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Abstract

This study presents an investigation of the interaction of long-wave radiative transfer

with internal gravity waves and thermal tides in the middle atmosphere. Methods are

based on 1) linear wave theory combined with calculations of idealized radiative transfer

equations and 2) simulations with the Kühlungsborn mechanistic general circulation

model (KMCM).

Wave-induced temperature perturbations lead to an increase of the net long-wave

radiative cooling. Using KMCM simulations with resolved waves, we obtain maximum

values for the additional net radiative cooling of 0.5 K/day for thermal tides in the

equatorial lower thermosphere during equinox and 0.1 K/day for Rossby waves in the

lower winter mesosphere. For strong gravity wave activity in the winter mesosphere, semi-

analytical calculations yield a maximum value of 0.2 K/day. This additional cooling is

significantly smaller when compared to Kutepov et al. [2007]. The discrepancy is likely

caused by our too idealized description of the radiative transfer in the upper middle

atmosphere.

We confirm that atmospheric gravity waves are damped due to a loss of wave energy

to the radiation field. This study shows in addition that also thermal tides are subject

to this mechanism. For the resolved migrating diurnal tide we demonstrate a radiative

amplitude damping of about 4% when the tide propagates from the lower mesosphere

up to the lower thermosphere.
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1 Introduction

1.1 Motivation

The middle atmosphere is the layer above the troposphere (lower atmosphere) and com-

prises the stratosphere, the mesosphere and the lower thermosphere between about 10 to

110 km height. Many exchange processes couple the lower with the middle atmosphere

and are important for our understanding of tropospheric climate. One well-known ex-

ample is the absorption of ultraviolet radiation due to ozone in the stratosphere. Two

further important processes are long-wave radiative transfer and the role of gravity waves

(GWs).

Long-wave radiative transfer is the main energy transport mechanism carrying ab-

sorbed solar radiative energy upwards through the Earth’s atmosphere. It accounts for

the greenhouse effect in the troposphere and balances the Earth’s energy budget by emit-

ting the same amount of radiative energy into space as is absorbed by the climate system

in terms of solar radiation. In particular, long-wave radiative cooling is a first-order term

in the large-scale sensible heat budget at all heights. Therefore, it has great significance

for any other processes like atmospheric chemistry or atmospheric wave propagation.

Internal gravity waves can be conceived as oscillations of air parcels around their posi-

tion of rest. They are mainly induced by topography, convection and wind shear in the

troposphere. These waves are able to propagate from their sources into the middle at-

mosphere where they affect atmospheric circulation and structure. The most prominent

effects are a reversal of the zonal wind jets in the mesosphere and the lower thermosphere

(MLT), a warm winter stratopause and a cold summer mesopause. They are induced

by a GW-driven meridional transport circulation. Thus a profound knowledge of both

phenomena, radiative transfer and GW dynamics, is essential to the understanding and

modeling of the middle atmosphere.

GWs with amplitudes and frequencies typical for the MLT are radiatively damped on

the one hand and lead to a net increase of long-wave radiative cooling on the other. Both

effects apply as well to atmospheric tides, which may be considered as forced planetary-

scale gravity waves. An example for the interaction of these waves and radiative transfer

is shown in Fig. 1.1. First estimates of the influence of waves on long-wave radiative

transfer were provided by Fels [1982, 1984]. Recent studies by Kutepov et al. [2013, 2007]

show that additional long-wave radiative cooling by GW gives a significant contribution

to the heat budget in the MLT. Studies on radiative damping of GWs are rare, since

there is no appropriate measurement technique and general statements from theory are

hard to quantify due to the high variability of realistic GW propagation.
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Figure 1.1: Vertical cross-sections of temperature and long-wave cooling rate at the
equator in the MLT at 00:00 UT in October taken from KMCM. Left: A tempera-
ture perturbation generated by a strong westward propagating tide (black lines indicate
phase lines). Right: Modulation of the long-wave cooling rate which is linked to the
temperature perturbation of the tide.

Both aspects of the interaction of GWs and radiative transfer are not well resolved

in modern general circulation models (GCMs) due to the fact that GWs are generally

parameterized. This is necessary because the spatial scales of most GWs are smaller

than the grid resolution of the climate models and that problem will last for the near

future [Fritts and Alexander, 2003].

1.2 Aim

The aim of this thesis is to provide theoretical and numerical estimates of the radiative

damping of GWs and thermal tides, as well as of the additional net long-wave cooling for

the middle atmosphere. Model calculations are based on GCM-simulations with resolved

thermal tides.

1.3 Framework

This thesis is divided into a part making use of analytical frameworks and a second one

using numerical simulations. Each part covers both aspects of the interaction of waves

and radiative transfer.
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In the first part of this work the long-wave radiative transfer under the influence of

wave-induced temperature perturbations superposed on a given background is analyzed

using the two-stream approximation. Furthermore, the linearized system for GWs shall

be modified by damping due to radiative transfer. The same analysis will be done for

thermal tides after giving a short introduction to classical linear tidal theory.

The second part of this work contains studies of radiative wave damping and addi-

tional net cooling rates obtained from a simulation with the Kühlungsborn mechanistic

general circulation model (KMCM). This climate-model version of the KMCM employs

a conventional resolution such that gravity waves must be parameterized. We there-

fore apply the theoretical concepts derived in the first part to address the interaction

of thermal tides and long-wave radiative transfer. Where possible, the conclusions are

extrapolated to GWs.
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2 Long-wave radiation in presence of atmospheric

waves in the middle atmosphere

2.1 Basics

This section provides a brief derivation of our basic equations and mentions the most

important approximations. A detailed introduction into the theory of radiative transfer

is given in the text of Thomas and Stamnes [1999].

The starting point to consider radiative transfer is the general radiative transfer equa-

tion (RTE)

dIν

ds
= ρ(~r, t) κν(~r, t) (−Iν(~r, ~n, t) + Jν(~r, ~n, t)) . (2.1)

Here, Iν is the spectral intensity, κν the spectral mass extinction coefficient, Jν the

spectral source function and ρ the density. ~n describes the directional dependence.

Equation (2.1) is a macroscopic balance equation including absorption, scattering and

emission.

The general RTE contains unknown dependencies that have to be specified. This is

done by using the following approximations:

• A common approximation is local thermodynamic equilibrium (LTE), meaning

that the population of radiatively active energy levels of molecules in the thermal

regime follows the Maxwell-Boltzmann-distribution, i.e., they are determined by

collisions. In this case we identify

Jν(~r, t) = Bν(~r, t) (2.2)

with Bν being the Planck-function. Scattering in the source function vanishes in

LTE-approximation by definition.

• In plane-parallel approximation the dependencies on longitude and latitude are

neglected. Furthermore, we retain only the directional dependence of the intensity

on the zenith angle ϑ. This leads to

Jν(~r, t) = Bν(z, t) (2.3)

Iν(~r, ~n, t) → Iν(z, ϑ, t) (2.4)
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• We further parameterize the dependence on ϑ using the two-stream approximation:

Iν(ϑ) =





I+
ν 0 ≤ ϑ ≤ π

2

I−

ν
π
2 ≤ ϑ ≤ π

(2.5)

Thus I+ indicates the intensity directed in the upper half space and I− the intensity

directed in the lower half space.

• Our next assumption is known as ’gray limit’ and assumes that frequency variations

of the extinction coefficient within a wide frequency range can be neglected.

• Long-wave or thermal radiation refers to radiation in the wavelength range from

about 5 µm to 100 µm absorbed and emitted by air parcels and the Earth’s sur-

face. As shown in the top panel of Fig. 2.1 this range covers mostly the black-body

curve for T = 250 K. A comparison with the bottom panel of Fig. 2.1 reveals four

dominant long-wave absorber bands: H2O around 6.3 µm, O3 around 9.6 µm, CO2

around 15 µm and H2O-rotation for λ > 20 µm. Therefore, an infinite broad band

is a strong approximation. We nevertheless use this idealization for analytical

estimates. Together with the two-stream approximation the broad-band approxi-

mation can be written as

∫
∞

0
κν Iν(ϑ) dν =





κ I+ 0 ≤ ϑ ≤ π
2

κ I− π
2 ≤ ϑ ≤ π

(2.6)

∫
∞

0
κνBν dν =

κ σT 4

π
. (2.7)

Here, κ is a height dependent mass extinction coefficient, T the temperature and

σ the Stefan-Boltzmann constant.

So far we have

cos ϑ
dI

dz
= ρ κ (−I +

2 σ T 4

π
) . (2.8)

Integrating (2.8) over the upper and lower half space,

∫

Ω
cos ϑ I+ dΩ =

π

2
I+ = U ,

∫

Ω
cos ϑ I− dΩ =

π

2
I− = D , (2.9)

leads to two first order differential equations, namely for the upward and the downward

radiative energy fluxes:

∂U

∂z
= +2 κ ρ (−U + σ T 4) , (2.10)

∂D

∂z
= −2 κ ρ (−D + σ T 4) . (2.11)
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Figure 2.1: As a function of wavelength: (top) normalized spectral intensity of a black
body for 6000 K and 250 K, (middle) atmospheric absorption spectrum for a solar beam
reaching ground level and (bottom) atmospheric absorption spectrum for a solar beam
reaching the tropopause. (From [Thomas and Stamnes, 1999])

2.2 Solving the two-stream RTEs

Equation (2.10) and (2.11) are simplified RTEs such as to allow for analytical solutions.

Taking the boundary conditions U(z = 0) = σT 4
s and D(z → ∞) = 0 into account, we

can solve the equations for U and D by summing up their homogeneous and inhomoge-

neous solutions.

With separation of variables and integration we find the homogeneous solution of Eq. (2.10)

dUh

dz
= −2 κ ρ Uh → Uh = Uh(0) · exp

{
−2

∫ z

0
κ ρ dz′

}
(2.12)

For the inhomogeneous equation we choose a particular ansatz so that Uih(z = 0) = 0

Uih =

∫ z

0
2 κ ρ f(z, z′) σ T 4 dz′ . (2.13)

Now we seek the unknown function f(z, z′). The partial derivative of the ansatz with

respect to z using the Leibniz integration rule is on the one hand

dUih

dz
=

∫ z

0

d

dz
2 κ ρ f(z, z′) σ T 4 dz′ + 2 κ ρ f(z, z) σ T 4 (2.14)
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and applying the ansatz to Eq. (2.10) on the other

dUih

dz
= −2 κ(z) ρ(z)

∫ z

0
2 κ ρ f(z, z′) σ T 4 dz′ + 2 κ ρ σ T 4 . (2.15)

Comparing both results yields f(z, z) = 1. It is important to strictly distinguish the

dependencies of κ, ρ, T and f on z, z′ and z′′. Subtracting Eq. (2.14) from (2.15) results

in

∫ z

0

{
d

dz
2 κ(z′) ρ(z′) f(z, z′) σ T 4(z′) + 2 κ(z) ρ(z) 2 κ(z′) ρ(z′) f(z, z′) σ T 4(z′)

}
dz′ = 0 .

