW breaking or the

instability of a simple shear layer, thus not including possible effects of the elliptic po-

larization of the IGW velocity field. The study in this chapter has the intent of going a

step farther towards the simulation of the nonlinear development of an IGW perturbed

by either NMs or SVs. Major points of interest are the change of the IGW amplitude, the

energy exchange between IGW and perturbation, the distribution of perturbation energy

between the various dynamical fields in question, its spatial distribution, and the strength

and distribution of the occurring turbulent dissipation rates.

6.1 Model setup

As above the equations used are the Boussinesq equations (2.1) – (2.3) on an f plane.

For viscosity and thermal diffusivity the typical upper-mesospheric values ν = µ = 1m2/s

are taken. The f plane is located at 70◦ latitude. The Brunt-Vaisala frequency is N = 2 ·
10−2s−1. Again following Mied (1976) and Drazin (1977) a coordinate system is introduced

in which the representation of the basic GW is especially simple. It is obtained by a

rotation about the y-axis so that the new vertical coordinate points in the direction of the

wavenumber vector, a translation along this axis with the phase velocity, and a rescaling

of the vertical axis in units of the wave phase (see also Fig. 2.1). The new coordinates

(ξ, φ) are determined from x, z, and t via (2.8) and (2.9), while y is not modified.

Since the GW is symmetric with respect to the ”horizontal” directions ξ and y, we
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obtained in chapter 5 NMs and SVs for each combination of corresponding wavenum-

bers. These perturbations have the form (v′, b′) = <
{(

v̂, b̂
)

(φ, t) exp [i (κξ + λy)]
}

with

(κ, λ) = k‖ (cos α, sin α) being the horizontal wave-vector components. λ‖ = 2π/k‖ and

α are the corresponding horizontal wavelength and the azimuth angle between (κ, λ) and

the ξ-axis. In the simulations reported here the initial state for the nonlinear model is

always obtained by a superposition of the GW and the state of one of the linear NMs or

SVs at t = 0. It is symmetric with respect to the direction in the ξ − y plane transverse

to the direction of propagation of the perturbation, and the model equations conserve

this symmetry. It therefore makes sense to introduce a horizontally rotated system of

coordinates (see also chapter 5)

(
x‖, y⊥

)
= (ξ cos α + y sin α,−ξ sin α + y cos α) (6.1)

respectively pointing in the directions parallel and transverse to the direction of the hor-

izontal wavenumber vector of the perturbation. In this representation the Boussinesq

equations take the form

∂u‖
∂x‖

+
∂v⊥
∂y⊥

+ K
∂uφ

∂φ
= 0 (6.2)

Du‖
Dt

− f (sin Θv⊥ − sin α cos Θuφ) +
∂p

∂x‖
+ b cos α cos Θ = ν∇2u‖ (6.3)

Dv⊥
Dt

+ f
(
sin Θu‖ + cos α cos Θuφ

)
+

∂p

∂y⊥
− b sin α cos Θ = ν∇2v⊥ (6.4)

Duφ

Dt
− f

(
sin α cos Θu‖ + cos α cos Θv⊥

)
+ K

∂p

∂φ
− b sin Θ = ν∇2uφ (6.5)

Db

Dt
+ N2

(
− cos α cos Θu‖ + sin α cos Θv⊥ + sin Θuφ

)

︸ ︷︷ ︸
w

= µ∇2b , (6.6)

where
(
u‖, v⊥

)
are the velocity components corresponding to

(
x‖, y⊥

)
, and D/Dt = ∂/∂t+

v · ∇−Ω∂/∂φ. This representation, up to the last rotation (6.1) identical to the one also

used by Fritts et al. (2003, 2006), seems to be best suited for a study of the breaking

of a monochromatic gravity wave, so that it provides the framework for the simulations

reported here.

For a numerical treatment the model equations have been discretized, as above in the

linear studies, on a standard staggered C-grid, as discussed e.g. in Durran (1999), with
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Θ/◦ a Λ/km perturbation type τ/min α/◦ λ‖/km n‖ nφ

89.5 1.20 6 SV 5 0 0.398 144 2304

89.5 1.20 6 SV 5 90 3.981 2304 2304

89.5 1.20 6 NM – 0 0.501 288 2304

89.5 1.20 6 NM – 90 7.943 4608 2304

89.5 0.87 6 SV 5 0 0.631 288 2304

89.5 0.87 6 SV 5 90 3.162 1152 2304

89.5 0.87 6 SV 30 0 7.943 4608 2304

89.5 0.87 6 SV 30 90 5.012 2304 2304

Table 6.1: Model extent λ‖ in the horizontal and Λ in IGW-phase direction, as well as the

corresponding number of grid points n‖ and nφ, for all discussed integrations of an IGW

(with an amplitude a with respect to the overturning limit) perturbed by either its leading

SV (for optimization time τ) or NM at the azimuth angle α. Λ is also the IGW wavelength,

while λ‖ agrees with the horizontal wavelength of the respective perturbations. Θ is the

inclination angle between the IGW wave vector and the horizontal.

periodic boundary conditions. The model domain extends from 0 to 2π in φ and 0 to λ‖ in

x‖. Consistent with the here chosen initial states there is no dependence on y⊥. The model

might be called 2.5D since it describes buoyancy and a 3D velocity field depending on two

spatial coordinates. It also differs from standard 2D simulations in that it can also handle

cases with α 6= 0. Pressure is obtained by applying the divergence to the momentum

equations and solving the resulting Poisson equation by a Fourier transform technique.

The equations are integrated using a third-order Runge-Kutta time step (Durran, 1999).

The model resolution was always chosen fine enough to resolve both the inertial and the

viscous subrange of the resulting turbulence spectra. As in chapter 5, the wavelength

and the inclination angle of the considered IGW are (Λ, Θ) = (6km, 89.5◦). Details are

provided in table 6.1.
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6.2 Energetics

Since the basic IGW is horizontally symmetric (i.e. with respect to x‖ and y⊥) it seems

helpful to analyze the interaction between IGW and perturbation in terms of the energy

exchange between the horizontal mean
(
v, b

)
and the horizontally-dependent deviations

(v′, b′) = (v, b) −
(
v, b

)
(for simplicity henceforth called ”eddy” part). It is a standard

procedure to derive from (6.2)–(6.6) the following budget equations for the kinetic energy

densities K = |v|2 /2 and K ′ = |v′|2/2 and the densities of available potential energy

A = b
2
/2N2 and A′ = b′2/2N2:

∂K

∂t
+ K

∂

∂φ

[
(uφ − c) K + v · u′φv′ + uφp− νK

∂K

∂φ

]
= wb− PS − ε (6.7)

∂K ′

∂t
+ K

∂

∂φ


(uφ − c) K ′ + u′φ

|v′|2
2

+ u′φp′ − 2νv′iS
′
i3


 = w′b′ + PS − ε′ (6.8)

∂A

∂t
+ K

∂

∂φ

[
(uφ − c) A +

b

N2
u′φb′ − µK

∂A

∂φ

]
= −wb− C −D (6.9)

∂A′

∂t
+ K

∂

∂φ

[
(uφ − c) A′ + u′φ

b′2

2N2
− µK

∂A′

∂φ

]
= −w′b′ + C −D′ . (6.10)

The equations are obviously related to (5.8), but they split up the eddy energy ten-

dencies into those of kinetic and available potential energy, see also (4.55) – (4.65),

and also describe the energetic eddy feedback on the horizontal mean. The contribut-

ing terms on the right-hand sides are the shear production of eddy kinetic energy

PS = −u′φv · (K∂v/∂φ), the convective production of eddy available potential energy

C = −u′φb′ (K/N2) ∂b/∂φ, the dissipation of horizontal-mean kinetic energy ε = 2νSijSij

(summing as usual over all double indices), the eddy dissipation ε′ = 2νS ′ijS
′
ij, the diffu-

sive losses of horizontal-mean available potential energy D = (µ/N2) K2
∣∣∣∂b/∂φ

∣∣∣
2
, and the

diffusive losses of the eddy available potential energy D′ = (µ/N2) |∇b′|2. With the no-

tations (x1, x2, x3) =
(
x‖, y⊥, φ/K

)
and (v1, v2, v3) =

(
u‖, v⊥, uφ

)
the shear-stress tensors

are defined as Sij = (∂vi/∂xj + ∂vj/∂xi) /2 and S ′ij =
(
∂v′i/∂xj + ∂v′j/∂xi

)
/2. The di-

vergence terms on the left-hand sides of (6.7)–(6.10) serve to redistribute energy between

different GW-phase locations, but they do not contribute to the budget of the mean of all

reservoirs in phase direction. In fact even many of the results below on the development

of the φ−dependence of the four energies can be understood without resorting to these
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Figure 6.1: The budget for the exchange between the GW-phase averaged available po-

tential energy A and kinetic energy K of the ”horizontal” mean (denoted by an overbar,

”vertical” meaning parallel to the direction of the GW wave vector) and the deviations

from this mean (the eddies, denoted by a prime). For an explanation of the contributing

terms see the main text.

terms. A graphic visualization of the energy cycle is given in Fig. 6.1. There 〈K〉 denotes

e.g. the mean of K over φ, and likewise for all other quantities.

From the definitions of PS and C one can derive for the total eddy energy E ′ = A′+K ′

the tendency ∂〈E ′〉/∂t = 2Γ〈E ′〉 with an instantaneous amplification rate Γ = Γ‖ + Γ⊥ +

Γb + Γd where the amplification-rate parts

(
Γ‖, Γ⊥, Γb, Γd

)
= 〈γ‖, γ⊥, γb, γd〉

= −〈u′φu′‖K
∂u‖
∂φ

, u′φv
′
⊥K

∂v⊥
∂φ

, u′φb′
K

N2

∂b

∂φ
,D′ + ε′〉/2〈E ′〉 , (6.11)

as in the in the linear dynamics (chapter 5), describe consecutively the impact of the

eddy fluxes of momentum in x‖- and y⊥-direction against the corresponding gradients

in the horizontal mean, as well as the effect of the counter-gradient buoyancy fluxes

and of diffusive and viscous damping. The relative strengths of Γ‖, Γ⊥, and Γb tell

us, in close analogy to the linear case, which part of the gain (or loss) of 〈E ′〉 can be

attributed to respective direct changes in 〈K ′
‖〉 = 〈u′2‖ /2〉, 〈K ′

⊥〉 = 〈v′2⊥/2〉, and 〈A′〉. The
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Figure 6.2: For the statically unstable IGW (a = 1.2) with (Θ, Λ) = (89.5◦, 6km), the

initial perturbation energy density of the leading NMs and short-term SVs at azimuth

angles α = 0, 90◦, normalized by the spatially independent energy density E of the IGW.

All four perturbations have a local peak energy density maxx‖,φ e′ = 10−3E.

respective contributions to b′w′/〈2E ′〉, i.e. − cos α cos Θu′‖b
′/〈2E ′〉, sin α cos Θv′⊥b′/〈2E ′〉,

and sin Θu′φb′/〈2E ′〉, indicate buoyant transfer from 〈A′〉 to 〈K ′
‖〉, 〈K ′

⊥〉, and 〈K ′
φ〉 =

〈u′2φ /2〉. In the IGW case where (cos Θ, sin Θ) ≈ (0, 1) buoyant exchange occurs mainly

between A′ and 〈K ′
φ〉 ≈ 〈w′2/2〉.

6.3 NMs and SVs of a statically unstable IGW

The first set of experiments is meant to give an overview of the dynamics of modal and

nonmodal perturbations of statically unstable IGWs. For this the NMs and short-term

SVs (τ = 300s) of an IGW with a = 1.2 were used to perturb that wave. The IGW

period is P = 2π/Ω ≈ 7.87h ≈ 94τ . Among the multitude of possible NMs and SVs the
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Figure 6.3: For the statically unstable IGW (a = 1.2) with (Θ, Λ) = (89.5◦, 6km), per-

turbed by the leading NMs and short-term SVs (optimization time τ = 300s) at azimuth

angles α = 0, 90◦ with an initial local peak energy density maxx‖,φ e′ = 10−3E (see also

Fig. 6.2), the time-dependent IGW amplitude a with respect to the overturning threshold.