(2.16)

The upper integration boundary z is arbitrary. Canceling κ(z′) ρ(z′) σ T 4(z′), Eq. (2.16)

thus becomes

d

dz
f(z, z′) + 2 κ(z) ρ(z) f(z, z′) = 0 . (2.17)

Separation of variables and integration from z′ to z leads to

f(z, z′) = exp

{
2

∫ z′

z
κ ρ dz′′

}
. (2.18)

The overall solution reads

U = Uh + Uih = U(zs) · exp

{
−2

∫ z

0
κ ρ dz′

}
+

∫ z

0
2 κ ρ exp

{
2

∫ z′

z
κ ρ dz′′

}
σ T 4 dz′ .

(2.19)

In the same manner it is possible to find the solution for D. Differences arise from the

boundary conditions.

U = σ T 4
s · exp

{
−2

∫ z

0
κ ρ dz′

}
+

∫ z

0
2 κ ρ exp

{
2

∫ z′

z
κ ρ dz′′

}
σ T 4 dz′

(2.20)

D = −
∫ z

∞

2 κ ρ exp

{
−2

∫ z′

z
κ ρ dz′′

}
σ T 4 dz′ .

(2.21)

For D the homogeneous solution vanishes, because there is no incoming long-wave

radiation from space.
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2.3 Definition of the cooling rate

The impact of radiative transfer on an air parcel is heating (prevailing absorption) or

cooling (prevailing emission). The physical quantity is the cooling rate

Qrad = −1

ρ
∂z (U − D). (2.22)

Applying the RTEs (2.10) and (2.11) to this definition yields

Qrad = 2 κ (U + D − 2 σ T 4) . (2.23)

From this point of view the cooling rate is the difference between the absorbed upward

and downward energy flux on the one hand and the long-wave flux, which a layer emits

by itself, on the other hand. Although Qrad is a heating rate by definition, the term

cooling rate is used throughout this work. A negative Qrad means cooling.

In the case of long-wave radiation, negative Qrad (sum over all bands) prevails through-

out the atmosphere. An exception has to be made around the cold mesopause where

long-wave radiative heating can occur. Short-wave radiation from the sun is related to

heating, especially around the stratopause and in the thermosphere.

2.4 Cooling rate with non-LTE

Above about 50 km the assumption that the population of energy levels of air molecules

are determined only by collision rates inside the gas becomes increasingly inaccurate.

The collision rates are proportional to density, which is decreasing exponentially with

altitude. Spontaneous emission also gains importance. The overall effect is a decrease

of vibrational and rotational transition rates (meaning a smaller number of absorption

and emission processes for each molecule). The declining transfer between kinetic and

radiation energy with increasing altitude is called the break down of LTE or shortly

non-LTE.

The non-LTE effect may be modeled by an additional factor (1 − ωs) in Eq. (2.23) de-

scribing reduced absorption and emission efficiency as an increasing scattering efficiency

Qrad = 2 κ (1 − ωs) (U + D − 2 σ T 4) . (2.24)

ωs is the scattering albedo. Equation (2.24) can also be derived, if scattering is incor-

porated from the beginning as a part of the source function Jν . As a consequence Eqs.

(2.10) and (2.11) would expand to

∂U

∂z
= +κ ρ (−2 U + ωs U + ωs D + 2 (1 − ωs) σ T 4) , (2.25)

∂D

∂z
= −κ ρ (−2 D + ωs U + ωs D + 2 (1 − ωs) σ T 4) . (2.26)

9



Figure 2.2: Scattering albedos for CO2: (red) global annual mean from KMCM, (blue)
original parameterization from Eq. (2.27) and (green) adjusted parameterization (see
text). The ratio ρ/ρs is given by the black line.

To show that we can nevertheless proceed with Eqs. (2.10) and (2.11) and that their

integral formulation remains valid, the actual vertical profile of ωs has to be considered.

CO2 contributes mostly to the total cooling rate in the atmosphere above 30 km. Thus,

the description of the non-LTE effect due to CO2 is assumed to be a good representation

of this effect for the MLT in general. A common idealization for the scattering albedo is

ωs =
A21

A21 + c21
=

1

1 +
c21,s

A21

ρ
ρs

. (2.27)

Here, 1/A21 = 0, 74 s is the inverse Einstein coefficient due to spontaneous emission and

1/c21,s = 3 · 10−5 s is the inverse collision rate. The index s denotes values of C21 and

ρ at the Earth’s surface. Fig. 2.2 shows scattering albedos. The difference between the

more realistic ωs of KMCM and formula (2.27) is caused by the additional consideration

of inelastic collisions of CO2 with atomic oxygen. For our idealized approach we proceed

with a slight modification of the scattering albedo (green line). It is modeled with a

slower decrease in density in Eq. (2.27).

An important feature illustrated in the figure is the opposite dependence of density and

scattering albedo on altitude. Therefore, the terms proportional to ωs on the right-hand

sides of Eqs. (2.25) and (2.26) vanish below 50 km due to ωs. Above, the density has

10



dropped by more than three orders of magnitude and changes in U and D are extremely

small compared to those taking place in the column below. The formal result is that the

computation of U and D in the MLT can still be performed on the basis of Eqs. (2.10)

and (2.11). This holds as long as U and D are non-local quantities, meaning the bulk

of the long-wave radiation is emitted below the MLT. This point will be discussed more

in detail when turning to wave perturbations of U and D.

2.5 Temporal and zonal average

A common tool to distinguish physical processes on different spatial or temporal scales

is splitting the quantity X in a reference value Xr and a disturbance X ′

X = Xr + X ′. (2.28)

Xr can be defined either by temporal average

Xr = 〈X〉 =
1

τ

∫ τ

0
X(t) dt ,

〈
X ′
〉

= 0 , (2.29)

or by zonal (or meridional) average

Xr = [X] =
1

xb − xa

∫ xb

xa

X(x) dx ,
[
X ′
]

= 0 . (2.30)

In the following a background atmosphere is described by zonally and temporally aver-

aged quantities indicated by index r. Wave disturbances are indicated by a prime. To

simplify the notation, we drop the meridional dependence y and thus define

{p, ρ, T, U, D} (x, z, t) = {pr, ρr, Tr, Ur, Dr} (z) +
{
p′, ρ′, T ′, U ′, D′

}
(x, z, t) . (2.31)

In order to make the radiation calculation analytically feasible, we assume the back-

ground temperature being constant with altitude. This approximation will lead to some

significant deviations from more realistic numerical calculations. It will be shown that

the most important analytical results are nevertheless quantitatively reasonable when

compared to numerical solutions.

From hydrostatic balance ∂zpr = −g ρr and the ideal gas law pr = ρr R Tr the back-

ground density ρr yields

ρr(z) = ρs · e−z/H , (2.32)

with H being the scale height H = R Tr/g.
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Wave type vertical wavelength [km] Ta [K] T ′

max [K] zcrit [km] 1/ldiss [1/m]

Excessive 10 10 ±100 40 4 ·10−4

GW 10 0.075 ±25 90 4 ·10−4

TW 28 0.135 ±60 95 8 ·10−5

RW 40 1.1 ±25 55 1.3 ·10−4

Table 2.1: Parameters for a monochromatic excessive wave, gravity wave (GW), tidal
wave (TW) and (forced) Rossby wave (RW) used in all following figures.

2.6 Radiative transfer with a wave disturbance

Applying Eq. (2.32) to (2.20) and (2.21), and assuming a constant κ, the integrals in

the exponential function can be solved. The energy fluxes become

U(z) = σ T 4
s · exp {2 κ H (ρr(z) − ρ00)}

+ 2 κ

∫ z

0
ρr(z

′) exp
{
2 κ H (ρr(z) − ρr(z

′))
}

σ T 4(z′) dz′ (2.33)

D(z) = − 2 κ

∫ z

∞

ρr(z
′) exp

{
2 κ H (ρr(z

′) − ρr(z))
}

σ T 4(z′) dz′ (2.34)

These equations are evaluated, first of all, in the presence of an excessive wave. After

the general features are clarified, reasonable monochromatic temperature perturbations

due to a GW, a tidal wave (TW) and a (forced) Rossby wave (RW) are also applied. We

assume for all waves a sine-shaped disturbance T ′ of the form

T ′ = Ta S(z, zc) exp

{
z

2 H
+ i(k x + m z − ω t)

}
, (2.35)

S(z, zc) =
1

1 + exp
{

z−zc

ldiss

} . (2.36)

The factor exp
{

z
2 H

}
arises from conservation of wave energy density with altitude. The

sigmoid function S models dissipation processes. The parameter zc marks the central

altitude of these processes and ldiss is a length scale that measures how fast the waves

decline. The parameters of the waves that are shown in all following figures are listed in

Table 2.1. If not mentioned otherwise, we use Tr = 245 K, Ts = 270 K and κ = 0.00015

m2/kg.

Fig. 2.3 shows the effect of an exaggerated wave disturbance on the energy fluxes ac-

cording to Eq. (2.33) and (2.34). A direct connection between a temperature maximum

due to the wave and an increase of energy fluxes can be identified. This increase is for U

above and for D below the altitude of the maximum T ′ and vice versa for temperature

minima. It can also be seen that the total amount of upward energy flux is increased

compared to the reference state. Since D vanishes at the top of the atmosphere (TOA),

the atmosphere undergoes an additional loss of radiation energy into space. A wave

12
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Figure 2.3: Vertical cross-section of upward and downward long-wave radiative en-
ergy fluxes for: (red) an isothermal background atmosphere and (black) an isothermal
background atmosphere with an additional excessive wave disturbance T ′ (blue).

variation in U and D is visible only at lower altitudes, especially in the troposphere and

lower stratosphere. An estimation of the effect on U and D due to a GW, a TW and

a RW is depicted in Fig. 2.4. For the GW and TW there are no visible changes in U

and D with the wave perturbation included (UGW, UTW, DGW, DTW) when compared

to the result for just the reference state (Ur, Dr). Indeed, the deviations do not exceed

0.2 W/m2 over the whole altitude range. This is not fully true for the RW. Small de-

viations between Ur and URW are located below 40 km. The energy fluxes are changed

up to 3 W/m2 for our example but alterations could be larger for a RW with stronger

amplitudes and more concentrated in the lower troposphere.

2.7 Simplified cooling rate

We expand the T 4 term and truncate the power series at j = 2

(Tr + T ′)4 =
4∑

j=0

(
4

j

)
T j

r T ′4−j (2.37)

≈ T 4
r + 4 T 3

r T ′ + 6 T 2
r T ′ 2. (2.38)
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Inserting into the energy flux equations (2.33) and (2.34) leads to

U = σ T 4
s exp {2 κ H (ρr − ρ00)} + 2 κ

∫ z

0
ρr(z

′) exp
{
2 κ H (ρr(z) − ρr(z

′))
}

σ T 4
r dz′

︸ ︷︷ ︸
= Ur(z)

+ 2 κ

∫ z

0
ρr(z

′) exp
{
2 κ H (ρr(z) − ρr(z

′))
}

σ 4 T 3
r T ′(z′) dz′

︸ ︷︷ ︸
= U ′(z)

+ 2 κ

∫ z

0
ρr(z

′) exp
{
2 κ H (ρr(z) − ρr(z

′))
}

σ 6 T 2
r T ′ 2(z′) dz′

︸ ︷︷ ︸
= U ′′(x,z,t)

, (2.39)

D = −2 κ

∫ z

∞

ρr(z
′) exp

{
2 κ H (ρr(z

′) − ρr(z))
}

σ T 4
r dz′

︸ ︷︷ ︸
= Dr(z)

−2 κ

∫ z

∞

ρr(z
′) exp

{
2 κ H (ρr(z

′) − ρr(z))
}

σ 4 T 3
r T ′(z′) dz′

︸ ︷︷ ︸
= D′(x,z,t)

−2 κ

∫ z

∞

ρr(z
′) exp

{
2 κ H (ρr(z

′) − ρr(z))
}

σ 6 T 2
r T ′ 2(z′) dz′

︸ ︷︷ ︸
= D′′(x,z,t)

. (2.40)

Double primes indicate a dependency on a product of two disturbance quantities. The

cooling rate formula expands to

Qrad(x, z, t) ≈ 2 κ (1 − ωs) (Ur + Dr − 2 σ T 4
r )︸ ︷︷ ︸

= Qrad,r(z)

+ 2 κ (1 − ωs) (U ′ + D′ − 8 σ T 3
r T ′)︸ ︷︷ ︸

= Q′

rad
(x,z,t)

+ 2 κ (1 − ωs) (U ′′ + D′′ − 12 σ T 2
r T ′ 2)︸ ︷︷ ︸

= Q′′

rad
(x,z,t)

(2.41)

From Fig. 2.4 it is found that the quantities U ′, D′, U ′′ and D′′ are very small for a GW

and a TW. This becomes evident when considering U ′ in Eq. (2.39). Starting close to

zero in the troposphere, T ′ increases with exp(z/2H) but is overcome by the decreasing

density ρr ∝ exp(−z/H), hence U ′ → 0 for z → ∞ as long as κ exhibits no exponential

growth with altitude.

This simple consideration is in contrast to the idea of scale-dependent radiative cool-

ing rates in the middle atmosphere as suggested by Fels [1982] or Zhu [1993]. These

authors state that the radiative cooling of an air layer is affected by the vertical spatial

scales of adjacent temperature perturbations - e.g. a warm layer should cool more when

sandwiched by cool layers, as in the case for GWs.

At this point one may raise the question how strongly a realistic frequency averaged

κ, which is in general a function of temperature and density, varies with height? We

found that these variations are negligible in comparison to the exponential decay of the

density itself. For example, the frequency averaged κ of the important CO2 15 µm band
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Figure 2.5: Cooling rates for an isothermal background state (red) with and (red
dashed) without consideration of non-LTE. Including a GW disturbance, cooling rates
are calculated for (black solid) retaining and (grey dashed) omitting terms of U ′, D′, U ′′

and D′′. There is no visible difference. It can be noted that cooling by the wave with
respect to Qrad,r is slightly higher than heating.

fluctuates by less than 30% throughout the middle atmosphere; see [Knöpfel and Becker,

2011] and Fig. A.1 in the appendix. Therefore, a relevant effect of adjacent layers on

each other by long-wave radiative transfer is not likely to exist in the MLT. This result,

supported also by Kutepov et al. [2007]1, contradicts the finding of Zhu [1993] that the

importance of scale-dependence should increase up to 80 km. In conclusion, U ′, D′, U ′′

and D′′ can be omitted for GWs and TWs and the additional cooling rate is given by

Q′

rad + Q′′

rad, where

Q′

rad ≈ −16 κ σ (1 − ωs) T 3
r T ′ , (2.42)

Q′′

rad ≈ −24 κ σ (1 − ωs) T 2
r T ′ 2 . (2.43)

The complete cooling rate reads

Qrad(x, z, t) = 2 κ (1 − ωs) (Ur + Dr − 2 σT 4
r − 8 σ T 3

r T ′ − 12 σ T 2
r T ′ 2) , (2.44)

Ur = σ T 4
s exp {2 κ H (ρr − ρ00)} + σ T 4

r (1 − exp {2 κ H (ρr − ρ00)}) ,

Dr = σ T 4
r (1 − exp {−2 κ H ρr}).
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2.8 Cooling rate with wave disturbance

The impact of a wave on the cooling rate is determined by evaluating Eq. (2.44). In

Fig. 2.5 it can be seen that the additional cooling and heating of the GW is added

to the (predominant) cooling of the background state. Temperature changes due to

the wave appear instantaneously in the cooling rates. The cooling rates, including wave

disturbances, are calculated for both retaining and omitting terms of U ′, D′, U ′′ and D′′.

The latter is the analytical solution Qrad,a from Eq. (2.44) whereas the full solution Qrad

is calculated numerically from Eq. (2.41). There is a perfect coincidence between both

solutions. Note that Qrad,r is somewhat unrealistic due to the isothermal temperature

profile of the background. Taking the non-LTE effect into account is necessary for

describing cooling rates in the MLT properly.

2.9 Cooling rates in the temporal mean

The cooling rates given in Fig. 2.5 represent only a snapshot of the current state of the

atmosphere. The periods of GWs reach from 5 min to a maximum of 10 − 15 h. For the

most important thermal tides the periods are 8, 12 and 24 h. These are much smaller

time scales as considered for the climatological mean. Therefore, we examine the net

effect of additional cooling rates by taking the temporal mean of Eq. (2.44). The only

time-dependent quantity is T ′. Introducing a definition for the wave amplitude

T̂ ′ := Ta S exp

{
z

2 H

}
, (2.45)

we have

〈
T ′
〉

=
T̂ ′

τ

∫ τ

0
cos1(ω t + ϕ) dt = 0 , (2.46)

〈
T ′ 2

〉
=

T̂ ′ 2

τ

∫ τ

0
cos2(ω t + ϕ) dt =

T̂ ′ 2

2
. (2.47)

Here, τ is a multiple of the wave period and ϕ an arbitrary phase. The climatological

relevant part of the additional cooling rate is, therefore, a second-order effect and reduces

to

〈
Q′′

rad

〉
= −12 κ σ (1 − ωs) T 2

r T̂ ′ 2 . (2.48)

The same conclusion can be made by taking the zonal average being necessary for global

stationary RWs. The net cooling rate is given by

〈Qrad(z)〉 = 2 κ (1 − ωs) (Ur + Dr − 2 σT 4
r − 6 σ T 2

r T̂ ′ 2) . (2.49)

1“ ... the non-local integral heating term J is less sensitive to the increase of the local temperature
because of the contribution of the upward radiation fluxes, which are less affected by the ITFs in the
lower atmosphere.”, (ITF): Irregular temperature fluctuations due to GWs
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Equation (2.49) has some remarkable properties. There are no dependencies on vertical

wave number and frequency. The remaining wave property is the amplitude T̂ ′. Both

the wave amplitude and the background temperature are the most important factors for

producing high additional cooling rates. From that point of view we would expect large

〈Q′′

rad〉 around the stratopause and the lower thermosphere in combination with strong

wave activity. Wave filtering and dissipative processes determine which parts of the wave

spectrum launched at lower altitudes may reach those regions in the middle atmosphere.

Therefore, wave-induced radiative cooling is expected to be variable in space and time.

In Chap. 4 we will analyze numerical simulations with the KMCM in order to estimate

where resolved RWs and TWs may lead to additional radiative cooling.

Figure 2.6 gives an overview of the additional averaged cooling caused by the different

wave types calculated from Eq. (2.49). Not surprisingly, a maximum T ′ and a maximum

〈Q′′

rad〉 are linked. For GWs and especially TWs, 〈Q′′

rad〉 is limited at high altitudes by

non-LTE.

Finally the influence of a non-isothermal background is taken into account. For this

purpose, Eqs. (2.25) and (2.26) are integrated numerically. The resulting net cooling

rates and the used temperature profile are shown in Fig. 2.7. For validation the analytical

results of the Eqs. (2.48) and (2.49) are inserted and indicated with the subscript a.

Figure 2.7 shows a more realistic picture of the the long-wave cooling rates. The

numerical solution 〈Qrad〉 exhibits two areas of strong cooling around the stratopause

and the lower thermosphere balancing short-wave heating. The comparison with 〈Qrad,a〉
reveals significant wave-independent deviations due to the derivation of Eq. (2.49) for

an isothermal background state. In contrast, 〈Q′′

rad,a〉 matches 〈Q′′

rad〉 pretty well for

the GW and the TW with relative errors of 5 % and 1.5 %. In comparison to the

isothermal atmosphere, the amount of additional net cooling has dropped by a third.

This is simply caused by the fact that the isothermal reference temperature is higher

between 60 − 110 km.

A different behavior is found for 〈Qrad〉 for the RW. The slight temperature variations

of a few Kelvins below 20 km lead to additional heating in the troposphere and in

the MLT. The additional heating is caused by a wave-induced increase of upward and

downward radiative energy fluxes. This once again emphasizes that U ′, D′, U ′′ and D′′

can not be neglected for waves with relevant amplitudes in the troposphere. In the upper

stratosphere, increased thermal emission due to maximum T ′ is compensated by U ′, D′,

U ′′ and D′′ and almost no additional net cooling occurs. In comparison with Fig. 2.4

the effect of wave-induced radiative energy fluxes is stronger due to higher temperatures

near the Earth’s surface. This is an example for non-local vertical coupling by long-wave

radiation.

A point we do not have considered yet is a feedback of the additional net cooling rate

on the background. Reduced additional cooling might follow. This fact is not included

in Kutepov et al. [2013] and Kutepov et al. [2007] as well.
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2.10 Summary

With focus on GWs and TWs it has been shown that:

• The absolute radiative fluxes remain unchanged.

• Additional cooling is noticeable and caused by increased thermal emission.

• In the temporal mean, the additional cooling reaches up to 0.7 K/day for TWs.

• Additional cooling depends on non-LTE.

• Simple analytical expressions describe the additional cooling rates adequately:

Qwave = Q′

rad + Q′′

rad 〈Qwave〉 =
〈
Q′′

rad

〉

Q′

rad = −16 κ σ (1 − ωs) T 3
r T ′

〈
Q′′

rad

〉
= −12 κ σ (1 − ωs) T 2

r T̂ ′ 2

Q′′

rad = −24 κ σ (1 − ωs) T 2
r T ′ 2
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3 Atmospheric waves influenced by radiation

3.1 Introduction

The starting point of describing atmospheric waves are the fluid equations of motion

that follow from conservation of momentum, energy and mass. To obtain a particular

wave type, scale analyses with adjusted spatial and temporal dimensions are applied to

these equations. Furthermore, one has to linearize about a given basic flow. Different

dominant terms remain indicating the different restoring forces for each wave type. This

is commonly referred to as linear wave theory.