The IGW period is P = 7.87h.

leading structures at azimuth angle α = 0, 90◦ were taken since, as shown in chapters 4

and 5, they represent limit cases of the range of possible angles, while the NMs and SVs at

intermediate azimuth angles (0◦ < α < 90◦) show a kind of transitional behavior between

these two. A choice had to be made concerning the perturbation amplitudes. The final

decision was to chose an amplitude characterizing the peak strength of the energy density

e′
(
x‖, φ

)
=

(
u′2‖ + v′2⊥ + u′2φ + b′2/N2

)
/2 in relation to the corresponding energy density

of the IGW. From (2.10) – (2.13) one can see that the latter is uniform and identical to

E = K + A at t = 0, which is E (t = 0) = (a2/2) c2/ (sin Θ cos Θ)2. c = Ω/K is the IGW

phase velocity. In all cases reported here the initial ratio maxx‖,φ (e′) /E is 10−3, ensuring

an initial behavior in agreement with the linear theory.



6.3. NMS AND SVS OF A STATICALLY UNSTABLE IGW 123

Figure 6.4: For the initial time span 0 ≤ t ≤ 10τ of the integrations shown in Fig. 6.3

(left and right column for α = 0◦ and 90◦, top and bottom row for SV and NM), the time

development of the instantaneous amplification-rate decomposition.

Figure 6.2 shows the corresponding ratios E ′/E at t = 0. While the three other

perturbations are confined to the phase range near φ = 3π/2, i.e. the statically most

unstable region, the leading NM at α = 90◦ is quite smoothly spread over the whole

range of IGW phases and, although it has the same peak energy as the other SVs and

NM, its horizontal-mean energy E ′ is larger. As a consequence this pattern exhibits the

largest fluxes and thus also the strongest interaction with the IGW. For an analysis of the

eddy impact on the IGW the horizontal mean has been projected onto that wave via the

procedure described in appendix D. Figure 6.3 shows for all four integrations the decay

in the IGW amplitude a with respect to the overturning threshold. By far the fastest

decay is obtained after a perturbation by the leading transverse NM. This has to be put

into contrast with the growth factors the four patterns have according to the linear theory

between t = 0 and t = τ , where the NM at α = 90◦ shows the least vigorous behavior.
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Figure 6.5: For the initial time span 0 ≤ t ≤ 20τ of the integrations shown in Figs. 6.3

and 6.4, the time development of the dependence of the eddy energy on the IGW phase.

All plots show normalized values E ′/E(t = 0). The shading scale in all four panels is

identical. The contour interval is 0.1, starting at 0.1.

An interesting feature in the development of the contributions to the total eddy energy,

i.e. 〈K ′
⊥〉, 〈K ′

‖〉, 〈K ′
φ〉, and 〈A′〉 (not shown), is that in all cases but the one of the NM

at α = 90◦ the dominating term is 〈K ′
⊥〉. This is consistent with the time dependence

of the amplification-rate decomposition shown in Fig. 6.4 for 0 ≤ t ≤ 10τ . For the

three cases one sees the later phase to be dominated by a balance between energy gain

due to the counter-gradient flux of v⊥ and viscous-diffusive losses. This is in agreement

with predictions from the linear theory in chapters 4 and 5 where the corresponding

statically enhanced roll mechanism always shows up as a strong energy source. A further

agreement with the linear theory is visible in the energetics for 0 ≤ t ≤ τ where the

transient behavior with strong peak amplification rates is visible for the SVs, and a nearly

constant amplification-rate decomposition for the NMs. Also the details agree with those
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Figure 6.6: From the integration of the statically unstable IGW (a = 1.2) perturbed by

its leading short-term SV at α = 0◦, for the time between (from left to right) t = τ

and t = 2τ in steps of 0.2τ , the instantaneous IGW-phase-dependent amplification-rate

contribution γ⊥ (fat black line) from eddy fluxes v′⊥u′φ (normalized negative, thin black

line) of v⊥ against the phase-gradient in the horizontal-mean v⊥ (grey line). All quantities

have been re-scaled to make them fit into one graph. Only the relevant phase range

0.6 ≤ φ/2π ≤ 0.9 is shown.

predictions: Initially the growth of both SVs is triggered by the buoyant exchange, later

followed by growth due to Γ⊥ (statically enhanced roll mechanism) for α = 0◦ and growth

due to Γ‖ for α = 90◦, as in a statically enhanced Orr mechanism. In the latter case

finally the roll mechanism also takes over, as is also in agreement with the linear theory.

6.3.1 Parallel modes (α = 0◦)

Consistent with the initial distribution (Fig. 6.2) the eddy energy density in the two cases

for α = 0◦ (left column of Fig. 6.5) stays more or less confined to the most unstable phase

range, while splitting up into two peaks which are gradually moving away from φ = 3π/2.

The mechanism behind this is illustrated for the SV at α = 0◦ in Fig. 6.6. One sees

there γ⊥ and its two contributors, i.e. the counter-gradient flux −u′φv
′
⊥ and v⊥ (the latter

entering into γ⊥ via its phase gradient). By t = τ the fluxes have reversed the gradient

of the horizontal mean, leading to a damping of the perturbation in the innermost part

of the active region. The reversal of the internal gradient, however, has also led to an
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Figure 6.7: From the integration of the statically unstable IGW (a = 1.2) perturbed by

its leading short-term SV at α = 90◦, the time dependence of γ⊥ (top panel, contour

interval 5 · 10−3s−1) and its contributing factors, i.e. the normalized counter-gradient flux

−u′φv
′
⊥/ 〈2E ′〉 (middle, contour interval 0.1) and the phase-gradient K∂v⊥/∂φ(bottom,

contour interval 2·10−2s−1). In all panels negative values are indicated by dashed contours

and shading, and the zero contour has not been drawn. Only the phase range 0.5 ≤
φ/2π ≤ 1 is shown.

increased gradient at the edges of the active region, so that there the perturbation can

continue to grow. By t = 1.2τ it has thus led to small subregions on the internal side of

the edges of the active regions where the same repeats itself on a smaller scale. At the

same time the momentum fluxes, damped in the internal region, but further excited on

the outside, push the increased gradients at the edges farther out. This process continues,

and thus leads to the energy-density distribution observed in Fig. 6.5. At a later phase

the fluxes have reduced the gradients in v⊥ enough so that the growth in eddy energy is

stalled. Even later, however, it bursts up again (near t = 9τ , e.g.). A closer analysis can
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Figure 6.8: From the integration of the statically unstable IGW (a = 1.2) and its leading

NM at α = 90◦, the time dependence of the four eddy energy densities K ′
‖, K ′

⊥, K ′
φ,

and A′. Shown are relative values with respect to the initial IGW energy density. The

shading scale in all four panels is the same. The contour indicates regions where the

relative energy density is larger than 0.1.

explain this in terms of partially reorganized gradients ∂v⊥/∂φ allowing stronger transient

(i.e. optimal) growth of perturbations there (not shown). The NM at α = 0◦ turns out

to be similar in behavior.

6.3.2 Transverse modes (α = 90◦)

As already in its linear dynamics the SV at α = 90◦ shows in its early development

a behavior as in a statically enhanced Orr mechanism, where a combination of static

instability and counter-gradient fluxes of u‖ in the statically most unstable phase region

triggers its growth. Later the perturbations radiate away into regions where ∂v⊥/∂φ 6= 0

(see Fig. 6.5). As visible in Fig. 6.7, there a statically enhanced roll mechanism takes over
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Figure 6.9: For the statically and dynamically stable IGW (a = 0.87, no unstable NM)

at (Θ, Λ) = (89.5◦, 6km), the initial perturbation energy density of the leading SVs at

azimuth angles α = 0, 90◦ for the optimization times τ = 5min and 30min, normalized

by the spatially independent energy density E of the IGW. All four perturbations have a

local peak energy density maxx‖,φ e′ = 10−1E.

and further amplifies the perturbation by the action of counter-gradient fluxes in v⊥. Also

here edges of increased gradients K∂v⊥/∂φ form where the perturbation can experience

further transient growth. Roughly between t = τ and t = 5τ one sees the fluxes u′φv
′
⊥

oscillating about a zero mean. This is consistent with a roll mechanism without feedback

on the horizontal mean (see chapter 4). Seemingly in this phase the impact on v⊥ is

not strong enough to prevent this oscillation which later, at least at the lower edge, dies

down in favor of a permanently positive γ⊥. In the linear dynamics that mode also shows a

critical-layer behavior near φ = π/2. Although weakly discernible, it is not that important

a process in the nonlinear development of the SV at the given initial amplitude.

At equal peak energy density the most vigorous, but also the most complex mode is

the NM at α = 90◦. This one is somewhat less dominated by the statically enhanced

roll mechanism than the others. Figure 6.8 shows for 0 ≤ t ≤ P/2 the time and phase
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Figure 6.10: For the statically and dynamically stable IGW (a = 0.87, no unstable NM)

at (Θ, Λ) = (89.5◦, 6km), the time dependence of the eddy energy 〈E ′〉, normalized by

the initial IGW energy, from integrations after a perturbation by the leading SVs at

azimuth angles α = 0, 90◦ (left and right column, respectively) for the optimization times

τ = 5min, 30min (top and bottom row, respectively), with initial relative perturbation

amplitudes A2
SV = maxx‖,φ e′/E = 10−2, 10−1, and 100.

dependence of the four contributing eddy energy densities, while Fig. 6.5 shows the total.

Still, however, much of the eddy energy is in v′⊥ which maximizes near φ = π. This is the

region where for α = 90◦ the gradient ∂v⊥/∂φ in the original IGW is largest, so indeed

also here one seems to see the roll mechanism at work. Another important term is the

eddy available potential energy A′ which gets large near φ = π/2. This seems to be a case

of a critical-layer interaction similar to the one found in the linear dynamics of the leading

SV at α = 90◦ (see also chapters 4 and 5). This is further borne out by a comparison

of the divergence terms in (6.10) with ∂A′/∂t which exhibit a considerable resemblance

(also not shown), indicating that radiation and thus nonlocal effects seem to play a role

here.
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Figure 6.11: As Fig. 6.10, but now showing the time dependence of the IGW amplitude

a with respect to the overturning threshold.

6.4 SVs of a statically stable IGW

The second set of experiments addresses the nonlinear dynamics of SVs for an IGW

amplitude (a = 0.87) precluding the existence of unstable NMs. Chapter 5 describes the

linear dynamics of these SVs. It is shown that at an optimization time τ = 5min the

most strongly growing SV is at α = 0◦, with a growth factor near 10, while the so-called

global optimal, i.e. the most strongly growing SV for all optimization times, is found to

be the SV for (τ, α) = (30min, 90◦), with a growth factor near 20. Based on these results,

here simulations are discussed where the IGW has been perturbed by its leading parallel

(α = 0◦) and transverse (α = 90◦) SVs for τ = 5min and 30min. Given the finite growth

factors one expects a purely linear behavior of these at very small initial amplitude but

possibly nonlinear dynamics with feedback on the IGW at larger initial amplitude. For

an overview integrations have been done with ratios between initial peak energy density

and IGW energy density A2
SV = maxx‖,φ (e′) /E = 10−2, 10−1, and 100.
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Figure 6.12: From to the integrations of the statically and dynamically stable IGW (a =

0.87, no unstable NM) perturbed by its leading SVs (α = 0, 90◦, τ = 5min, 30min, in all

cases the initial A2
SV = 10−1), the time development of the instantaneous amplification-

rate decompositions.

For A2
SV = 10−1 the initial horizontal-mean energy density E ′ (normalized by E) of

the SVs is shown in Fig. 6.9. As one sees they are all located near φ = 3π/2. The

broadest and most energetic structure is the SV for (τ, α) = (5min, 90◦). Consistent with

this, that SV has the strongest effect on the IGW. Figs. 6.10 and 6.11 show the time

dependence of 〈E ′〉 and the IGW amplitude a for all integrations. One sees that larger

A2
SV imply a stronger decay in a, which can go as far down as 0.7, for the case of the

SV for (τ, α) = (5min, 90◦) with an initial amplitude A2
SV = 100. That case also shows a

sustained initial rise of 〈E ′〉 indicating linear behavior. For the other SVs such a strong

initial amplitude leads, however, rather quickly to a decay of the eddy energy, showing

that for these cases the initial SV amplitude is too large to allow an initial dynamics in

agreement with the linear theory. One also sees that the initial growth phase gets longer



132 CHAPTER 6. MONOCHROMATIC INERTIA-GRAVITY WAVES

Figure 6.13: From the integrations shown in Fig. 6.12, the time development of the

dependence of the eddy energy on the IGW phase. All plots show normalized values

E ′/E(t = 0). The shading scale in all four panels is identical. The contour interval is 0.1,

starting at 0.1.

as the initial SV amplitude is decreased, since a larger initial eddy energy leads to an

earlier impact of nonlinearity. Finally, as a major difference to the case of the statically

unstable IGW, the development is more rapid in the sense that the eddies have no more

than two optimization periods time to interact with the IGW before their energy decays

again.

The amplification-rate decompositions for the four integrations with initial A2
SV = 10−1

are shown in Fig. 6.12. The initial development is as in the linear theory, with an initial

energy gain due to Γb, leading via b′w′ to a growing energy in u′φ, thus enabling a statically

enhanced roll mechanism for α = 0◦ (i.e. growth of 〈K ′
⊥〉 via Γ⊥) and a statically enhanced

Orr mechanism for α = 90◦ (growth of 〈K ′
‖〉 via Γ‖). In the case of (τ, α) = (5min, 90◦)

in the late phase 〈K ′
⊥〉 gains by the same roll mechanism as described in chapter 5 and
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Figure 6.14: From the integration of the statically and dynamically stable IGW (a = 0.87)

perturbed by its leading SV for (τ, α) = (5min, 90◦) with initial amplitude A2
SV = 10−1,

the time dependence of the four eddy energy densities K ′
‖ (upper left panel), K ′

⊥ (lower

left), K ′
φ (upper right), and A′ (lower right). Shown are relative values with respect to

the initial IGW energy density. The shading scale in all four panels is the same. The

contour indicates regions where the relative energy density is larger than 0.1.

also above for a = 1.2, but in the case of τ = 30min this is blocked by a rapid decrease of

the amplification rate around t = 0.3τ , an effect which is also visible in the two cases for

α = 0◦. Seemingly nonlinear interactions stall any further growth of the eddy energy to

be expected from the linear theory. This is followed by a rise of viscous-diffusive damping

indicating an increased role from turbulent dissipation. The spatial distribution of the

eddy energy is shown in Fig. 6.13.

6.4.1 Short optimization time τ = 5min

From the two SV cases for τ = 5min the one for α = 0◦ is less spectacular. Closer in-

spection shows its initial dynamics to be quite related to the corresponding case discussed
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Figure 6.15: From the same integration as shown in Fig. 6.14, the time dependence of

the IGW-phase dependent amplification-rate contribution γb (upper left panel, contour

interval 0.01s−1) from the buoyancy flux in phase direction (lower left panel, negative

shown normalized by 2N 〈E ′〉, contour interval 0.2) against the corresponding gradient of

the horizontal mean (upper right, normalized by N , contour interval 0.01s−1). The lower

right panel shows the difference γb − b′u′φ/ 〈2E ′〉 characterizing the net growth and decay

of A′ (contour interval 0.01s−1). In all panels negative values are indicated by shading.

Only the phase range 0.5 ≤ φ/2π ≤ 1 is shown.

above for a = 1.2, with the same leading contribution from K ′
⊥ (not shown). As seen from

Fig. 6.14, the SV for α = 90◦ also shows behavior related to the corresponding structure

for a = 1.2, however with a stronger contribution from the statically enhanced Orr process

whose role in the present nonlinear integration shall be shortly documented here. First

comes a decrease in A′. As visible in Fig. 6.15, this results from a contribution γb > 0

in the statically least stable region, which for a < 1 automatically leads to a contribution

γb − b′w′/〈2E ′〉 < 0 there so that the eddy energy ends up in K ′
φ (see also chapters 4
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Figure 6.16: From the same integration as shown in Figs. 6.14 and 6.15, the time depen-

dence of the IGW-phase dependent amplification-rate contribution γ‖ (top panel, contour

interval 0.002s−1) from the flux of u′‖ in phase direction (middle, negative shown normal-

ized by 2 〈E ′〉, contour interval 0.1) against the corresponding gradient of the horizontal

mean (bottom, contour interval 0.005s−1). In all panels negative values are indicated by

shading. Only the phase range 0.5 ≤ φ/2π ≤ 1 is shown.

and 5). As in the classic Orr process this swings back after some time, here followed by

a second similar oscillation with opposite tendencies in A′ and K ′
φ. Accompanying this

is an enhanced counter-gradient flux of u′‖ (Fig. 6.16), leading to transient growth of

K ′
‖. As visible in Fig. 6.16, the effect of the eddies is to invert the gradient K∂u‖/∂φ

near φ = 3π/2, thus weakening the further growth of K ′
‖. Simultaneously the gradient is

increased at the outer edges, so that there an enhanced eddy growth is possible. Similar

to the classic Orr process the growth in eddy energy is stopped near t = τ , followed by a

decay and a weaker second oscillation of a similar kind, after which the horizontal mean

shows an increasingly turbulent structure. Also here, however, the gain in K ′
⊥ is consider-
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Figure 6.17: From the integrations of the statically and dynamically stable IGW (a =

0.87) perturbed by its leading SVs for τ = 5min (left column α = 0◦, right column

α = 90◦), the spatial dependence of v⊥ at t = τ/6 (top row), t = τ/3 (middle) and

t = τ/2 (bottom). Only the phase range 0.5 ≤ φ/2π ≤ 1 is shown. The contour interval

is 1m/s. The maximum value in the right column is between 20 and 21 m/s (all panels).

Negative values are indicated by dashed contours.

able, once again after the eddies have radiated outwards into regions where ∂v⊥/∂φ 6= 0.

Another feature visible in the later phase is an accumulation of A′ near φ = π/2, which is

a visible consequence of the critical-layer interaction predicted by the linear theory (see

Fig. 6.14).

An interesting question is why the leading transverse SV can follow its linear devel-

opment for a longer time, so that even for A2
SV = 1 a sustained corresponding phase is

observable. At least part of the answer can be read from Fig. 6.17 where the time de-

velopment of v⊥ up to t = τ/2 is shown for the parallel (α = 0◦) and the transverse SV

(α = 90◦). One sees the parallel SV developing considerably stronger gradients (note that
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Figure 6.18: As Fig. 6.17, but for τ = 30min.

λ‖ for the parallel SV is also shorter than for the transverse SV), which can lead both

to faster viscous damping and to stronger instabilities. Indeed corresponding calculations

have shown that the parallel SV in its early stage allows stronger tangent linear insta-

bilities than the other structure, so that it cannot go unimpeded through its full linear

growth phase, while the opposite is true for the transverse SV (not shown).

6.4.2 Long optimization time τ = 30min

As much in contrast to the linear theory as the stronger growth of the transverse SV vs.

the parallel SV for small τ is the second result that overall the SVs for longer τ cannot

grow considerably in eddy energy. Indeed, due to its larger initial energy the leading

parallel SV for τ = 30min has some impact on the IGW, which is however weaker than

that of the leading transverse SV for τ = 5min. The early development of v⊥ for the two

SVs analyzed here is shown in Fig. 6.18. In comparison to Fig. 6.17 one sees at the same

t/τ a stronger impact from the nonlinear advection, which already explains the reduced
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Figure 6.19: From the integrations of the statically unstable IGW (a = 1.2) perturbed by

its leading SVs or NMs at α = 0◦, 90◦, the time dependence of the eddy dissipation rate ε′.

Shown is log10[ε
′/ (mW/kg)]. The color scale is the same in all four panels. Only values

larger than 1 mW/kg are shown. The contour encloses regions with ε′ > 10mW/kg.

ability of the SVs to go unimpeded through their whole linear growth. It is just the fact

that τ is larger but the nonlinear interactions are not correspondingly smaller and thus

act faster over the normalized time t/τ which keeps these SVs from attaining the full

energy they would acquire according to the linear theory.

6.5 Comparison to observations

A detailed comparison of the breaking of a monochromatic IGW in a background with-

out vertical shear, as discussed here, with observations where these conditions are never

met in purity, will probably never be possible. Nonetheless an attempt shall be made

to point out a few observational facts indicating at least some consistency between the

theory and the real world. Some of these refer to observations of so-called ripples in the
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Figure 6.20: From the integrations of the statically and dynamically stable IGW (a =

0.87) perturbed by its leading parallel SVs for τ = 5min (top panel) or 30min (middle)

or the leading transverse SV for τ = 30min (bottom, initial amplitude in all cases A2
SV =

10−1), the time-dependent eddy dissipation rate ε′ in the phase range π ≤ φ ≤ 2π. Shown

is log10 [ε′/ (mW/kg)]. The contour interval is 1, with the lowest contour also at 1.

airglow layer, which are commonly interpreted as instability structures from GW breaking

(Hecht, 2004). The literature seems to indicate that in cases where ripples are observed

simultaneously with a statically unstable IGW (Hecht et al., 1997, 2000) they have a

tendency to propagate in a more or less transverse horizontal direction with respect to

the IGW. The wavelength of these structures is below 10km. A simulation of ripples from

a statically unstable IGW has been done by Fritts et al. (1997), where the IGW (plus

an additional HGW) has been perturbed by random noise. The results here, where the

leading transverse NM appears as the most effective perturbation of an IGW with a > 1,

might give an explanation for why the occurring ripples have the observed direction of

propagation. Additional support for this hypothesis might come from the wavelength of
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Figure 6.21: As Fig. 6.20, but now from integrations after a perturbation of the IGW by

its leading transverse SV for τ = 5min, with initial amplitude A2
SV = 10−1 (top panel) or

100 (bottom) between 0 ≤ t ≤ 5τ .

the NM (about 8km) which is consistent with the empirical results.

Another point of interest are estimates of turbulent dissipation rates where spectra

of vertical profiles of relative density fluctuations from in-situ rocket measurements are

fitted to models of the spectrum of a passive tracer advected in homogeneous isotropic

turbulence. Essentially the location of the transition from the inertial to the viscous

subrange of the spectrum is then used to determine the dissipation rate. These analyses

(Lübken, 1997; Müllemann et al., 2003) lead to values of ε in the middle atmosphere

between 1 and 1000mW/kg. Interesting is also that not in all cases turbulence can be

clearly attributed to either static or dynamic instability. The long-term development of the

eddy dissipation rates ε′ resulting from the above-discussed integrations for the statically

unstable IGW is shown in Fig. 6.19. The dissipation ε of the horizontal mean is found to

be much weaker (not shown). One sees that the former are in all four cases in the range
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Figure 6.22: For t = 40τ in the integrations shown in Fig. 6.19, half the horizontally

averaged spectra of the profiles of u‖, v⊥, uφ, and b/N in φ-direction, and the sum, i.e.

the spectrum of total energy. For better orientation the two lower panels also show a

spectral slope ∝ m−5/3, where m is the wavenumber in φ-direction.

of observed values. The eddy dissipation rates from the SV runs for the IGW with a < 1

are shown in Figs. 6.20 and 6.21. While most SVs produce values of a few 10mW/kg,

the leading transverse SV for the short optimization time can lead to dissipation rates

of a few 100mW/kg, provided its initial amplitude is large enough. SVs thus seem to

offer a possibility to explain the occurrence of turbulence in cases where neither static

nor dynamic instability predict corresponding NM growth1. Also here, however, a caveat

applies. Fig. 6.22 shows the horizontally averaged spectra of the vertical profiles (i.e.