3.2 Linear theory of gravity waves

Our basis is given by the primitive equations on the f-plane. Applying the anelastic ap-

proximation and linearizing with the aforementioned perturbation ansatz X(x, y, z, t) =

Xr(z) + X ′(x, y, z, t), we obtain:

dt u′ − v′ f +
∂x p′

ρr
= 0 , (3.1)

dt v′ + u′ f +
∂y p′

ρr
= 0 , (3.2)

∂z

(
p′

ρr

)
+ g

ρ′

ρr
= 0 , (3.3)

dt T ′ +
N2

r Tr

g
w′ =

Q

cp
, (3.4)

∂x u′ + ∂y v′ + (∂z − 1

H
) w′ = 0 , (3.5)

where Nr =
√

g2/(cp Tr) is the buoyancy frequency of an isothermal atmosphere, Q is

diabatic heating, f = 2 sin(φ) ωE the Coriolis parameter and (u′, v′, w′) is the pertur-

bation wind vector. dt stands for (∂t + U ∂x) with U being the zonal background wind.

Small-scale diffusion is neglected for our purpose. The system is completed with the

Boussinesq approximation for GWs

− ρ′

ρr
=

T ′

Tr
. (3.6)
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We require that the background atmosphere is not subject to any net heating. The

wave-related diabatic heating owing to radiative cooling is (see Eq. (2.42))

Q

cp
=

Q′

rad

cp
= − 16 κ (1 − ωs) σ T 3

r

cp︸ ︷︷ ︸
=α(z)

T ′ . (3.7)

Q′

rad is synonymously called damping rate with the cooling rate coefficient2 α. To find a

simple dispersion relation, we restrict ourselves to one horizontal dimension (for consis-

tency the x-axis), assume medium-frequency waves as well as m2 ≫ 1
H2 and introduce

the ansatz

(u′, w′,
p′

ρr
, T ′,

ρ′

ρr
)(x, z, t) = (Au′ , Aw′ , Ap′ , AT ′ , Aρ′) w̃(z) exp

{
i (k x − ω t) +

z

2 H

}
.

(3.8)

Then the linear equation system can be written as




i ωI 0 i k
ρr

0 0

0 0 (∂z + 1
2 H )w̃ 0 g w̃

0 Tr N2
r

g 0 i ωI + α 0

i k (∂z + 1
2 H )w̃ (∂2

z − 1
4 H2 )w̃ 0 0 0

0 0 0 1/Tr 1/ρr







Au′

Aw′

Ap′

AT ′

Aρ′




= 0 (3.9)

where ωI = k (U − c) is the intrinsic frequency. The sign convention is k > 0 and

ωI < 0. Setting the determinate of the coefficient matrix to zero yields the relation for

the nontrivial solutions

(
∂2

z − 1

4 H2

)

︸ ︷︷ ︸
≈ ∂2

z

w̃(z) +
N2

r k2

(ω2
I − i α ωI)︸ ︷︷ ︸

:=m2

w̃(z) = 0 . (3.10)

Since 1/α is in the order of days and 1/ |ωI| of hours, terms of α2 are omitted. Thus

m2 ≈ N2
r k2

(ωI − i α/2)2
. (3.11)

To get the final result of the dispersion relation real and imaginary parts are split

m =
Nr k

ωI︸ ︷︷ ︸
=: mr

+i
Nr k α

2 ω2
I︸ ︷︷ ︸

=: mi

= mr + i
mr α

2 ωI
. (3.12)

For α = 0, the dispersion relation is identical to the one that is mentioned for medium-

frequency GWs in Fritts and Alexander [2003]. Here, m is allowed to vary slightly with

height due to the background atmosphere. A solution of Eq. (3.10) can then be found by

2Other authors often call it damping rate coefficient, damping rate parameter or just damping rate.
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applying the WKB approximation3. It states that |∂zm| ≪ |m2|. Applying the ansatz

w̃(z) = eϕ(z), the first order WKB solution is

ϕ(z) =

∫ z

zs

i m dz′ +
1

2
ln

mr(zs)

mr(z)
. (3.13)

According to our assumption of an isothermal background state at rest, mr is constant,

hence

exp {ϕ} = exp

{∫ z

zs

i m dz′

}
= exp

{
i mr −

∫ z

zs

mi dz′

}
. (3.14)

With

mi(z) =
mr α(z)

2 ωI
=

mr

2 ωI

16 κ (1 − ωs(z)) σ T 3
r

cp
, (3.15)

where ωs(z) is defined by Eq. (2.27), a wave-damping coefficient can be defined as

d(z) := exp

{
−
∫ z

zs

mi dz′

}
=

(
ωs(zs)

ωs(z)

)mr H

2 ωI

16 κ σ T 3
r

cp

. (3.16)

The wave-damping coefficient d describes the ratio of damped to undamped temperature

amplitudes and is limited to 0 ≤ d(z) ≤ 1. Under perfect LTE condition (c21/A21 ≫ 1;

see Sec. 2.4), the wave-damping coefficient becomes

d(z) ≈ exp

{
− mr

2 ωI

16 κ σ T 3
r

cp
(z − zs)

}
, (3.17)

whereas from total non-LTE condition (c21/A21 ≪ 1) follows that d ≈ 1. The final result

of the radiatively-damped temperature perturbation reads

T ′ = AT ′ d(z) exp

{
i (k x − ω t) + (i mr +

1

2 H
) z

}
. (3.18)

3.3 Impact of long-wave radiation on gravity wave dynamics

The amount of damping depends on the wave properties (mr and ωI) as well as on the

background state of the atmosphere due to the cooling rate coefficient. It would be

recommendable to consider a realistic Tr in Eq. (3.14) because of T 3
r in α. But in this

case an analytical formula can not be derived.

d(z) is depicted for different values of k, ωI and Tr in Fig. 3.1. It shows that amplitude

damping increases with height. This corresponds to a permanent loss of wave energy to

the radiation field. Above 100 km, radiative damping is limited by non-LTE. In case

of shorter vertical wavelengths the damping becomes generally stronger (see blue and

black line for mr = 3.6/km versus the red and green one for mr = 1.8/km) because of

3Refers to the method of approximating solutions to linear, second-order differential equations that was
developed by Wentzel, Kramers, and Brillouin.
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half intrinsic frequency, black half horizontal wavelength and green line 5 K higher Tr.

the dependence of exponential damping in Eq. (3.16) on mr/ωI. The physical reason for

this behavior can be understood when considering the group velocity cg,z

|cg,z| =

∣∣∣∣
∂ωI

∂mr

∣∣∣∣ =

∣∣∣∣
ωI

mr

∣∣∣∣ . (3.19)

It can be seen that strong damping is related to slow vertical propagation of the wave. In

this case, the wave is longer subject to energy loss by radiation. To emphasize this phys-

ical issue, d(z) can be reformulated. We define the time scale for the radiative cooling as

τrc = 2/α and the residence time of the GW in the atmosphere as τres = ∆z/|cph,z| with

∆z being the vertical distance between the source and the breaking region. Neglecting

non-LTE, the wave-damping coefficient can be expressed as

d = exp

{
−mr α

2 ωI
(z − zs)

}
=: exp

{
− ∆z

τrc cg,z

}
= exp

{
−τres

τrc

}
. (3.20)

Figure 3.1 shows that a slight increase of Tr by 2% is followed by a strong nonlinear

additional damping of the amplitude by 20%.

As a final comment, the damping of GWs is expected to be highly variable due to

the variety of wave residence times and background states. Therefore, a sophisticated

statistical gravity-wave model or GCM simulations with resolved GWs is needed to make

general statements of the effect of radiative damping on GWs.
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3.4 Linear theory of tidal waves

The version of KMCM used in this study has a horizontal resolution of T32 (grid res-

olution around the equator of 420 × 420 km). GWs are barely resolved (min. resolved

λx = 1260 km). This restriction does not affect atmospheric tides, which have planetary

scales. Some numerical tests revealed that especially tides in the MLT show significant

interactions with long-wave radiation. We shall therefore investigate both damping of

the tides and additional cooling by these waves. In the future, an extension to GWs

could be done by using a high spatial resolution to explicitly simulate GWs. To support

the analysis of results gained with KMCM for tides, a theoretical treatment is provided

first. This follows the text of Lindzen and Chapman [1969]; hereinafter referred to as

LC.

“Atmospheric tides refer to those oscillations in the atmosphere whose periods are

integral fractions of a lunar or solar day” [Lindzen, 1979]. The basic equations of the

classical tidal theory are nearly the same as mentioned for GWs, compare Eqs. (3.1) -

(3.5) with LC (p. 113, Eqs. (8) - (13)4). The most significant difference is an exten-

sion from a f-plane in Cartesian coordinates to spherical coordinates and relaxing the

Boussinesq approximation for GWs. In general, tidal waves can be considered as forced

gravity waves with planetary scales.

Tidal wave theory deals with fields that are periodically in time and longitude. As a

first step it is assumed that

f(λ, φ, z, t) = fω,s(φ, z) ei(ωt+sλ) , (3.21)

with λ being the longitude, φ the latitude, ω the tidal angular frequency and s the zonal

wavenumber. The set of differential equations can now be combined to form one partial

differential equation with respect to φ and z. A solution is found by the method of

separation of variables giving an ordinary differential equation for φ and another one

for z. The constant of separation is hω,s
n and is called equivalent depth 5.

The latitude problem

F (Θω,s
n ) = −4 a2 ω2

E

g hω,s
n

Θω,s
n , Θω,s

n = Θω,s
n (φ) (3.22)

is the well-known Laplace’s Tidal Equation. Here, F is a linear operator, a the Earth’s

radius and ωE the Earth’s angular frequency. Eq. (3.22) is an eigenfunction-eigenvalue

problem. The eigenfunctions Θω,s
n are called Hough Functions after Hough who pioneered

in the solution of Eq. (3.22) in the late 19th century. The Hough functions can be

expressed as an infinite sum of associated Legendre polynomials.

The altitude problem is often called the vertical structure equation. In LC, Tr = Tr(z).

We set Tr = const. To include infrared cooling, the same approach as done for GWs,

4For quantities differently denoted in LC, the letters are changed to those used in this work before.
Sign conventions are preserved.

5In context with the historical problem the same constant corresponds to the depth of ocean.
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i.e. Q′

rad/cp = α(z) T ′, is incorporated in the thermodynamic equation (see LC, p. 165,

Eqs. (193) - (196)). The thermal excitation of tides is assumed to be located at altitudes

below such that a free wave equation can be considered. The vertical structure equation

can then be written as

∂2
z γω,s

n +

(
κig

hω,s
n H

(
1 +

α

i ω

)
−1

− 1

4 H2

)

︸ ︷︷ ︸
:= m2

γω,s
n = 0 , (3.23)

where κig = 2/7. Using ω2 ≫ α2, m is approximately given by

m ≈
√

κig

hω,s
n H

− 1

4 H2

︸ ︷︷ ︸
=: mr

+ i
α

2ω

κig

hω,s
n H√

κig

hω,s
n H

− 1
4 H2

︸ ︷︷ ︸
mi

, (3.24)

= mr + i
m2

r + 1
4 H2

mr

α

2 ω
. (3.25)

Except for the term 1
4 H2 , Eq. (3.25) is equivalent to Eq. (3.12). Also, the WKB ansatz

yields a result that is analogous to the previous one for GWs.