1In passing it shall also be noted that the spatial distribution of ε′ for the short-time transverse SV

results from the action of the roll mechanism at the flanks of the maximum of v⊥, an effect not to be

expected in turbulence generated by a Kelvin-Helmholtz layer. It is also interesting that it stays clearly

away from the phase region φ = π/2 which can be explained via the critical-layer effect predicted by the

linear theory
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in φ-direction) of all four model variables at t = 40τ from the integrations of the IGW

with a = 1.2 perturbed by its leading parallel or transverse SV or NM. The dominance

of K ′
⊥, noted before in all integrations up to the one after perturbing the IGW by its

leading transverse NM, obviously extends down into the viscous subrange, and also at

all scales u‖ carries more energy than uφ. Similar results are found for the cases with

a < 1 (not shown). This anisotropy might point to either (1) a limitation of the 2.5D

approach taken here or (2) a fundamental property of turbulence from IGW breaking.

A corresponding analysis is beyond the scope of this study but at the present stage one

should at least keep this apparent inconsistency with the basic assumptions behind the

retrieval of turbulent dissipation rates from the spectra of density fluctuations in mind.

Nonetheless, the author sees the agreement in the orders of magnitude between empirical

and theoretical dissipation rates still as an indication of consistency between theory and

measurements.

6.6 Summary

As part of an effort to construct a picture of the nonlinear interaction between IGWs and

their leading NMs and SVs this chapter reports corresponding direct numerical simulations

for IGWs which are either statically unstable (amplitude a with respect to the overturning

threshold larger than 1) or dynamically and statically stable (a < 1, Ri > 1/4, no NM

instabilities). The two spatial dimensions of the problem are given by the direction along

the IGW wave vector and the horizontal wave vector of the perturbation, while the velocity

field, simulated together with the buoyancy field within the framework of the nonlinear

Boussinesq equations, is fully 3D. This type of 2.5D approach is also able to handle

azimuth angles α 6= 0. The model parameters are typical for the upper mesosphere.

An interesting aspect of the results is how much of the observed dynamics can be

understood based on the corresponding linear theory in chapters 4 and 5. An especially

prominent role in the turbulence onset can be attributed to the statically enhanced roll

mechanism, where the counter-gradient flux of the eddy horizontal velocity component

v′⊥, in the direction perpendicular to the horizontal direction of propagation of the per-
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turbation, leads to a corresponding gain in the eddy kinetic energy, thus producing a

considerable anisotropy in the turbulent velocity field. This must be seen in connection

with the role of the elliptic polarization of the IGW horizontal velocity field. It pro-

vides the key for understanding the spatial distribution of the eddy energy and turbulent

dissipation with respect to the wave phase. This refers on the one hand to its role in

determining where the roll mechanism can work. On the other hand it also leads, as

in the linear theory, to critical layers for the transverse perturbations (α = 90◦), half

a wavelength away from the statically least stable location, which the flux of turbulent

energy typically does not cross. The present study thus adds interesting facets to the

results from other studies on turbulence onset via Kelvin-Helmholtz instabilities (with a

one-dimensional shear) where these phenomena are not visible.

In contrast to expectations from the linear theory, however, for a < 1 the leading SVs

for longer optimization times (τ = 30min) are not able to grow to the largest observed

eddy energies. At initial SV amplitudes large enough for triggering nonlinear behavior,

nonlinear advection acts too fast for allowing these perturbations to go through their full

linear growth phase. In a comparison between the impact of the remaining leading parallel

(α = 0◦) or transverse short-time SVs (for τ = 5min) or NMs (for a > 1) on the IGW

the overall finding is that, at equal local peak energy density, the more vigorous effect

comes from the spatially broadest structure (in IGW-phase direction), which is the leading

transverse NM for a > 1 and the leading transverse SV for a < 1. These structures, with

horizontal wavelengths roughly of the order of the total wavelength of the IGW, are the

most energetic and thus have the largest eddy fluxes with a corresponding effect on the

horizontal mean. They might help explaining the wavelengths and preferentially more

or less transverse orientation of airglow ripples typically observed in conjunction with a

statically unstable IGW (Hecht et al., 1997, 2000).

One should also note that the reduction of the IGW amplitude is stronger than to be

expected from standard static or dynamic stability considerations. Both for the case of

the IGW initially statically unstable and statically and dynamically stable the amplitude

is reduced to near 0.7, although a removal of dynamically unstable regions with Ri < 1/4

would only necessitate a reduction to near 0.9 (see Fig. 2.2). For SVs this depends
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on the initial strength of the perturbation which is not taken into account in present

parameterization schemes for the impact of gravity waves on the large-scale circulation.

Finally, the resulting turbulent dissipation rates are in all cases examined within

the range of values determined from the spectra of vertical density fluctuation profiles

(Lübken, 1997; Müllemann et al., 2003), even for the case a = 0.87. Optimal pertur-

bations thus indeed seem to be a candidate for the explanation of turbulence onset in

IGWs where the wave amplitude precludes NM instabilities. A major difference between

statically unstable and stable IGWs is that the turbulence in the latter occurs in rather

short bursts over a time span of a few Brunt-Vaisala periods N/2π, while in the former

the turbulent layer is much more persistent.



Chapter 7

Monochromatic high-frequency

gravity waves

The final aspect investigated in this study is the nonlinear dynamics occurring after the

perturbation of a HGW by its most important NMs or SVs. With regard to the impact of

NM perturbations much has already been covered by Fritts et al. (2003, 2006) who report

the results from comprehensive 3D simulations of a statically stable or unstable HGW

perturbed by low-level random noise. As was to be expected from the linear theory, they

find that the wave amplitude is reduced way below the static instability threshold. For

a statically unstable HGW the final amplitude is near a = 0.3. A statically stable HGW

is removed nearly completely while another GW with more vertical phase propagation is

generated. The question here therefore cannot be what happens to the HGW but how

it happens. It is of interest whether a distinct perturbation of the HGW by one of its

NMs can produce the same behavior, and then also which NM this is. Beyond that one

can ask about details of the wave breaking process as to where and how the turbulent

energy is generated, and also what this means for the final turbulent dissipation rates,

once again for the comparison to the observations. Finally, also the dynamics occurring

after the perturbation of the HGW by its leading SVs shall be examined.

The model within which this is done is completely identical to the one used for the

calculations in chapter 6, including the special reference system chosen which also enables

the examination of the impact of non-parallel perturbations on the HGW within a 2.5D

145
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Θ/◦ a Λ/km perturbation type τ/min α/◦ λ‖/km n‖ nφ

70 1.40 6 NM (1) - 0 1.995 576 2304

70 1.40 6 NM (1) - 90 6.310 2304 2304

70 1.40 6 SV 5 0 0.631 288 2304

70 1.40 6 SV 5 90 0.501 144 2304

70 1.20 6 NM (1) - 0 1.995 576 2304

70 1.20 6 NM (1) - 90 6.310 2304 2304

70 1.00 6 NM (1) - 0 3.162 1152 2304

70 1.00 6 NM (1) - 90 5.012 2304 2304

70 0.85 6 NM (1) - 0 3.162 1152 2304

70 0.85 6 NM (1) - 90 5.012 2304 2304

70 0.70 6 NM (1) - 0 3.981 1152 2304

70 0.70 6 NM (2) - 0 12.589 4608 2304

70 0.70 6 NM (1) - 90 12.589 4608 2304

70 0.70 6 NM (2) - 90 5.012 2304 2304

70 0.70 6 SV 5 0 1.259 576 2304

70 0.70 6 SV 5 90 0.794 288 2304

Table 7.1: Model extent λ‖ in the horizontal and Λ in HGW-phase direction, as well as

the corresponding numbers of grid points n‖ and nφ, for all discussed integrations, of an

HGW with an amplitude a with respect to the overturning limit, perturbed by either its

leading SV (optimization time τ) or its leading (1) or a secondary (2) NM, at azimuth

angle α. Λ is also the HGW wavelength, while λ‖ agrees with the horizontal wavelength

of the respective perturbations. Θ is the inclination angle between the HGW wave vector

and the horizontal.

simulation. Again the f -plane is located at 70◦N, the Brunt-Vaisala frequency is N =

2 · 10−2s−1, and viscosity and diffusivity are ν = µ = 1m2/s. The HGW parameters

together with those from the NMs and SVs, and the model resolution used in the different

simulations are summarized in table 7.1
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Figure 7.1: For HGWs with amplitude a between 0.2 and 1.4, the growth rate of the

leading parallel (α = 0◦) or transverse (90◦) NM with horizontal wavelength λ‖ and

corresponding wavenumber k‖ = 2π/λ‖. Wavelength and inclination angle for all HGWs

are (Λ, Θ) = (6km, 70◦). K = 2π/Λ is the wavenumber of the HGW.

7.1 Perturbation of the wave by normal modes

All simulations, of the HGW either perturbed by a NM or a SV, have been done with

an HGW at Θ = 70◦. This is the most upwardly directed HGW analyzed in chapter

5 and it also comes close to the wave studied by Fritts et al. (2003, 2006) which has

Θ = 72◦. The linear analysis shows that the leading NMs are at either α = 0◦ (parallel

NMs) or α = 90◦ (transverse NMs). The corresponding growth rates are shown in Fig.

7.1 for various a between 0.2 and 1.4. One sees that for a > 1 the most quickly growing

NM of all is transverse. As shown below (Figs. 7.4 and 7.9) this results from a positive

contribution of both shear production and convective production to the growth of the

transverse NM. In contrast to this the parallel NM is fuelled by convective production

but there is a damping contribution from shear production. For a < 1 the parallel NMs

take the lead since for these the especially positive impact of the convective production

is stronger than for the transverse NMs, while in both modes the shear production does

not act as a damping term. At a ≤ 0.6 transverse NM growth is negligible, so that
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Figure 7.2: From simulations of the nonlinear development of HGWs with amplitude a

between 0.7 and 1.4 after a perturbation by the leading (or leading secondary, for a = 0.7)

parallel (left panel) or transverse NM (right), the time development of the total energy

of the eddies, i.e. the deviations from the horizontal mean, normalized by the horizontal-

mean energy. The wave period P is 920s. For easier comparison time has also been

normalized by the SV optimization time τ = 5min used below.

for these HGWs the instability seems to be predominantly determined by 2D wave-wave

interactions (McComas and Bretherton, 1977; Klostermeyer, 1991; Lombard and Riley,

1996). The reader should also note the secondary growth-rate peak for parallel NMs at

large wavelengths. As will be seen below the corresponding NMs can be quite relevant

for low-amplitude HGWs.

As in chapter 6 the resulting fields are split up into the mean over x‖ (the ”hori-

zontal” mean, which initially is identical to the basic HGW) and the residual between

the total and the horizontal mean (the ”eddies”, initially identical to the perturbation).

The eddy energy from model integrations of the HGW (with a between 0.7 and 1.4)

after a perturbation by one of the NMs is shown in Fig. 7.2. In all cases the initial

amplitude of the NM was chosen so that the peak ratio between its local energy density
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Figure 7.3: From the same integrations as shown in Fig. 7.2, the amplitude of the basic

HGW with respect to its overturning threshold.

e′
(
x‖, φ

)
=

(
u′2‖ + v′2⊥ + u′2φ + b′2/N2

)
/2 and the corresponding field e from the HGW1 is

A2
NM = maxx‖,φ (e′) /e = 10−2. As initial perturbation of the HGW either the leading NM

was taken or (for a = 0.7) the leading large-scale NM (see also table 7.1). In agreement

with the linear theory the initial growth is at a > 1 strongest for α = 90◦, leading to a

transient phase with more eddy energy than energy in the horizontal mean, followed by

eddy-energy decay, so that the final state is again dominated by its horizontal-mean con-

tribution. At a < 1 strongest growth is observed for the parallel NMs. Only for a = 0.7

the eddy energy rises over that of the horizontal mean, which is a temporary effect for

the transverse leading NM, but permanent for the large-scale parallel NM.

Following the procedure outlined in the appendix D the horizontal mean has been

decomposed into its contributions from GWs with upward and downward moving phase

(among the latter the basic GW) and vortical modes. The time dependent amplitude

of the basic GW with respect to its overturning threshold is shown in Fig. 7.3. Not

surprisingly, strong wave damping is found in the simulation of the HGWs at a ≥ 1

1Also here one has that e is at t = 0 uniform and identical to E = K + A, which is E (t = 0) =
(
a2/2

)
c2/ (sinΘ cos Θ)2 (see chapter 6).
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Figure 7.4: From the integrations from Figs. 7.2 and 7.3 with initial a = 1.4, the decom-

position of the total amplification rate Γ into its contributions from convective production

Γb, shear production ΓS, and viscous-diffusive damping Γd.

perturbed by their respective leading transverse NM. For all these cases a final wave

amplitude a∞ ≈ 0.3 is reached. This is in good agreement with the results of Fritts

et al. (2003, 2006) who have done fully 3D simulations of a randomly perturbed HGW.

Apparently essential aspects of the breaking process are also captured in a 2.5D DNS as

here. One should also note that the final HGW amplitude cannot be derived from the

linear stability analysis, since the wave instability to transverse perturbations is already

virtually halted near a = 0.5. As visible in Fig. 7.1, below this amplitude the HGW

has no unstable NMs anymore. Seemingly there is an overshooting beyond this linear

threshold which is completely due to nonlinear dynamics. Another interesting aspect is

that wave decay is quite ubiquitous, even for initial a < 1. These cases are characterized

by a predominant impact from the parallel NMs. The respective 2D behavior leads for

initial a = 0.7 to a rather strong damping down to a∞ ≈ 0, if the initial perturbation

is chosen to be the leading large-scale NM. Also this is in interesting agreement to the

results from Fritts et al. (2003, 2006). Notably, however, the leading transverse NM also

has a strong effect on the HGW, by leading to a wave decay down to a∞ ≈ 0.2.
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Figure 7.5: From the simulation of the HGW with a = 1.4 perturbed by its leading

transverse NM, the dependence of the four energy densities on time and HGW phase.

Shown is the ratio between the respective energy density and the initial total energy

density of the HGW. Contours are in steps of 0.1, with the lowest contour at 0.1

7.1.1 Statically unstable HGWs

Some information on the energetics of the 2.5D breaking process for initial a ≥ 1 can be

drawn from Fig. 7.4 where the amplification-rate decomposition according to (6.11), with

a shear-production contribution ΓS = Γ‖ + Γ⊥ ≈ Γξ, is shown for a = 1.4. One sees how

the leading transverse NM is preferentially excited by to the positive impact of both shear

production and convective production, the former being larger than the latter, whereas

the leading parallel NM is hampered in its growth by a damping contribution from shear

production. After about one HGW period P the linear growth phase ends, followed by

comparatively strong viscous-diffusive damping of the eddies. While then a new state

of equilibration has been reached for α = 90◦, the other case shows even by t = 4P a

rather strong variability in the total growth rate. One recognizes an especially positive
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Figure 7.6: From the same integration as shown in Fig. 7.5, the dependence on time and

HGW phase of the tendency of the total eddy kinetic energy density (upper left panel),

total shear production (lower left), the truly vertical buoyancy flux (upper right), and the

sum of all contributions to ∂K ′/∂t up to the energy flux divergence (lower right). All

fields have been divided by 〈2E ′〉. The contour interval is 2 · 10−3s−1. The zero contour

is not drawn. Negative values are indicated by dashed contours and shading.

impact from the convective production, as in the initial NM. Indeed, given the transient

HGW amplitude in Fig. 7.3 and the corresponding positive growth rates in Fig. 7.1 for

parallel NMs at λ‖ ≥ 1km, one expects continuing eddy growth at larger scales. At the

same time the increased viscous-diffusive damping indicates that some eddy energy has

cascaded down to smaller scales where it can be dissipated. Thus the late amplification-

rate composition for α = 0◦ indicates a continuing competition between linear growth

at large eddy scales and nonlinear energy transfer to smaller scales where viscosity and

diffusion remove the eddy energy, hence the transient equilibration at a > 0 although NM

instabilities there still exist.
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Figure 7.7: From the same integration as shown in Fig. 7.5, the dependence on time

and HGW phase of the tendency of the total eddy available potential energy density

(upper left panel), total convective production (lower left), the negative truly vertical

buoyancy flux (upper right), and the sum of all contributions to ∂A′/∂t up to the energy

flux divergence (lower right). All fields have been divided by 〈2E ′〉. The contour interval

is 2 · 10−3s−1. The zero contour is not drawn. Negative values are indicated by dashed

contours and shading.

The spatial distribution of the eddy energy in the simulation of the HGW with a = 1.4

perturbed by its leading transverse NM is shown in Fig. 7.5. The corresponding spatially

dependent exchange terms are given in Figs. 7.6 and 7.7. Most prominent in the kinetic

energy is the temporary accumulation of K ′
⊥ near φ = π, resulting from a corresponding

shear production. The latter is due to a transient sharp edge in v⊥ = uξ near this location

(not shown). One also sees that the energy flux divergence, i.e. the residual between

∂K ′/∂t and the right-hand side of (6.8), and the buoyant exchange term tend to smoothen

the final distribution. Similarly the main growth of A′ is between φ = 0.6π and 0.8π, due

to a temporary deformation of the buoyancy field in the horizontal mean, with shifts of the
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Figure 7.8: From the same integration as shown in Fig. 7.5, the dependence on time and

HGW phase of log10 (D′ [mW/kg]) (left panel) and log10 (ε′ [mW/kg]) (right). Contours

are in steps of 1, beginning at 1.

leading gradients into this region (also not shown), so that the convective production also

mainly acts there. The corresponding turbulent diffusion rate D′ and dissipation rate ε′,

especially the latter of interest for comparisons to the available observations, are shown in

Fig. 7.8. Downstream of the regions of largest turbulent energy these also maximize, with

values of several 102mW/kg. Both terms contribute nearly equally to the total energy

sink for the turbulence, however with an especially strong transient peak in D′. A feature

reminiscent of the behavior of SVs (see below) is that in the turbulent phase the main

structures move upwards at a velocity very close to minus the phase velocity of the HGW,

i.e. by 2π in one HGW period P . Remembering that the coordinate system is moving

downwards at exactly this velocity one can conclude that the turbulent structures seem

to be frozen in the flow while the HGW moves over them.

7.1.2 Statically stable HGWs

The amplification-rate decomposition of the integrations of the perturbed HGW with

a = 0.7 resulting in the strongest decay of that wave, i.e. after a perturbation by the
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Figure 7.9: As Fig 7.4, but showing the amplification-rate decomposition from a simula-

tion in which an HGW with a = 0.7 was perturbed by its leading parallel large-scale NM

(left panel), or its leading transverse NM (right).

leading large-scale parallel NM or the leading transverse NM, are shown in Fig. 7.9.

Initially both shear production and convective production act as instability sources. For

the case of the parallel NM the latter acts especially strongly, so that the resulting growth

rate is larger. The transition to the turbulent phase with strong viscous-diffusive losses

is later, near t = 3P , than for initial a > 1. The local analysis analogous to Figs. 7.5

– 7.7 gives similar results as there, however with a stronger impact from the energy flux

divergence (not shown) so that the dynamics of the corresponding NMs is of a more global

kind.

Perhaps a better understanding can be derived by getting back, similar to Fritts et al.

(2006), to the findings from the classic linear analyses (Klostermeyer, 1991, e.g.) that at

low HGW amplitude the dynamics of its NMs can be interpreted via resonant wave-wave

interactions. For this the data have been decomposed into the free NMs of the Boussinesq

equations, with two GWs (with positive or negative intrinsic frequency) and a vortical

mode for each combination of horizontal wavenumber κ‖ and vertical wavenumber µ.

Details are given in the appendix D. The decomposition of the the parallel NM (κ‖ = k‖)

is shown in the left panel of Fig. 7.10. One sees contributions from both GW types at
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Figure 7.10: From the integration of the HGW with initial a = 0.7 perturbed by its leading

large-scale parallel NM, the decomposition of the energy density of the eddy component

at the horizontal wavenumber κ‖ = k‖ into its contributions from the corresponding free

NMs at the wavenumbers µ in HGW-phase direction. The contributing free NMs are

GWs with positive and negative intrinsic frequency, and the vortical mode. The left

panel shows the decomposition of the parallel NM (i.e. at time t = 0), while the right

panel shows a late state at t = 7.8P . There all energies have been divided by a factor 40.

wavenumbers between µ = −4K and µ = K. A resonant first-order wave-wave interaction

between any two of these modes (labelled by the indices 1 and 2) and the basic HGW is

possible if they have wavenumbers k1,2 and frequencies ω̃1,2 so that

k1 ± k2 = (0, 0, K) (7.1)

ω̃1 ± ω̃2 = 0 , (7.2)

remembering that in the reference system chosen the basic HGW has zero frequency.

The respective modal frequencies are shown in Fig. 7.11. One sees two possible pairs of

modes allowing a resonant difference interaction. These are the GW with positive intrinsic

frequency (GW+) at µ = −3K and the GW with negative intrinsic frequency (GW-) at

µ = −2K, and the GW+ at µ = −2K and the GW- at µ = −K. Their eigenfrequencies

are also sufficiently close to that of the unstable parallel NM (0.016 s−1) to allow an

interpretation of the dynamics of the NM via resonant wave-wave interactions. Similar
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Figure 7.11: Within the coordinate system chosen here for the representation of the

dynamics of the basic HGW so that it is stationary, the eigenfrequencies of the free NMs

(GWs with positive and negative intrinsic frequency, and the vortical mode) at horizontal

wavenumber κ‖ = k‖ and vertical wavenumber µ.

findings also apply to the leading transverse NM, there however with the dominant effect

coming from resonant interactions between a free GW, a vortical mode, and the basic

HGW (not shown).

The structural development of the buoyancy fields in the two integrations is shown

in Fig. 7.12. In the case of the HGW perturbed by the large-scale parallel NM one

sees a transition from the highly turbulent phase into a late state which is characterized

by a dominance of the horizontal and vertical wavenumbers κ‖ = ±k‖ = ±2π/λ‖ and

µ = ±2K, respectively. The decomposition of the horizontal-wavenumber part at κ‖ = k‖

into the various free NMs at the respective vertical wavenumbers (right panel of Fig.

7.10) identifies as dominant structure the GW- at µ = −2K, which seemingly survives

as the dominant component from the various contributors in the resonant triads in the

initial NM, followed by a contribution from the GW- a µ = 0, and one from the GW+

at µ = −K, while the initially especially prominent GW- at µ = −3K has virtually

disappeared. Transforming the results back into the geostationary reference frame one

can find that the resulting wave (GW- at µ = −2K) has an inclination angle Θ ≈ 83◦, and
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Figure 7.12: From the two integrations shown in Fig. 7.9, the normalized buoyancy field

b/N at the three time instances t = 0 (top row), t = 4.5P (middle), and t = 7.8P

(bottom). Units are m/s.

thus has a steeper phase propagation than the original HGW. Seemingly the initial NM

structure can only give limited clues on the final outcome of the wave-wave interactions

here. Lastly also the turbulent-diffusive losses shall be documented, which is done in Fig.

7.13. One sees that also here both the eddy dissipation and the eddy diffusion reach

values of several 10mW/kg, which is for the turbulent dissipation rates quite typical for

turbulence measured in the middle atmosphere (Lübken, 1997; Müllemann et al., 2003).