γω,s
n = γω,s

n,0 exp

{∫ z

zs

i m dz′

}
, (3.26)

= γω,s
n,0

(
ωs(zs)

ωs(z)

)m2
r + 1

4 H2

mr

H
2 ω

16 κ σ T 3
r

cp

︸ ︷︷ ︸
=: d(z)

ei mr z . (3.27)

The overall solution for the temperature variations due to tides is

T ′(λ, θ, z, t) =
∑

ω,s,n

ei(ωt+sλ) Θω,s
n T ′ ω,s

n , (3.28)

where the radiatively-damped amplitude reads

T ′ ω,s
n = −

(
1 +

α

i ω

)
−1 (γ − 1) Tr

i ω
γω,s

n ez/2H . (3.29)

3.5 Impact of long-wave radiation on thermal tides

Eq. (3.24) states that vertical propagation and radiative damping of tides depend on

hω,s
n . To estimate effects excited by and exerted on tides, it is necessary to know the

relevant hω,s
n in the middle atmosphere. In principle, there is an infinite number of Hough

functions (and equivalent depths), but only a few will project on a specific excitation
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ω [ωE], s 2,2 2,2 2,2 1,1 1,1 1,1 1,1
n 2 4 6 1 3 -2 -4

hω,s
n [km] 7.85 2.11 0.96 0.69 0.12 -12 -1.7

mr [1/km] 0.015 0.12 0.19 0.23 0.57 0.09 i 0.17 i

λz [km] 433 53 33 27 11 - -

symmetric yes yes yes yes yes yes yes

vertical propagation yes yes yes yes yes no no

Table 3.1: Characteristics of the most important symmetric Hough modes calculated
for an isothermal background state Tr = 245 K. As LC noted, for a realistic temperature
profile vertical propagation of the semidiurnal mode n = 2 is only possible below the
mesosphere.

mechanism. Since the set of all Hough functions {Θω,s
n } is complete, any given excitation

function Qω,s can be expanded as

Qω,s =
∑

n

Qω,s
n (z) Θω,s

n (θ) , (3.30)

what allows for the identification of relevant Hough functions. LC pointed out that

absorption of solar insolation is the dominant excitation mechanism. The main contri-

butions are absorption by water vapor in 0 − 12 km and absorption by ozone between

20 − 80 km height (centered around 45 km) [Forbes, 1984]. In addition, the diurnal

variation of moist convection in the tropical convergence zones contributes to the gener-

ation of tides. Tides responding to these excitations are called thermal tides, hereinafter

just referred to as “tides”. Tides are divided into migrating (following the apparent mo-

tion of the Sun) and non-migrating tides (faster/slower westward propagation compared

to the Sun’s motion, eastward propagation or steady-state oscillations). Migrating tides

are of greater importance throughout the middle atmosphere [Forbes, 1984; Hagan et al.,

1997]. Therefore, non-migrating tides will not be further considered in the present study.

The Hough functions that match best with the thermal excitation are the migrating

diurnal ones ΘωE,1
n , meaning ω = ωE and s = 1. Hough functions of the migrating

diurnal tide6 with positive equivalent depths (sometimes called internal or gravitational

modes) are ΘωE,1
1 , ΘωE,1

2 , ΘωE,1
3 , ... whereas negative equivalent depths (external or

rotational modes) are denoted as ΘωE,1
−1 , ΘωE,1

−2 , ΘωE,1
−3 , ... A positive odd or a negative

even n indicates a Hough function that is symmetric about the equator. All other n are

antisymmetric Hough functions. The thermal excitation of the migrating semidiurnal

tide, ω = 2 ωE and s = 2, is only a fraction of the diurnal tidal excitation. Nevertheless,

the migrating semidiurnal tide is of similar importance as the diurnal tide throughout

the atmosphere. There exist only solutions with positive h2ω,2
n . Semidiurnal Hough

6The term ”migrating diurnal tide“ refers to the complete temperature field that is given by Eq. (3.28)
as a sum over n for ω = ωE and s = 1. A ”migrating diurnal Hough mode“ is the temperature field
defined by Eq. (3.28) for a particular n and ω = ωE and s = 1.
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Figure 3.2: Latitudinal distribution of the amplitudes of the migrating diurnal compo-
nents of the u′, v′, w′ and T ′ fields at 85 km excited by the absorption of solar insolation
by water vapor and ozone for equinoctial conditions. (From Lindzen [1967], u - northerly
velocity and v - westerly velocity.)

Figure 3.3: Vertical profile of the temperature amplitude of the migrating diurnal tide
for different latitudes under same conditions as in Fig 3.2. (From Lindzen [1967])
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Figure 3.4: The wave-damping coefficient d(z), which corresponds to the ratio of
damped to undamped amplitude, for different Hough modes and equivalent depths for
Tr = 245 K. With the exception of Θ2ωE,2

2 , higher order modes (increasing n) are damped
more efficiently.

functions Θ2ωE,2
1 , Θ2ωE,2

2 , Θ2ωE,2
3 , ... with even (odd) n are symmetric (antisymmetric)

about the equator. It is reasonable that symmetric Hough functions are more important

because they receive the bulk excitation due to the approximately latitudinal symmetry

of solar insolation (see Eq. (3.30)). Table 3.1 provides an overview of the most important

Hough modes and some of their basic properties.

From tidal excitation and propagation it is expected that, in general, amplitudes of

all modes vary with latitude, altitude and season. A detailed overview can be found e.g.

in LC, Lindzen [1979] or Forbes [1984]. But some important features, we shall address

later, are

• The mode Θ2ωE,2
2 dominates the migrating semidiurnal tide throughout the atmo-

sphere except for the MLT. Its large equivalent depth in combination with decreas-

ing temperature in the mesosphere leads to exponential decay with altitude in the

MLT.

• The mode Θ2ωE,2
4 mainly contributes to the migrating semidiurnal tide in the lower

thermosphere [Hong and Lindzen, 1976].

• No vertical propagation is possible for diurnal modes with negative equivalent

depth, because imaginary mr means trapping (see Eq. (3.24)) to the excitation

region. Therefore, the modes ΘωE,1
1 , ΘωE,1

3 and ΘωE,1
5 are the main diurnal tidal

components in the MLT.
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• Vertical propagation of the migrating diurnal tide is limited to the tropics and

subtropics. The reason is that the tidal frequency ω must be larger than the

Coriolis parameter (extrapolating from linear theory of GW). This condition is

fulfilled for f(0◦) = 0 ≤ f ≤ f(30◦) = 1 ωE .

• The latitudinal temperature structure of a mode is directly connected to the Hough

funtion (see Eq. (3.29)).

• Amplitudes of vertical propagating tides grow with altitude by the factor ez/2H

as long as refraction by the mean wind and vertical variations of the background

temperature are neglected.

Summarizing, the strongest T ′ can be expected in the MLT due to the migrating

diurnal tide in a latitude band between −30◦ to 30◦ for equinoctial conditions. This is

also evident from Figs. 3.2 and 3.3.

We now turn to the wave-damping coefficient depending on the equivalent depth of

each Hough mode. For different Hough modes, d(z) is shown in Fig. 3.4. A physical

explanation of the findings of Fig. 3.4 can be given when considering again the group

velocity. There is no dispersion relation for tides due to the discrete wave spectrum. LC

assumed the group velocity of GWs also being applicable to tides. Due to the planetary

scales of tides, the extended dispersion relation of GWs

mr =

√
N2

r k2

ω2
I

− 1

4 H2
, (3.31)

is used for the derivation of the group velocity

|cg,z| =

∣∣∣∣
∂ω

∂mr

∣∣∣∣ =

∣∣∣∣∣
mr ω

m2
r + 1

4 H2

∣∣∣∣∣ . (3.32)

The approximation m2
r ≫ 1

4 H2 applies for most Hough modes that are symmetric about

the equator. In this case, it follows from Eqs. (3.24) and (3.32) that modes with a

smaller equivalent depth show a lower |cg,z| and are damped more efficiently by long-

wave radiation. This assumption can not be made for the Hough mode Θ2ωE,2
2 . For

Tr = 245 K, the vertical wavelength of Θ2ωE,2
2 approaches zero. In such a case the group

velocity would tend to zero and radiative damping would get infinitely strong.
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3.6 Summary

• Radiative damping can be included in the linear theory of GWs and TWs in WKB

approximation.

• For medium-frequency GWs and thermal TWs the wave-damping coefficient is

d = exp

{
−
∫ z

zs

m2
r + 1

4 H2

mr

α

2 ω
dz′

}
.

• The amount of radiative damping depends on the cooling rate coefficient α and

the residence time of the wave in the atmosphere.
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4 Interaction of atmospheric waves and thermal

radiation in a mechanistic GCM

4.1 Motivation and Introduction

Using a GCM offers the possibility to determine wave-radiation interaction for a real-

istic background atmosphere and reasonable dynamics of resolved waves. Furthermore,

several approximations can be avoided that have been made in our semi-analytical cal-

culations.

In this chapter, estimates of TW-induced cooling rates and radiative damping of TWs

using KMCM simulations are presented and interpreted with respect to the previous

chapters.

First of all, the basic properties of KMCM are mentioned, followed by some informa-

tion about the implemented radiative transfer scheme. As a basis for our analysis, we

continue with a presentation of background temperatures and the resolved wave activity

in KMCM. Afterward, it is shown how additional cooling rates and cooling rate coef-

ficients can be derived from KMCM simulations. An extrapolation of these results to

additional radiative net cooling rates by GWs is proposed.

Radiative damping of tides will be addressed by a comparison of model runs where

the thermal radiation does or does not interact with waves. Radiative damping on the

migrating diurnal and the semidiurnal tide will be considered separately.

4.2 KMCM in a nutshell

KMCM (Kühlungsborn Mechanistic general Circulation Model) is a mechanistic gen-

eral circulation model. The dynamical core solves the primitive equations by using the

following numerical schemes.

• A vertical discretization with a terrain following vertical hybrid coordinate, ac-

cording to Simmons and Burridge [1981] is applied.

• The horizontal representation makes use of the spectral transform method as in-

troduced by Machenhauer and Rasmussen [1972].

• Time integration is done by the semi-implicit leapfrog scheme following Asselin

[1972] and Hoskins and Simmons [1975].

The prognostic variables are the horizontal vorticity, horizontal divergence, temperature,

surface pressure, surface temperature and specific humidity. The latter is treated as
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a tracer and allows to explicitly incorporate an idealized tropospheric moisture cycle.