7.2 Singular vectors

For an overview of the possible impact of SVs on HGWs the latter have, at initial a =

0.7, 1.4 been perturbed by their leading parallel and transverse SVs for an optimization

time τ = 5min, i.e. about one Brunt-Vaisala period 2π/N . As shown in chapter 5 the
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Figure 7.13: From the integrations shown in Fig. 7.9 after a perturbation of the HGW

with a = 0.7 by the leading large-scale parallel NM (upper row) or the leading transverse

NM (lower row), the dependence of the turbulent eddy diffusion rate D′ (left column) and

the turbulent dissipation rate ε′ (right) on time and HGW phase. Shown is log10 of these

quantities in units of mW/kg. The contours are in steps of 1, beginning at 1.

strongest optimal growth for this τ is found for α = 90◦. The horizontal wavelengths of all

SVs, identical to the respective horizontal domain extension in the simulation, are given

in table 7.1. For larger τ the leading SV converges more and more towards the leading

NM. In the present cases the SVs have much shorter horizontal scales than the leading

NMs so that also the NM behavior they might finally converge to cannot be as vigorous

as shown above. For an oversight the initial strength of the SVs has been chosen so that

its peak relative energy density A2
SV, defined in analogy to A2

NM above, was either 10−2,

10−1, or 1.

The time dependent HGW amplitude obtained in the simulations is shown in Fig.

7.14. Clearly the SV impact on the HGW is weaker than that from the leading NMs.
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Figure 7.14: From the simulations of an HGW with an initial amplitude with respect to the

overturning threshold a = 0.7 (black lines) or 1.4 (grey) perturbed by its leading parallel

(left panel) or transverse (right) SV (for optimization time τ = 5min) with relative peak

energy density A2
SV either 10−2, 10−1, or 100, the time dependence of the HGW amplitude

developing after the perturbation. The wave period is P = 920s.

This has several reasons. One is that the SV itself has not only smaller horizontal, but

also smaller vertical scales. As also shown in chapter 5, all SVs have more or less the

form of sharply peaked pulses with a very narrow extent in HGW phase. Therefore their

impact on the HGW can only be very local, the more so as the convergence of the SV

towards the leading NM (at the horizontal wavelength of the SV) is typically very slow

(see chapter 5). Therefore the SV impact is typically hampered by nonlinear processes

before it can show a major effect. An example is shown in Fig. 7.15 where one can

see the time development of the amplification rate decomposition from the simulation of

the HGW with a = 1.4 perturbed by its leading parallel or transverse SV. The feature

of interest here is the rather early departure from the regular behavior characterizing

the linear growth phase documented in chapter 5, especially the early impact from the

viscous-diffusive damping.

The latter has, however, a measurable effect. As an example, Fig. 7.16 shows the

dependence of ε′ and D′ on time and HGW phase, from the integration of the HGW
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Figure 7.15: From the integrations in Fig. 7.14, of the HGW with a = 1.4 perturbed

by its leading parallel (top row) or transverse (bottom) SV with initial relative peak

energy density A2
SV either 10−2 (left column) or 100 (right), the decomposition of the

instantaneous amplification rate Γ into its contributions from convective production Γb,

shear production ΓS, and viscous-diffusive losses Γd.

perturbed by its leading transverse SV with A2
SV = 100. One sees that values of several

100mW/kg are reached, and that this happens earlier than in the NM cases. As was

to be expected from the linear dynamics, both ε′ and D′ are confined to sharply peaked

pulses. These are apparently moving through the model domain at the negative phase

speed of the HGW, i.e. in reality they seem to be frozen in the flow while the HGW moves

over them. Perhaps interesting to see is that repeatedly periods of little viscous-diffusive

damping, when the SV is near φ = π, alternate with periods of stronger damping, when

the SV is near φ = 0, 2π. Returning to Fig. 7.15 one sees that the stronger active phases

are preceded by a positive energy input from mainly convective production, when the SV

’passes’ φ = 3π/2, but also shear production near φ = 2π. Similar results are obtained
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Figure 7.16: From the integration of an HGW with a = 1.4, perturbed by its leading

transverse SV for τ = 5min (initial relative peak energy density A2
SV = 100), as also in

Figs. 7.14 and 7.15, the dependence of the turbulent eddy diffusion rate D′ (left panel)

and the turbulent dissipation rate ε′ (right) on time and HGW phase. Shown is log10 of

these quantities in units of mW/kg. The contours are in steps of 1, beginning at 1.

for the HGW with initially a = 0.7, then however with values for ε′ and D′ of the order of

several 10mW/kg (not shown). SVs thus seem to be of minor importance for the problem

of HGW damping, but they can still lead to considerable turbulent dissipation rates within

the range of observed values. Especially the fact that in the mesosphere turbulence is often

observed in rather thin layers (Müllemann et al., 2003; Strelnikov et al., 2003) indicates

that SVs might there still be of relevance for the problem of turbulence onset. One

should also remember that the range of dissipation rates measured there is between 1 and

103mW/kg, which the simulations again seem to be consistent with.

7.3 Summary

The primary nonlinear dynamics resulting from a perturbation of an HGW (Θ = 70◦)

by its most important NMs or SVs has been studied in this chapter by direct numerical
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simulations (DNS). Since the effect of possible secondary instabilities has been neglected,

the DNS could use the same 2.5D approach as in the previous chapter. Viscosity and

diffusivity, as well as the HGW wavelength were again given values typical for the upper

mesosphere.

Similar to the results from Fritts et al. (2003, 2006) it is found that both statically

unstable and statically stable HGWs can decay considerably after a perturbation by

NMs. For statically unstable HGWs the NM of greatest impact is the leading transverse

NM which is driven both by shear and convective production, but more by the former.

Interestingly the same final HGW amplitude a∞ ≈ 0.3 is reproduced in the present 2.5D

approach as identified by the authors above in their 3D simulations. One might thus

hope that 2.5D simulations can be a helpful tool in studies of GW breaking which might

supplement the most comprehensive analyses using 3D DNS.

Also in agreement with the authors above the instability of a statically stable HGW

ends in the transfer of energy from that wave into another parallel wave (α = 0◦) which has

(in the present case) about half the wavelength in the direction of HGW phase propaga-

tion, and twice the wavelength in the direction orthogonal to that, yielding an inclination

angle near Θ ≈ 83◦. The turbulent, seemingly resonant, wave-wave interaction thus re-

sults in energy transfer from the HGW into another one with steeper phase propagation.

The present study teaches us that this process is due not to the impact of the leading

parallel NM but of a larger-scale parallel NM. A comparison between the impact of the

two patterns indicates that the former is, due to its smaller scales, impeded earlier in

its growth by nonlinear secondary instabilities, resulting in rapid energy transfer to even

smaller scales and viscous-diffusive losses (not shown).

As for the impact of the most prominent short-term SVs, it is found that these are

considerably less effective in initiating HGW decay. The main reason for this is the

smaller scale of SVs in comparison to NMs, so that their effect on the HGW is only local

and thus slower (as the HGW propagates over the SV). This is rather soon blocked by a

nonlinear decay of the SV, resulting in turbulent dissipation and diffusion of magnitudes

which are, as well as those obtained from the NM integrations, often in the range of values

(between 1 and 103mW/kg) observed in the mesosphere (Lübken, 1997; Müllemann et al.,
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2003). Also here, however, a similar caveat as in chapter 6 applies in that also the spectra

obtained from the simulations in this chapter exhibit a considerable anisotropy between

the horizontal and vertical flow-field components (not shown) which is inconsistent with

the basic assumptions behind the retrieval of the turbulent dissipation rates from relative

density fluctuations measured by in-situ rocket soundings. Beyond that, perhaps an

interesting aspect is that the turbulence from SV decay is typically, as the SV itself, more

locally confined. SVs might thus be helpful in explaining the layering often observed in

mesospheric turbulence.



Chapter 8

Summary and conclusions

With the intent to improve our present understanding of GW breaking in the atmosphere

and ocean the work summarized in this thesis has first delved into the corresponding linear

theory, and than moved on to extend its results to the nonlinear domain. Perhaps a case

to be made on that basis is how helpful it can be to take this kind of systematic approach.

It turned out to be decisive for finally being able to also interpret many features of the

complex nonlinear simulations. The outcome is a clearer and more complete oversight of

the characteristics of GW breaking than we had before.

An important extension of the linear theory has been achieved by the application

of generalized stability theory (Farrell and Ioannou, 1996a,b) to GWs. The thesis gives

an oversight of the possible optimal perturbations (or SVs), investigates their dynamics,

and compares them, where applicable, to the corresponding NMs. It is found that quite

strongly growing SVs exist even in cases where, as for statically and dynamically stable

IGWs, no NM instabilities are found. With regard to the interpretation of turbulence

measurements in cases without a clear respective instability (Müllemann et al., 2003, e.g.)

this enlarges the range of possibilities we have. So far the only way to understand such

measurements on the basis of GW breaking was to assume the existence of an unstable

HGW. Indeed, the DNS show that the breaking of statically and dynamically stable

IGWs initialized by SV perturbations can lead to turbulent dissipation rates consistent

with available observations. It also leads to an IGW decay far below presently employed

instability thresholds which present parameterization schemes do not yet have on the list.
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Certainly this is conditioned on the GW being exposed to perturbations of sufficient initial

strength, but a scenario where this could be the case is that of the GW moving into a

region with fossil turbulence from a previous breaking event.

Conceptually the linear theory turns out to be quite enlightening. Especially attractive

is the possibility to understand important aspects of the core dynamics of SVs for IGWs

on the basis of an analytic theory for a stratified shear layer with reduced static stability.

Based on related work by Farrell and Ioannou (1993a,b) and Bakas et al. (2001) for

shear layers without reduced static stability the fundamental processes at work are found

to be the statically enhanced Orr and roll mechanism, each of them interacting in a

specific way with the shear in the wave, but substantially aided in doing so by a vertical

convective transport due to the reduced static stability. Based on the analytic theory

important aspects of the non-simplified optimal-growth process can be understood, be it

with regard to the dependence on the optimization time, the detailed mechanisms, or the

NM interference at the heart of the whole.

Going beyond the shear-layer approximation, other phenomena are identified in the

linear theory for SVs of IGWs which help in interpreting the nonlinear DNS. Among these

is a merging of the Orr and roll mechanisms in the dynamics of the transverse short-term

SV which turns out to be the most effective perturbation in the nonlinear simulations of

statically and dynamically stable IGWs. This perturbation also exhibits an interesting

critical-layer behavior, impeding a substantial radiation of the SV from the IGW, but also

explaining the transport barrier for the turbulent energy found in corresponding DNS.

As another linear mechanism, ducting generally prevents the other short-term SVs

from radiating, but for SVs for longer optimization times it is shown and explained how

all but the transverse SVs take a time development leading to the radiation of secondary

GWs by a basic IGW packet, although the latter does not exhibit any NM instability.

This offers an alternative mechanism for a mesospheric GW source to the excitation of

gravity waves by ageostrophic body forcing resulting from GW breakdown (Vadas and

Fritts, 2001; Zhou et al., 2002) or by normal-mode instabilities of statically unstable IGWs

(Kwasniok and Schmitz, 2003). Predictions are made about the scale dependence of this

radiation on its azimuth angle which might be checked in empirical tests.
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Special emphasis should be given to the importance of the roll mechanism. It turns out

that the spatial distribution of the turbulence in a decaying IGW is to a large part con-

trolled by the action of this mechanism in the elliptically polarized flow field of the IGW.

A specific feature resulting from this is that a perturbation preferentially grows in turbu-

lent energy in the horizontal flow component transverse to its direction of propagation,

but parallel to the sheared wind, once again offering the possibility of an experimental

test. It thus even leads to a conspicuous anisotropy in the turbulent spectra which might,

however, disappear once the impact of secondary 3D instabilities is taken into account.

Similarly, the decay of HGWs can also be understood better on the basis of the linear

theory. In agreement with corresponding predictions transverse NMs turn out to be most

important for the breaking of a statically unstable HGW, and parallel NMs take this

role for statically stable HGWs. Due to its strong local confinement the SV feedback

on the HGW is rather weak. As also visible in the linear theory, however, the SVs take

the character of thin turbulent layers frozen in the flow, with dissipation rates which

can, depending on the initial perturbation level, be sufficiently strong so that SVs might

contribute to the explanation of the conspicuous layering of turbulence often seen in the

middle atmosphere (Müllemann et al., 2003; Strelnikov et al., 2003, e.g.).

A special case shall also be made for the type of DNS done here. Based on the linear

results it is 2.5D, i.e. the GW is perturbed specifically by either a NM or a SV, so that

the spatial dependence is restricted to the direction of phase propagation of the GW and

the horizontal direction of propagation of the perturbation. The simulated velocity field,

however, is fully 3D, and one is not limited to the simulation of the impact of perturbations

propagating in the same plane as the GW. True, one might expect that 3D secondary

instabilities will eventually modify the results from these DNS, but the latter provide a

reference frame within which fully 3D simulations can be discussed more easily. As an

example, several findings from the 3D DNS of breaking HGWs by Fritts et al. (2003,

2006) are reproduced, with the difference that we can now say which perturbation they

can be attributed to. This is not to say that 3D simulations are not necessary, on the

contrary they are indispensable for providing a complete picture, but 2.5D DNS seem to

be an additional helpful tool.
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In order to round up the reference to empirical findings, the dominance of the trans-

verse perturbations of IGWs, especially of the NMs for a > 1, might help explaining the

wavelengths and preferentially more or less transverse orientation of airglow ripples typ-

ically observed in conjunction with a statically unstable IGW (Hecht et al., 1997, 2000).

Another observational fact of interest are the turbulent dissipation rates obtained from

in-situ density measurements in the middle atmosphere (Lübken, 1997; Müllemann et al.,

2003). These are typically between 1 and 103mW/kg, which is also the range of values ob-

tained in the simulations. This comparison, however, has to be seen with a bit of caution,

since the turbulent spectra obtained here also exhibit a considerable anisotropy between

the horizonal and the vertical flow, which is inconsistent with the basic assumptions be-

hind the retrieval process of the turbulent dissipation rates from the density fluctuation

spectra. This is one problem which should be addressed in the future.

So what have we learned so far which might be relevant for parameterizations? Perhaps

the most important message is that wave breaking sets in earlier, and that the GW

deposits much more of its momentum than typically assumed nowadays. Partly this

was already clear from the previous linear NM theory of HGW instability (Mied, 1976;

Klostermeyer, 1982, 1983, 1991; Lombard and Riley, 1996; Sonmor and Klaassen, 1997)

and corresponding 3D DNS by Fritts et al. (2003, 2006), but it is supplemented by the

additional option of IGW decay due to the impact of nonmodal perturbations, and as

a whole none of these findings has yet found its way into a parameterization scheme.

Unfortunately, a major problem remaining is the question as to whether it is possible

to understand and predict the final amplitude of the GW, and whether and which other

GWs it produces in the course of the process. Next to the GW properties, this also seems

to be sensitively dependent on the specific initial perturbations and their strength. Much

work remains to be done here.

Nonetheless, it is the author’s belief that the systematic approach taken here, from the

linear theory to the 2.5D DNS, was already able to shed more light on the GW stability

problem. It seems worthwhile to continue following this path. An important aspect to be

studied systematically are secondary instabilities indeed, to all expectations leading to a

full three-dimensionalization of the turbulent fields (Klaassen and Peltier, 1985; Winters



169

and D’Asaro, 1994; Andreassen et al., 1994; Fritts et al., 1994). As an example, it will be

interesting how much of the spectral anisotropy found here will also be obtained under such

conditions. Another task that deserves attention in the future is the certainly difficult one

of the parameterization of turbulence in breaking GWs. The available DNS data might be

used for testing and improving corresponding sub-grid-scales scheme so that eventually

LES models (Germano et al., 1991; Lilly, 1992; Ferziger, 1996; Meneveau et al., 1996,

e.g.) might be available which could be applied with confidence to the problem. This

might then open the option of studies of whole spectra of GWs developing both in space

and time, a scenario which is presumably of great relevance. Once this is possible, but

probably only then, we might gather new hope for more trustworthy GW parameterization

schemes than the ones we have at present.
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Appendix A

Technical aspects of the algorithms

for normal modes and singular

vectors

For not too high-dimensional problems one can calculate NMs or optimal perturbations

directly via an eigenvalue analysis of A or a singular value analysis of L, respectively. For

the latter one needs the propagator matrix which can either be determined by initializing

the tangent linear model with all possible unit vectors or (in the case of a time-independent

background) by first doing an eigenvalue analysis of A, transforming the initial perturba-

tion to the eigenvector basis via

x(0) =
N∑

ν=1

aν(0)nν , (A.1)

integrating the tangent linear model analytically using

aν(t) = aν(0)e−iωνt+γνt , (A.2)

and transforming back to the original grid-point representation. In the case of large

problems where storage of A and Φ is too demanding for the available computer memory

iterative techniques are required. Since high-dimensionality is a problem e.g. in the SV

calculations for the full two-dimensional IGW packet reported in chapter 4 such techniques

have been used in the present analysis. Provided only a few leading patterns are desired

this can also speed up the calculations.
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For the calculation of the leading NMs of a time-independent background the fact is

used that these are also eigenvectors of Φ(τ) with eigenvalue exp(−iωντ + γντ). With

the help of the software package ARPACK (Lehoucq et al., 1998) a desired number of

leading eigenvectors (with largest eigenvalue modulus exp(γντ)) have been determined

via an implicitly restarted Arnoldi Method. In this approach Φ(τ)q is required for initial

states q determined in the algorithm at each iteration. Integrating from t = 0 to t = τ

this mapping is obtained from the linear model. The iterations stop when the required

NMs, eigenfrequencies, and growth rates have been calculated at a chosen accuracy.

The same software package is also employed in the determination of a required number

of leading optimal perturbations. For this one solves the eigenvalue problem (3.5). As in

the NM analysis, ARPACK requires the user at each iteration to provide LtLq for initial

states q determined by the algorithm. After having obtained r = N tNΦ(τ)N−1q with

the help of the linear model this necessitates also taking the product Φ
t
(τ)r. For this the

adjoint Boussinesq model is used which has been extracted from the linear model code

with the help of the adjoint model compiler TAMC (Giering and Kaminski, 1998). Also

in this analysis the iterations stop when a required accuracy for the desired number of

leading optimal perturbations is reached.

There is one additional aspect to the problem here which needs special treatment. The

Boussinesq equations require the flow field to be non-divergent, i.e. purely rotational. The

pressure is determined so that the divergence of a flow field is conserved. In the search of

the optimal rotational perturbation one must therefore modify the propagator matrix by

first decomposing the initial flow field v into its rotational and its divergent part. For this

a velocity potential χ has been determined such that ∇2χ = ∇·v. The projection is done

by mapping v 7→ v−∇χ. Since the kinetic energy of the flow field can be split up into its

contributions from the rotational part and the divergent part, this leads to a reduction

of the kinetic energy. By maximizing the energy growth in the course of the integration

the SV algorithm then automatically identifies among all initial flow fields with the same

rotational part their least energetic, i.e. purely rotational, member.
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Optimal growth in the

stratified-shear-layer approximation

Using Eklm as norm one finds from application of (4.22) and (4.26)–(4.28) that

Eklm = atΦ
tMΦa , (B.1)

where

a = (a+, a−, av)
t (B.2)

Φ
tMΦ =

e−2D

2




g1/2e−i(φ−φ) g1/2ei(φ+φ) ε−
ε+

g1/4eiφ βc√
ε+Ntot

g1/2e−i(φ+φ) ε−
ε+

g1/2ei(φ−φ) −g1/4e−iφ βc√
ε+Ntot

g1/4e−iφ βc√
ε+Ntot

−g1/4eiφ βc√
ε+Ntot

1




(B.3)

with ε− = 1 − β2
c / |Ntot|2 − |Ntot|2 /N2. M (t = 0) results from (B.3) by setting g = 1,

D = 0, and φ = 0. The optimal perturbations are given by the three eigenvectors aν

satisfying
(
Φ

tMΦ
)

(τ) aν = σ2
νM (0) aν (B.4)

with a corresponding eigenvalue equation det
[(

Φ
tMΦ

)
(τ)− σ2

νM (0)
]

= 0. This yields

a third-order polynomial for σ2
ν which can be solved analytically, albeit by rather compli-

cated expressions for the eigenvalues. More interesting, however, is that in the two cases

βs = 0 (parallel perturbation with g = 1 and φ = Ntotkτ/
√

k2 + m2) and βc = 0 (trans-

verse perturbation) there is the exact solution σ2
2 = exp (−2D). With this knowledge the
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characteristic polynomial can be reduced to second order with the comparatively simple

solutions

σ2
1,3 = g1/2e−2D


δ

2
±

√
δ2

4
− 1


 , (B.5)

where for βs = 0

δ = 2− N2

4N2
tot

(
1− N2

tot

N2

)2 (
eiφ − e−iφ

)2

+
β2

c N
2

4N4
tot

[(
eiφ/2 − e−iφ/2

)4 − N2
tot

N2

(
eiφ − e−iφ

)2
]

, (B.6)

and for βc = 0

δ =
N2

4 |Ntot|2
(

1 +
|Ntot|2

N2

)2

×

e−i(φ−φ) + ei(φ−φ) −

(
1− |Ntot|2 /N2

1 + |Ntot|2 /N2

)2 (
e−i(φ+φ) + ei(φ+φ)

)
 . (B.7)

In the limit β2
c / |Ntot|2 = 1/ |Ri| À 1 À |Ntot|2 /N2 one obtains from (B.6)

δ ≈ β2
c N

2/
(
4N4

tot

) (
eiφ/2 − e−iφ/2

)4 À 1 , (B.8)

whence results (4.29). Similarly one obtains (4.37) from (B.7) in the limit |Ntot|2 /N2 ¿ 1.

The structure of the optimal perturbations is derived by reinserting the growth factor

into (B.4). One finds at βs = 0 for the i-th perturbation

a±
av

=
βc√

ε+N tot

1
[
e−i(φ−φ) − s2

i

] [
ei(φ−φ) − s2

i

]
− ε2−

ε2+

∣∣∣∣e−i(φ+φ) − s2
i

∣∣∣∣
2

×





−
(
eiφ − s2

i

) [
ei(φ−φ) − s2

i

]
− ε−

ε+

(
e−iφ − s2

i

) [
ei(φ+φ) − s2

i

]

(
e−iφ − s2

i

) [
e−i(φ−φ) − s2

i

]
+ ε−

ε+

(
eiφ − s2

i

) [
e−i(φ+φ) − s2

i

] ,(B.9)

where s2
i = e2Dσ2

i . In the limit of β2
c / |Ntot|2 = 1/ |Ri| À 1 À |Ntot|2 /N2, and hence large

s2
1, this reduces for i = 1 to (4.33). At βc = 0 the second optimal perturbation is just

(a+, a−, av) = (0, 0, 1) while for i = 1, 3 one obtains av = 0 and

a+

a−
=

ε−
ε+

s2
i − ei(φ+φ)

e−i(φ−φ) − s2
i

, (B.10)

where s2
i = e2Dg−1/2σ2

i . For i = 1 this yields in the limit |Ntot|2 /N2 ¿ 1 the approximate

relation a+ ≈ −a−, as long as s2
1 is large.



Appendix C

WKB theory for the explanation of

the time dependence of the SV scales

for monochromatic gravity waves

To a large degree, the time dependence of the scales in the various SVs discussed in chapter

5 can be understood on the basis of a standard WKB theory (Bretherton, 1966, 1971).

This appendix first describes the theory in general, and then gives the applications.