The model resolution is triangular spectral truncation at wavenumber 32 (T32) with 70

vertical full levels reaching up to ≈ 120 km height. Important parameterizations include

the non-resolved effects of horizontal and vertical diffusion of momentum and sensible

heat according to Becker and Burkhardt [2007]; Becker [2003], non-orographic gravity

waves following Becker and McLandress [2009] and orographic gravity waves due to Wolf

[2013]. The radiative transfer is described in Knöpfel and Becker [2011].

4.3 Radiative transfer scheme in KMCM

The long-wave radiative transfer scheme of KMCM is idealized when compared to state-

of-the-art schemes. The simplifications of this scheme, e.g. the restriction to only four

frequency bands, allow for high computational efficiency. For example, the radiative

transfer is evaluated for every model time step. This is required in order to investigate

the interaction of resolved atmospheric waves with long-wave radiation.

The scheme is based on Eddington-type RTEs for U and D. Important features that

are not incorporated into the radiative transfer model from Chap. 2 are:

• finite frequency bands (k): (1) O3 9.6 µm, (2) and (3) H2O 6.3 µm and λ > 5 µm,

and (4) CO2 15 µm

• mass absorber mixing ratios ρk
a/ρ for O3, H2O, and CO2

• deviations from the gray limit parameterized using the representation of Elsasser

band model

• improved Non-LTE parameterization due to the consideration of the efficient col-

lisions of atomic oxygen with CO2 in the lower thermosphere

According to these improvements the long-wave cooling rate is given by

Qrad =
∑

k

2 κk (1 − ωk
s ) (Uk

tot + Dk
tot − 2 Bk) , (4.1)

with k running over the four aforementioned absorber bands and overlines indicating a

frequency average for each band. Furthermore, the following dependencies are incorpo-

rated: ωk
s = ωk

s (T, ρ) and κk = K
k

ρk
a/ρ. Uk

tot (Dk
tot) is the total upward (downward)

energy flux including a covariance term due to deviations from the gray limit. Hence,

our model equation (2.24) can be regarded as a simplified version of Eq. (4.1).
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Figure 4.1: Zonally and temporally averaged temperature Tr as a function of latitude
and altitude for different seasons obtained from KMCM simulations.
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4.4 Background temperature and temperature perturbations in

KMCM

For KMCM simulations we define the temperature of the background state by

Tr = 〈[T ]〉. (4.2)

A zonal (0 ≤ λ ≤ 2π) and temporal (0 ≤ t ≤ 10 day) average of T is applied. As a

consequence, temperature perturbations are given by

T ′ = T − Tr . (4.3)

Thus, T ′ represents all resolved wave deviations from the zonal mean state, subject to

slow seasonal variations. Traveling waves in the MLT, especially tides, are expected to

be reasonably captured. But also quasi-stationary temperature variations are included,

e.g. the Siberian High in the northern hemisphere winter.

As a statistical measure the standard deviation σT is used

σT =
√

〈[(T − Tr)2]〉 =
√

〈[T ′ 2]〉 , (4.4)

which is identical to T ′

rms, the root mean square of T ′, and related to T̂ ′, the often quoted

total amplitude of T ′, by

σT = T ′

rms =
T̂ ′

√
2

. (4.5)

Seasonal variations of all considered quantities are evaluated by applying the afore-

mentioned zonal and temporal average to the first 10 days of January, April, July and

October. In addition, the zonal and temporal average for each month is calculated five

times (five model years) and averaged. Hereafter, all calculations of standard deviations

follow this method.

We start with an overview of the fields Tr and σT . In Fig. 4.1 the background

temperature Tr is depicted as a function of latitude and altitude for different seasons.

The main aspects of the atmospheric temperature distribution, like the cold summer

mesopause and the warm winter stratopause, are reproduced.

Fig. 4.2 shows σT and reveals the resolved wave-induced temperature perturbations.

In the winter hemisphere RWs appear poleward of φ = ±30◦ with maximum amplitudes

around 1 and 0.1 hPa. In the southern hemisphere, the two RW-induced maxima are

clearly separated. The reason is that the upper RWs are excited in situ from baroclinic

instabilities (strong horizontal temperature gradients) and the lower ones are forced RWs

which propagate upward from the troposphere; for comparison see McLandress et al.

[2006]. In the summer hemisphere, RWs poleward of φ = ±30◦ can be found too, but

they occur above the cold mesopause region. They are also generated by baroclinic

instabilities. Throughout the MLT the most significant temperature perturbations are
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Figure 4.2: Same as Fig. 4.1, but for the standard deviation of the temperature (see
Eq. (4.4)).
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caused by TWs which are maximum equatorward of φ = ±30◦ around 0.0001 hPa during

equinox. The secondary maxima are located at φ = ±45◦ at the same altitude and time.

The latitudinal structure of tidal temperature perturbations is roughly conserved over

the year. The TWs amplitudes reach values up to 65 K. A more detailed description,

where also single Hough functions are considered, is given in Sec. 4.8.3.

4.5 Extracting additional cooling rates from KMCM

In principle, there are two ways of extracting the additional cooling rates from the

numerical simulation. On the one hand, one could directly take the standard deviation

of Qrad or one could calculate the net additional cooling directly using

〈[∆Qrad]〉 =
〈[

Qrad(Tr + T ′)
]〉

− 〈[Qrad(Tr)]〉 . (4.6)

On the other hand, one can assume a specific dependency of Qrad(Tr + T ′) and estimate

the unknown prefactors by a curve fitting procedure. This method is chosen, because

we want to apply the analytical models of the previous chapters. With an appropriate

fit the results of both methods are expected to be equal.

4.5.1 Curve fitting of the cooling rate

For interpreting the additional cooling rates in KMCM, Qrad(Tr + T ′) can be considered

as data from a numerical experiment underlying an unknown dependency on T ′ that can

be described using a curve fitting procedure. The actual dependency is constrained by

Eq. (4.1). Thus, Eq. (4.1) is now discussed in more detail.

First, wave variations of Utot and Dtot in Eq. (4.1) produced in the stratosphere and

further above can be neglected according to the conclusion made in Sec. 2.7.

Second, Eq. (4.1) has some pressure, density and temperature dependent prefactors.

Variations on these prefactors due to wave perturbations (e.g. in temperature) can

cause additional wave-induced cooling rates. For large impacts of these prefactors on

the cooling rate, our results from Chap. 2 would be inappropriate for describing results

obtained with KMCM. Studies of these prefactors in KMCM reveal an effect of T ′ on ω4
s

only, i.e., on the scattering albedo in the CO2 15µm band. The variation of ω4
s occurs

only for strong tidal wave activity around the equator with maximum variations of up

to 10% around an altitude of 100 km. In comparison with the strong non-linearity of

the Planck function this should be a minor effect that can be neglected. Using a Taylor

expansion of Bk(T ) about Tr

Bk(T ) = Bk(Tr) + Bk
1 (Tr) T ′ + Bk

2 (Tr) T ′2 + · · · , (4.7)
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we can write the cooling rate in the middle atmosphere with respect to the radiation

scheme in KMCM as

Qrad ≈
∑

k

2 κk
r (1 − ωk

s,r) (Uk
tot,r + Dk

tot,r − 2 Bk(Tr))

︸ ︷︷ ︸
=Qrad,r

+
∑

k

−2 κk
r (1 − ωk

s,r) Bk
1 T ′

︸ ︷︷ ︸
=Q′

rad

+
∑

k

−2 κk
r (1 − ωk

s,r) Bk
2 T ′ 2

︸ ︷︷ ︸
=Q′′

rad

+ · · · . (4.8)

Qrad,r, Q′

rad and Q′′

rad denote again the cooling rate due to the background and first- and

second-order wave perturbations.

Third, the prefactors ωk
s and κk show no relevant longitudinal or temporal (t < 10 days)

dependencies but they vary with altitude and latitude.

Taking advantage of the last point, considering time scales shorter than 10 days and

assuming that Utot = Utot(φ, z) and Dtot = Dtot(φ, z), we can write

Qrad(λ, φ, z, t) ≈ Qrad,r(φ, z) + Q′

rad(λ, φ, z, t) + Q′′

rad(λ, φ, z, t) . (4.9)

Therefore, our model function for the curve fitting is a polynomial of second order,

Qrad(λ, φ, z, t) ≈ P2 = a0(φ, z) + a1(φ, z) T ′(λ, φ, z, t) + a2(φ, z) T ′ 2(λ, φ, z, t) , (4.10)

with latitudinal- and height-dependent fit parameters a0, a1 and a2. The fitting process

is carried out for the data set [Qrad; T ′](λ, t) and is performed for the whole latitude

and altitude domain. The fitting process is based on the method of least squares. An

example how such a fit looks like is given in Fig. A.2 in the appendix.

The measure how well the model function fits the data of KMCM is given by the

coefficient of determination

R2 = 1 −

∑
λ,t

(Qrad − P2)2

∑
λ,t

(Qrad − Qrad)2
, (4.11)

running from R2 = 0 (no correlation found) to R2 = 1 (perfect agreement). The coeffi-

cient of determination R2 is shown in Fig. 4.3 and confirms our previous assumptions.

A description of the cooling rate with a model function of the form P2 is very good with

R2 > 0.95 in the upper stratosphere and the MLT over the whole year. An exception

has to be made for the summer mesopause region poleward of φ = ±60◦.

In general, it can be stated that low wave activity (vanishing σT ), low background

temperatures and high perturbations of Utot in the troposphere account for small R2.

In the polar summer mesosphere all these aspects are valid and, therefore, large devia-

tions are observed. In this case, long-wave emission is reduced and absorption of Utot

dominates the cooling rate. Figure 4.4 illustrates that wave-induced variations of Utot
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Large values of σT are found around φ = −75◦ and φ = +40◦. Right: Variations of
Utot as a function of latitude and altitude for the same period. Comparing both panels,
the latitudinal distribution of σU and σT corresponds well.

and Dtot in the MLT are indeed generated non-locally in the troposphere. The left-hand

side panel shows σT (φ) at about 100 m above ground for January while the right-hand

side panel shows the corresponding standard deviation of Utot for the whole vertical

domain. It is plausible that large values of σT around φ = −75◦and φ = 40◦ arise from

weather systems (baroclinic Rossby waves). Affecting Utot and Dtot, these tropospheric

temperature variations influence the cooling rate in the mesopause region. The effect is

small with maximum variations of Qrad of about ±0.15 K/day (5% of Qrad). It refers to

the case of RW-induced cooling rate variations that has been discussed in the context of

Fig. 2.7.

Hereafter, all conclusions refer to regions with R2 ≥ 0.9. Thus the troposphere, the

lower stratosphere and the polar summer mesopause region are not further considered.