C.1 General theory

The WKB theory assumes that the spatial scale over which the wavelength of the SV

varies is comparatively long. The same holds for the time scale describing variations of

the period of the oscillations within the SV. One thus uses the ansatz




v

b


 (φ, t) =




ṽ

b̃


 (εφ, εt) eiχ(εφ,εt)/ε , (C.1)

where ε ¿ 1 is a slowness parameter and χ the local phase of the wave packet1. One then

introduces the slow spatial and time coordinates Φ = εφ and T = εt, defines the local

frequency ω = −∂χ/∂T and the local wavenumber µ = K∂χ/∂Φ, and inserts (C.1) into

1In chapter 4 it is additionally assumed that also ṽ⊥ scales with ε, which would certainly be more

correct. For the discussion here, however, this does not make a difference.
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(5.1)–(5.5). Assuming also the GW fields to only depend on Φ, i.e. to be slowly dependent

on the phase, and neglecting rotation, viscosity, and diffusion one finds to lowest order in

ε the WKB dispersion relation

ω (Φ, T ) = ω̃ [µ (Φ, T ) , Φ]

= Uξκ + V λ− Ω

K
µ±Ntot

√√√√λ2 + (κ sin Θ + µ cos Θ)2

κ2 + λ2 + µ2
, (C.2)

which simply is the dispersion relation for GWs in a constant background flow without

rotation, but with modified static stability N2
tot = N2 + ∂B/∂z, in the special rotated

and translated reference system used in chapter 5. Since ∂µ/∂T = −K∂ω/∂Φ (C.2) also

gives rise to the eikonal equations
(

∂

∂T
+ cgK

∂

∂Φ

)
ω = 0 (C.3)

(
∂

∂T
+ cgK

∂

∂Φ

)
µ = −K

∂ω̃

∂Φ
, (C.4)

where cg = ∂ω̃/∂µ is the group velocity of the perturbation. Along rays defined by this

group velocity the frequency is therefore a conserved quantity, so that for any frequency

the wavenumber µ can be calculated from (C.2) as a function of φ.

C.2 Optimal perturbations of inertia-gravity waves

In the case of the SVs of IGWs one can use that, as shown in chapter 4, the frequency of the

developing optimal perturbations is determined to a good approximation by the advection

of the perturbation in its direction of propagation by the corresponding horizontal flow-

field component at the statically least stable location φ = 3π/2, i.e. ω = Uξ(φ = 3π/2)κ

(since V vanishes at this location). In addition, the phase velocity of the IGW Ω/K is

very small, so that it can be neglected in (C.2).

Assuming also cos Θ = 0, and sin Θ = 1, one finds for parallel SVs, where λ = 0, and

assuming κ > 0,
Uξ(3π/2)− Uξ

Ntot/κ
= ± 1√

1 + µ2/κ2
. (C.5)

Obviously, since the left-hand side is always negative (for a < 1), only the branch with the

minus sign in front of the square root (the branch with upwards pointing group velocity
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Figure C.1: For the parallel SV of the subcritical IGW (Θ = 89.5◦) with A = 0.55 and

a = 0.87, the dependence of frequency (in units of s−1, thick contours) and group velocity

(in units of m/s, thin contours, negative values indicated by shading), according to a

WKB theory, on the IGW-phase φ and the wavenumber µ in phase direction. The isoline

corresponding to the parallel SV for τ = 30min, where ω ≈ −0.0167s−1, is drawn extra

fat. The movement of a ray is along isolines of constant frequency, while the velocity in

φ-direction is given by the group velocity.

at µ > 0) can satisfy this equation. Note that, the nearer one is to the maximum of Uξ

at φ = π/2, the smaller µ must be, so that near this location the vertical wavelength in

the SV gets largest. Moreover, propagation through φ = π/2 is only possible if there

1 >
Uξ − Uξ(3π/2)

Ntot/κ
=

4A√
1 + a

κ

K
. (C.6)

Radiation is thus only possible for κ small enough. At A = 0.55, and thus a = 0.87, this

is neither the case for the parallel SV for τ = 5min, where κ/K = 9.5, nor for the parallel

SV for τ = 30min, where κ/K = 0.76. In the latter case, however, one is nearer to the

radiation condition, so that energy can move close to φ = π/2, explaining the near-vertical
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structures at φ = π/2 in Fig. 5.15. For this case Fig. C.1 also shows the distribution of

frequency and group velocity according to (C.2) in the (µ, φ)-plane. One also sees there

that rays with ω = Uξ(φ = 3π/2)κ ≈ −0.167s−1 cannot propagate through φ = π/2, but

get progressively larger in scale (i.e. smaller in µ) as they approach this location.

Similarly one derives for transverse SVs, where κ = 0, and assuming λ > 0,

− V λ

Ntot

= ± 1√
1 + µ2/λ2

. (C.7)

One sees directly that near the zero-lines of V , i.e. at φ = π/2, 3π/2, the vertical scale

of the SV collapses (i.e. µ → ∞), leading to the critical-layer behavior visible for all

transverse SVs of the IGW. Without neglect of the IGW phase velocity the divergence of

µ is modified to a development towards finite large wavenumbers (Broutman and Young,

1986), but the basic effect remains as described.

C.3 The scale oscillation of parallel singular vectors

in high-frequency gravity waves

The oscillation between weak and strong viscous and diffusive damping for the leading

parallel SV for HGWs, e.g. visible for (Θ, a) = (70◦, 1) in Figs. 5.17 and 5.21, is due to an

oscillation of the scale of this perturbation in φ-direction which can be seen in Fig. 5.20. It

has the shape of a nearly monochromatic wave packet with a wavelength which, consistent

with the observed time dependence of the viscous and diffusive losses, is especially small

when it passes φ = π/2 , and which maximizes as the SV is near φ = 3π/2. Also this

behavior can be explained using the WKB theory.

Since the SV moves approximately with the negative phase velocity of the GW, i.e.

cg ≈ −Ω/K, the square root in (C.2), i.e. the intrinsic-frequency contribution, can be

neglected, yielding

µ = K (Uξκ− ω) /Ω , (C.8)

since for parallel perturbations λ = 0. The spatial dependence of µ thus results from that

of Uξ.
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Figure C.2: Time dependence in the wavenumber µ in φ-direction in the sub-cycle of the

short-term parallel SV for the GW with (Θ, a) = (70◦, 1) also shown in Fig. 5.21, as

diagnosed from the data of the linear model (left) or predicted from the WKB theory

(right). The shading scale is defined in the shading bar.

For a test whether (C.8) actually describes the scale behavior of the parallel SV shown

in figure C.2 µ (φ, t) has been determined diagnostically by minimizing

C(µ) =

∣∣∣∣∣∣∣
K

∂

∂φ




v

b


− iµ




v

b




∣∣∣∣∣∣∣

2

. (C.9)

Figure C.2 shows the result, agreeing quite well with the qualitative expectation of small

µ near φ = 3π/2 and large µ near φ = π/2. In the same manner one also could have

determined the frequency ω from time derivatives. It turns out, however, that the time

oscillation in all fields is so regular that one can just count peaks, which gave a single

period of about 35s. This has been inserted into (C.8), yielding the predicted wavenumber

also shown in figure C.2.



Appendix D

Projection onto free normal modes

For a meaningful analysis of the horizontal mean and the eddies in the nonlinear simu-

lations one can use an orthogonality property of the respective free normal modes of the

inviscid-nondiffusive Boussinesq equations. Linearizing the latter about a fluid at rest

with zero buoyancy and taking for the perturbation fields the ansatz (v′, b′)
(
x‖, φ, t

)
=

(v, b) exp
[
i
(
κ‖x‖ + µφ/K − ω̃t

)]
, i.e. with wavenumbers κ‖ and µ parallel to the hori-

zontal direction of propagation of the perturbation pattern and in GW-phase direction,

respectively, and frequency ω̃, one obtains, in a manner similar to chapter 5,

−iω̂u‖ − f (sin Θv⊥ − sin α cos Θuφ) + iκ‖p + b cos α cos Θ = 0 (D.1)

−iω̂v⊥ + f
(
sin Θu‖ + cos α cos Θuφ

)
− b sin α cos Θ = 0 (D.2)

−iω̂uφ − f
(
sin α cos Θu‖ + cos α cos Θv⊥

)
+ iµp− b sin Θ = 0 (D.3)

−iω̂b + N2
(
− cos α cos Θu‖ + sin α cos Θv⊥ + sin Θuφ

)
= 0 (D.4)

iκ‖u‖ + iµuφ = 0 , (D.5)

where ω̂ = ω̃ + Ωµ/K is the intrinsic frequency. The resulting eigenmodes are best ob-

tained by first transforming the equations back into the geostationary (x, y, z) coordinate

system. One obtains three solutions for each combination of κ‖ and µ. One of these is

the vortical mode with ω̂ = 0 and structure

(u, v, w, b) =

√
2Nf√

f 2m2 + N2 (k2 + l2)

(
−i

l

f
, i

k

f
, 0, im

)
, (D.6)
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where (u, v, w) and (k, l, m) are, respectively, the velocity and wavenumber vector in the

geostationary reference frame. The latter can be obtained from κ‖ and µ via

k = κ sin Θ + µ cos Θ (D.7)

l = κ‖ sin α (D.8)

m = −κ cos Θ + µ sin Θ (D.9)

κ = κ‖ cos α . (D.10)

The other solutions are free GWs with intrinsic frequency ω̂ = ω̂± =

±
√

[f 2m2 + N2 (k2 + l2)] / (k2 + l2 + m2) and structure

(u, v, w, b) =
m√

k2 + l2 + m2

(
k + ilf/ω̂√

k2 + l2
,
l − ikf/ω̂√

k2 + l2
,−
√

k2 + l2

m
, iN

N

ω̂

√
k2 + l2

m

)
.

(D.11)

The representation of the modes in the coordinate system used here can be obtained via

the rotations

u‖ = uξ cos α + v sin α (D.12)

v⊥ = −uξ sin α + v cos α (D.13)

uφ = u cos Θ + w sin Θ (D.14)

uξ = u sin Θ− w cos Θ . (D.15)

Having defined an energy-metric scalar product

〈


v

b




1

,




v

b




2

〉
=

v1 · v2

2
+

b1b2

2N2
(D.16)

for any two modes (v, b)1,2 (the overbar denotes complex conjugation) one can easily check

that the normal modes are orthonormal (most easily in the geostationary coordinate

system). Among these the GW with
(
κ‖, µ

)
= (0, K) and downwards directed phase

velocity is the basic GW of the problem. A decomposition into the contribution from

the various free modes, and thus also extraction of that of the basic GW, can so be

done by Fourier decomposition (into the contributions from the different κ‖ and µ) and

straightforward projection.
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Lübken, F.-J. and U. von Zahn, 1991: Thermal structure of the mesopause region at polar

latitudes. J. Geophys. Res., 96, 20841–20857.

Machenhauer, B., 1977: On the dynamics of gravity oscillations in a shallow water model,

with application to normal mode initialization. Contrib. Atmos. Phys., 50, 253–271.

Mathews, J. and R. Walker, 1970: Mathematical methods of physics . Addison-Wesley,

New York.

McComas, C. H. and F. P. Bretherton, 1977: Resonant interaction of oceanic internal

waves. J. Geophys. Res., 82, 1397–1412.

McFarlane, N. A., 1987: The effect of orographically excited gravity wave drag on the

circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44, 1775–1800.

Medvedev, A. S. and G. P. Klaassen, 1995: Vertical evolution of gravity wave spectra and

the parameterization of associated gravity wave drag. J. Geophys. Res., 100, 25841–

25854.

Meneveau, C., T. S. Lund, and W. H. Cabot, 1996: A lagrangian dynamic subgrid-scale

model of turbulence. J. Fluid Mech., 319, 353–385.

Mied, R. P., 1976: The occurrence of parametric instabilities in finite amplitude internal

gravity waves. J. Fluid Mech., 78, 763–784.

Miles, J. W., 1961: On the stability of heterogeneous shear flows. J. Fluid Mech., 10,

496–508.



188 BIBLIOGRAPHY

Moffat, H. K., 1967: The interaction of turbulence with strong shear. Atmospheric Tur-

bulence and Radio Wave Propagation, A. M. Yaglom and V. I. Tatarskii, eds., Nauka,

139–161.
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