4.6 Global and seasonal distribution of additional cooling rates

We define the variations of the radiative cooling rate due to atmospheric waves by the

standard deviation

σQ =
√

〈[(Q′

rad + Q′′

rad) 2]〉 . (4.12)

The dependency of σQ on latitude and altitude for different seasons is shown in Fig. 4.5,

where Q′

rad ≈ a1 T ′ and Q′′

rad ≈ a2 T ′ 2 are reconstructed from the fitting procedure.
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Figure 4.5: Vertical cross-section of the variations of the radiative cooling rate σQ due to
waves with periods shorter than 10 days. Largest values of σQ show up in the equatorial
MLT during equinox. Further important contributions are located at the poles around
the stratopause and the lower mesosphere.
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rad]〉. It is negative by definition. Significant
values are only found in regions associated with strong TW activity during equinox.
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The largest cooling rate variations σQ can be found in the region we associate with

strongest tidal wave activity. Around the equator, maximum values of σQ = 5.4 K/day

are found. In periods of strong wave activity the modulation of the cooling rate can

exceed the background cooling rate. Variations of the cooling rate caused by RWs amount

to 2 K/day around the polar stratopause. Furthermore, values of σQ = 0.5 K/day are

widely common in the mesosphere for all latitudes. The similar distribution of large σT

and σQ implies that the prefactors a1 and a2 are only weakly varying with latitude and

height.

The additional net cooling is presented in Fig. 4.6. Values of 〈[Q′′

rad]〉 are roughly

one order of magnitude smaller than σQ. In April the maximum additional net cooling

is 0.36 K/day and in October 0.52 K/day due to tidal waves in the equatorial lower

thermosphere. Seasonal differences arise from larger tidal temperature amplitudes in

October than in April. RWs generate additional net cooling mainly in the polar lower

mesosphere with values up to 0.1 K/day.

4.7 Cooling rate coefficients in KMCM

Figure 4.7 shows the global distribution of the cooling rate coefficient a1 from Eq. (4.10)

for different seasons. A comparison with Fig. 4.1 reveals the strong dependency of a1

on Tr. Cooling rate coefficients calculated with Curtis matrices by Zhu [1993] (without

scale dependence, i.e. for infinite vertical wavelength) show the same vertical structure

but with significant larger values, e.g. twice our values around the stratopause and

five times larger values in the lower thermosphere. However, our results are in good

agreement with Dickinson [1973] for the height range between 30 − 70 km.

As a next step, a parameterization for the horizontally averaged a1 is derived. This

parameterization is called α1 and depends in principle on all four absorber bands

α1 =
∑

k

αk
1 . (4.13)

Different functional relationships of αk
1 are tested. The temperature dependency is in-

corporated as T 3
r or as the first Taylor expansion coefficient of the frequency averaged

Planck function Bk
1 (see Eq. (4.7)). Also we consider non-LTE as (1 - ωk

s ) and the mass

mixing ratio as ρk
a/ρ. The band strength K

k
r is used as a tuning parameter.

For the MLT, a good parameterization is achieved for CO2 alone

α1 = α4
1 = K

4 ρ4
a

ρ
(1 − ω4

s ) B4
1 . (4.14)

A comparison of the horizontally averaged a1 with different parameterizations α1 is given

in Fig. 4.8. It illustrates that T 3
r is inadequate to describe a1 in the lower thermosphere

due to the different non-linearity of
∫

Bν dν for small frequency bands and high temper-
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Figure 4.8: Left: Different parameterizations for the meridional averaged a1 for Oc-
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r

fail. Including non-LTE and mixing ratios for CO2 and O3, the best result is found with
a Taylor expansion of the Planck function (black line). Right: Meridional averaged a2

and its the best parameterization α2 for October. The error in the stratosphere (below
1 hPa) arises from a bad estimation of a2.

atures (≈ 400 K). To achieve a good approximation in the stratosphere too, the cooling

rate coefficient of ozone (analogous to Eq. (4.14)) is added

α1 = α4
1 + α1

1 . (4.15)

The evaluation of Eq. (4.15) is given by the dashed black line in Fig. 4.8. The relative

error is smaller than 10%.

The same procedure is done for α2 using the second Taylor expansion coefficient Bk
2

αk
2 = K

k
r

ρk
a

ρ
(1 − ωk

s,r)B
k
2 , (4.16)

α2 = α4
2 + α1

2 . (4.17)

Above the equatorial stratopause the relative error of this parameterization is less than

10 % up to the Mesopause, see Fig. 4.8.

Having α2 at hand it is possible to calculate 〈[Q′′

rad]〉 for any given σT

〈[Q′′

rad]〉 = α2 σ2
T . (4.18)

This was done for small-scale temperature fluctuations associated with GWs taken from

Kutepov et al. [2007]. These authors applied a model “which randomly generates indi-

vidual temperature profiles reminiscent of instantaneous measurements during periods
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Figure 4.9: Left: Rebuild of the σT profile caused by a broad spectrum of GWs
analogously to Kutepov et al. [2007]. Middle: Tr for NH summer for five different
latitudes as simulated by KMCM (see Fig. 4.1 in July, same color coding as used in
Kutepov et al. [2007]). Right: Estimates of the additional net cooling rate from Eq.
(4.18) that would occur for σT due to GWs and different background states from KMCM.

of strong GW activity, whose statistical properties agree with observed spectra.” The σT

of Kutepov et al. [2007] has been rebuild with focus on the maximum value of ≈ 21 K

at an altitude of 90 km. α2 was computed from the zonally and temporally averaged

KMCM data set (July) for five different latitudes: −72◦ for subantarctic winter (SAW),

−40◦ for midlatitude winter (MLW), 0◦ for the tropics (TROP), 40◦ for midlatitude

summer (MLS) and 72◦ for subartic summer (SAS).

A comparison of the input parameter Tr that is given in the middle panel of Fig. 4.9

with Kutepov et al. [2007] shows a good quantitative agreement. The vertical structure

of the additional net cooling rates are found to be consistent but absolute values are

roughly one order of magnitude smaller. The absolute amplitude of the additional net

cooling is 0.2 K/day in the winter hemisphere and the tropics according to the present

estimation.

A possible explanation for our smaller additional net cooling is the smaller overall

cooling rate computed with KMCM. For example at 90 km and the SAW profile, KMCM

yields Tr = 193 K and Qrad = −1 K/day whereas Kutepov et al. [2007] find Tr = 197 K

and Qrad = −7.5 K/day. For the MLW profile, KMCM computes Tr = 184 K and

Qrad = 0.5 K/day and Kutepov et al. [2007] obtain Tr = 190 K and Qrad = −3.5 K/day.

For more details, see Qrad,r from KMCM in Fig.A.3 in the appendix. We believe that the

use of the band strengths K
k

as a tuning parameter in KMCM with focus on a reasonable

atmospheric dynamic may yield the underestimation of the cooling rate in the MLT. To

be fair, one also has to note that the radiative transfer code of Kutepov et al. [2007]
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has not yet been interactively run in a middle atmosphere GCM. Finally, Kutepov et al.

[2007] state that the product of collision quenching rate and atomic oxygen concentration

has an important role in the amount of radiative cooling by CO2. Assuming the lowest

(instead of the highest, difference of factor 4) accepted quenching rate, Kutepov et al.

[2007] found maximum additional cooling reduced from 2.5 → 1 K/day.

A recent study of Kutepov et al. [2013] considers, moreover, a modulation of the vol-

ume mixing ratios (VMRs) [O(3p)] and [CO2] by GWs

[M ]′ =
∂z[M ]

N2
T ′ . (4.19)

The effect has been observed for tides at the equator by satellites [Smith et al., 2010].

Kutepov et al. [2013] found an increase of the additional net cooling mainly contributed

by variations of T ′ and [O(3p)]′ whereas [CO2]′ has the opposite effect. A maximum

additional net cooling of 4 K/day is obtained in periods of strong GW activity.

4.8 Radiative damping of resolved tidal waves

4.8.1 Tidal waves without radiative damping

In order to study tidal waves that are not damped by long-wave radiation in the MLT,

we use a modified model setup of KMCM. More specifically, we compute the long-wave

radiative transfer not for the complete temperature field but only for the zonal-mean

temperature. To maintain the dynamics at lower altitudes where the TWs are mainly

generated, we choose

Qrad =





Qrad(T ) p > 0.1 hPa

Qrad([T ]) p ≤ 0.1 hPa
(4.20)

with the transition level of 0.1 hPa. Our tides are still damped by other processes (ver-

tical and horizontal diffusion, interaction with parameterized GWs). Nevertheless, the

terms ”damped“ and ”undamped“ shall refer hereinafter only to the radiative damping

process.

4.8.2 Extracting the migrating (semi-) diurnal tide with Fourier analyses

In Sec. 3.5 it was pointed out that radiative damping depends on the tidal equivalent

depths, which are larger for the gravest semidiurnal modes as for the diurnal modes.

To extract this difference, a Fourier analysis in longitude and another one in time is

performed on damped and undamped tides. The migrating diurnal tidal temperature

variation is given by

T ′ 1,1 = T̂R cos(ωE t + λ) + T̂I sin(ωE t + λ) , (4.21)
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Figure 4.10: Vertical cross-section of the temperature standard deviation in October
that is spectrally filtered (left) for zonal wavenumber one and wave period of one day
and (right) zonal wavenumber two and wave period of a half day. The temperature
variations with periods of one day are associated with the migrating diurnal tide and
show a distinct modal structure due to the involved Hough functions. The migrating
semidiurnal tide show a pronounced structure which not only varies with latitude but
also in the vertical.

where T̂R and T̂I are the Fourier coefficients depending latitude and height. The migrat-

ing semidiurnal temperature variation T ′ 2,2 is equivalently represented by ω = 2 ωE and

s = 2. The standard deviation of the diurnal migrating tidal temperature amplitude is

σT 1,1 =
√

〈[(T ′ 1,1)2]〉 . (4.22)

The Fourier analyses for damped tides are based on the original data set of the period

of the first 10 days in October. The analyses are carried out for each October of the

five model years and are subsequently averaged. Using the modified model setup for

undamped tides, KMCM simulations are performed beginning with the initial state

vector of October 1st of the original data set and ending on October 10th for each

realization.

Before considering the radiative damping process of σT , classical linear tidal theory is

linked to the findings of damped diurnal and semidiurnal σT from KMCM simulations.

4.8.3 The migrating (semi-) diurnal tide in KMCM

Figure 4.10 shows σT 1,1 and σT 2,2 for October. The left-hand side panel due to the

diurnal migrating tide can be compared to Figs. 3.2 and 3.3 which are calculated for

equinox conditions. Both estimates show a similar latitudinal structure of maximum

51



0.9 0.95 1

10
−4

10
−3

10
−2

10
−1

Amplitude ratio [−]

p 
[h

P
a]

 

 

d for hω
 E

,1
1

d for hω
 E

,1
3

d for h2ω
 E

,2
2

d for h2ω
 E

,2
4

d for h2ω
 E

,2
6

−60 −30 0 30 60
0.9

0.92

0.94

0.96

0.98

1

1.02

Latitude [deg]

A
m

pl
itu

de
 r

at
io

 [−
]

 

 

0.03 hPa
0.008 hPa
0.002 hPa
0.0005 hPa
0.0001 hPa

Figure 4.11: Left: Ratios of damped to undamped temperature amplitude of the
resolved migrating diurnal tide as a function of latitude for five different pressure levels
in October from KMCM. Right: Improved semi-analytical (see text) ratios of damped
to undamped temperature amplitude for different Hough modes of the migrating diurnal
and semidiurnal tide as function of altitude for October.

temperature amplitudes at the equator with smaller maxima around ±45◦ in KMCM

and ±35◦ in LC. These structures are found to be uniform over a wide altitude range

above the stratosphere. Amplitude values increase exponentially with height and are in

good agreement for KMCM and LC. The relevant involved diurnal Hough modes could be

identified by a decomposition σT 1,1 into Hough functions analogue to a Fourier analysis.

Here, we just compare the curve shapes of single Hough functions (see LC) from tidal

theory with σT 1,1 taken from KMCM. In agreement with theory the functions ΘωE,1
1 ,

ΘωE,1
3 and ΘωE,1

5 match pretty well the three aforementioned maxima. Hough functions

of the diurnal migrating tide with negative index have to be unimportant because no

maxima are found at high latitudes. The same conclusion is made for antisymmetric

Hough functions that could not account for the maximum around the equator.

On average, σT 2,2 is roughly four times smaller than σT 1,1 . This is caused by the

exponential decay in the mesosphere of the Hough mode Θ2ωE,2
2 . It was noted that

Θ2ωE,2
4 is dominant in the lower thermosphere. Indeed, the structure of σT 2,2 can arise

from this Hough mode around p = 0.0005 and p = 0.0001 hPa. The vertical irregularity

of σT 2,2 can be explained by the high sensitivity of Θ2ωE,2
4 due to modest changes of

background winds and temperature as mentioned by Hong and Lindzen [1976].

4.8.4 Radiative damping of the migrating (semi-) diurnal tide in KMCM

Figure 4.11 shows the amplitude ratio of damped over undamped σT 1,1 for different

pressure levels. A value greater than one means a reduced wave amplitude although

radiative damping of the wave is switched off.

For each pressure level the amplitude ratios are constant around the equator and

slowly decreasing between ±30◦ to ±60◦. For other latitudes a more complicated behav-
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ior is obtained containing also values above one implying another process causing the

amplitude change. Around the equator the amplitude ratio is about 97 % for a vertical

propagation path of 0.1 ≤ p ≤ 0.0001 hPa. The predicted ratio of 90 % from pure

analytical calculations (Eq. (3.27) and Fig. 3.4) for the same vertical propagation dis-

tance is significantly smaller. This error is caused by an overestimation of the analytical

cooling rate coefficient α due to the T 3
r dependency. A better description is achieved

using the parameterization α1 (from Eq. (4.15); see Fig. 4.8 left, dashed black line).

The amplitude ratio d is found by integrating α1(z) numerically

d = exp

{
−m2

r + 1
4 H2

mr

H

2 ω

∫ z

zs

α1 dz′

}
, (4.23)

where mr is the vertical wavelength of a particular Hough mode (see Eq. 3.24). The

improved amplitude ratios d are shown on the right-hand side of Fig. 4.8. The ratio for

the Hough mode Θ1ωE,1
1 is about 96 % at 0.0001 hPa. This result is in good agreement

with the ratio that is obtained for the resolved migrating diurnal tide from KMCM simu-

lations implying that Θ1ωE,1
1 is, in agreement with linear theory, the dominant migrating

diurnal mode in KMCM. For the migrating semidiurnal tide the variations of ampli-

tude ratios are larger and more irregularly (not shown). It is not possible to distinguish

amplitude damping from feedbacks on wave propagation due to an altered background.

The technical measure that is explained in Sec. 4.8.1 acts in two ways on the waves.

Since no energy of the wave is lost to the radiation field, which would be transported into

space or other air layers, σT increases with time until a new equilibrium state is reached.

This is observed in KMCM simulations. Considering dissipative processes like molecular

diffusion of heat and momentum or turbulence due to wave breaking, the additional

energy of the tides is deposited locally and, therefore, heats the MLT. In our scenario

(10 days in early October) an averaged temperature increase is observed, reaching 2.5 K

in the lower thermosphere, comparing the modified background state to the original one.

Strong variations of the amplitude ratios of a tide, which are a sum of ratios over all

involved Hough modes, are therefore generated not only by a change in amplitude but

also by alterations in wavelength and phase of particular Hough modes. In the case of

the migrating diurnal tide, a high sensitivity of wave parameter mainly occur for less

important Hough modes and, thus, strong variations of the amplitude ratios appear only

in the absence of ΘωE,1
1 , ΘωE,1

3 and ΘωE,1
5 at high latitudes (see left-hand side panel of

Fig. 4.11).

Hence, in case of resolved waves (e.g. the migrating semidiurnal tide in the MLT),

whose propagation is sensitive to background fields, no quantitative statement can be

given about the amount of damping of the amplitude by radiation. It may be asked,

whether a comparison of amplitudes of highly sensitive waves is meaningful at all when

switching off radiative damping modifies the background state and, therefore, the con-

ditions for wave propagation.
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4.9 Summary

For the interaction of TWs and RWs with thermal radiation in KMCM it has been shown

that:

• Radiative cooling rates in the MLT from KMCM simulations can be described

approximately by Qrad = a0 + a1 T ′ + a2 T ′2

• The maximum value of the variation of the radiative cooling rate is 5.4 K/day for

TWs and 2 K/day for RWs in October.

• The maximum value for the additional net radiative cooling is 0.5 K/day for TWs

and 0.1 K/day for RWs in October.

• 0.2 K/day additional net radiative cooling is expected from GW activity in KMCM

simulations.

• The temperature amplitude of the resolved migrating diurnal tide is radiatively

damped by 4% between 65 − 110 km height.
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5 Conclusion

5.1 Summary

The interaction of long-wave radiative transfer with internal gravity waves and thermal

tides in the middle atmosphere was investigated.

The fundamental principle how a temperature perturbation associated with a gravity

wave, a tidal wave or a Rossby wave act on long-wave radiative transfer is analyzed

with the radiative transfer equations in two-stream approximation. An additional radia-

tive net cooling can occur for gravity and tidal waves in the mesosphere and the lower

thermosphere. The effect of non-LTE limits the additional net cooling. The amount of

additional net cooling does not depend on any wave property other than the amplitude.

It was shown that only tropospheric and stratospheric waves, like Rossby waves, are

able to significantly affect the absolute upward long-wave radiation flux at higher alti-

tudes. The concept of scale-dependent radiative cooling rates proposed by Fels [1982]

was analyzed and found to be questionable in the middle atmosphere.

Height-dependent radiative damping in WKB approximation was introduced to the

linear theory of mid-frequency gravity waves and tidal waves. The solution of the height-

depending radiative damping is similar to that derived for wave damping by diffusion.

The amount of radiative damping increases for stronger thermal emission and a longer

residence time of the wave in the atmosphere. The latter depends on source and breaking

height of the wave and its vertical group velocity.

The amount of additional net cooling was quantified for a realistic background state

and resolved thermal tides and Rossby waves with KMCM simulations. The maximum

values for the additional net radiative cooling are 0.5 K/day for tides in the lower thermo-

sphere during equinox and 0.1 K/day for Rossby waves in the lower winter mesosphere.

The additional net cooling for gravity waves was estimated from a model-based cool-

ing rate parameterization combined with a reasonable temperature variation profile. A

maximum value of 0.2 K/day was obtained for phases of strong gravity wave activity in

the winter and equatorial mesosphere. There is a strong discrepancy between our esti-

mate for the additional net cooling due to gravity waves and the result by Kutepov et al.

[2007].

Using simulations with KMCM, the amount of radiative damping of the migrating

diurnal tide was estimated. For this purpose, this tide was filtered from the total resolved

wave spectrum by Fourier analyses and a technical method was presented that allow to

study resolved radiatively undamped tides in a limited altitude range. The radiative

damping of the migrating diurnal tide was found to be 4% for a propagation path from

65 km to 110 km height.
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5.2 Outlook

The first point concerns improvements to increase the accuracy of the estimations of

additional radiative net cooling and radiative wave damping based on numerical compu-

tations with the KMCM. A comparison between the long-wave radiative cooling rates

from KMCM and Fomichev et al. [2007] yields that they are quantitatively consistent

from the troposphere up to the mesosphere whereas above the vertical structure of the

cooling rate is upwardly shifted in KMCM. The latter accounts at least partially for

the under-estimating of long-wave radiative cooling of both background and waves in

the mesopause and the lower thermosphere. Hence, we suggest to perform a validation

of the radiative transfer scheme in KMCM against the code of Fomichev et al. [2007]

in order to better constrain the adjustable parameters of the KMCM radiation scheme.

Furthermore, the effect of mixing ratio variations of atomic oxygen and carbon dioxide

due to resolved waves should be taken into account as was done in Kutepov et al. [2013]

for gravity waves since such variations may cause a significant increase of additional ra-

diative net cooling. For gravity waves, the additional radiative net cooling and radiative

amplitude damping should also be quantified using a high spatial resolution version of

KMCM with resolved gravity waves.

The second point is about the technique to estimate the amount of radiative damping

using KMCM simulations. It should be amended in a way to ensure that waves, whether

damped or not, propagate in the same background state. Therefore, wave-dependent

processes like molecular diffusion of heat and momentum that affect the background

state should be reasonably prescribed for both the original and the modified setup.

When the aforementioned measure is implemented, the calculation of radiative damping

for a particular Hough mode might be conceivable by a decomposition of the diurnal or

semidiurnal tidal temperature perturbation in Hough functions.

The last point refers to related fields of interests. Recently a model version of KMCM

was established that generates the Quasi-biennial Oscillation with resolved equatorial

waves. This oscillation is driven by horizontal momentum that is vertically transported

by the waves and transferred to the mean flow by dissipative processes. Therefore, an

investigation of the role of radiative damping, which is one of these dissipative processes,

in the Quasi-biennial Oscillation would be a reasonable extension of this work.
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A Anhang
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Figure A.1: It is shown the ratio of frequency averaged mass extinction coefficients
κ(p)/κ(ps) for the important CO2 15 µm band. The surface pressure is denoted by
ps. The line-by-line integration (13.3 µm ≤ ν ≤ 16.7 µm) was performed with the web
interface of the HITRAN database for T = 250 K and the gas mixture ”USA model,
tropics“. The variation of κ with decreasing p is less then 3% over the whole pressure
domain. Thus, the dependency on temperature (up to 30% [Knöpfel and Becker, 2011])
is stronger.

ii



Figure A.2: An example of the fitting curve procedure for 0.0026 hPa at the equator in
January. Polynomial fits are tested up to the order of three. One blue circle represents
one data point out of the data set [Qrad; T ′](λ, t). Latter contains 96 points of a latitude
circle for 80 time steps and five model years (38400 single points).
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Figure A.3: The curve-fitting parameter a0 that approximatly represents Qrad,r as a
function of latitude and altitude for different seasons obtained from KMCM simulations.
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