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2 1 Introduction

1.1 Brief History

SanDRA Since 2013, the Leibniz-Institute of Atmopsheric Physics (IAP) focused on
radar system architectures with commercial software-defined-radio (SDR) hardware.
This hardware is capable to use as a transmitter or a receiver. To proof the usage
of SDR’s in radar applications and form a statutory framework in sense of radio-
frequency (RF) communications, a bachelor-thesis was written based on this topics
([27]). During this working period, the first meteor observation were made with this
prototype system. This leads to another topic of special radar signal detection and
identification techniques to extract signals of interest out of acquired raw data and this
was in the focus of a second bachelor-thesis ([5]). Therefore an acronym called SanDRA
(Software Defined Radar in Atmospheric Research) was defined.

MMARIA-Germany In a parallel working group, the extension of spatially measure-
ment observations within a multistatic radar network was in focus. This concept of a
multistatic radar network is the basis of the IAP called MMARIA (Multistatic and
Multifrequency Agile Radar for Investigations of the Atmosphere). The measurement
concept and fundamental ideas are described in different papers. In 2015, an article
([4]) was published that describes the wind estimation from radar measurements in a
bistatic configuration with a system that uses the pulse-compression technique realized
with barker codes of length 7 and also in comparison with a mono pulse configuration.

MMARIA-CW One problem with the pulse compression technique is the fact of
using them in a multi-static network configuration on the same frequency. If using
the same pulse compression sequence on multiple transmitters around a receiver with
the same frequency the detections could not be classified from which transmitter the
sequence was originally send, this results in ambiguity. To find a way out of this con-
troversy, in 2015 IAP started a field campaign with Juha Vierinen from MIT (Mas-
sachusetts Institute of Technology) to test another measurement concept called phase-
coded continuous-wave radar. This field campaign was successful executed in a bistatic
radar configuration and another paper was published ([42]).
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In the same year IAP advertised a topic for a master-thesis ([15]) to proof the concept of
an extended multi-static radar network with low-power phase-coded continuous-wave
radar measurements. This network was build up with three forward scatter links on
the same frequency, realized with 3 transmitters and one receiver. This yields a lot of
proofed fundamentals and ideas to start working on a design for a multi-static radar
network and this project is named MMARIA-CW, which is part of MMARIA.

Based on the results of the field campaigns, plans for a multi-static radar network
are made in collaboration with MIT and the University of Tromsø. The first network
plan is, to built up 6 transmitters and 2 receivers in northern germany. This plan is
illustrated in Fig.1 and shows the transmitter with red marked pins and the receivers
with blue marked pins. In Fig.2, more details of the geographically positions are listed.

Figure 1: Planned Radar Network Topology
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Location

Sehestedt
Goehl
Crivitz
Neudorf
Grammow
Siedenbollentin

Kühlungsborn
Neustrelitz

Latitude / N Longitude / E

54.369001 9.817718
54.283968 10.941189
53.573838 11.651366
53.170551 12.069858
54.047276 12.630714
53.733170 13.378839

54.146851 11.742003
53.360115 13.073020

Juliusruh 54.620717 13.371855

Distance / km Distance / km

128,03
54,51
61,11

113,40
58,20

115,89
118,13

240,04
172,20
112,59
63,55
81,12
46,07

141,26

Figure 2: Planned Radar Network Topology Parameter

Taking into account that the installation of this additional transmitters is combined
with adminstrative and technical conditions, a mobile transmitter prototype is designed
to test the new developed software and receiver acquisition. This test transmitter is
shown in Fig.3, where the electronics are installed in a metal box and interfacing with
the gloabl-positioning-system (GPS) antenna and the transmitter antenna at the side
panel.

Figure 3: Prototype Mobile Transmitter Box
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1.2 Motivation

Multiple prototype systems were installed to observe different atmospheric signals and
analyzing them. During this working period the experience in sense of system be-
haviour and error-proneness grows and gives a lot of information to develop a strategy
to design a system architecture, which is more robust, much easier to configure and
accessible. During the development period many technical issues arised with the sys-
tem stability. This is not a problem during field campaigns where technical engineers
and scientists are monitoring the system behaviour around the clock at the sites. To
realize a geographically distributed multi-static radar network with many transmitters
and receivers, this easy monitoring by staff members becomes a big problem which
will end up in circular trips for maintenance. To make this more robust and reliable
a lot of attention for error handling during the measurement system runtime is in focus.

Based on the MMARIA-CW project, another main task is the signal processing on
the same center frequency acquired raw data. Problems arised by trying to merge the
different software parts, like unknown error messages in background executed scripts
or interruption of raw data distribution with the file-transfer-protocol (FTP) within a
local-area-network (LAN). This issues needs to be solved to be able to process the data
with different transmitter sequence parameters in a multi-static radar network on the
receiver side.
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1.3 Interrogation

To solve the issues of the system behaviour, other concepts and principles needs to
be designed and implemented. A possible solution is to apply more detailed software
engineering techniques and a distributed computing model based on a client-server
workflow. All the informations and advanced knowledge collected over the last two
years impacts the design and implementation decisions in this thesis.

Since using Linux operating system for acqusition and signal processing, a deeper
understanding of process management and the concepts behind them needs to be ap-
propriated. After a lot of literature recherche, the focus is to implement system dae-
mons. These daemons are controlled by a special software tool, called systemd ([57]).
The systemd executes software scripts and observes the execution state. It also pro-
vides the possibility to use own developed software to start them automated at the
boot intialization levels of the operating system. The configuration is intuitive and well
documented by the developers.

Another implementation decision is the fact of processing multiple times the same raw
data with different parameters. By the finite count of central-processing-unit (CPU)
cores on a computer, the ressources gets quickly limited and therefore additional com-
puters needs to be used. This is a combination of distributed computers in a LAN and
multi-casting concepts which are managed up to open-system-interconnection (OSI)
Layer-3 ([12]). The multi-casting technique is bandwidth efficient and distributes the
same raw data in a LAN to specific computers only once at a time. The research for
such implemented software tools leads to the user-datagram-protocol (UDP) based
FTP (UFTP) software, developed by Denis Bush ([3]). This software applies file based
transfer over network devices with an additional dropped package error handling, called
negative acknowledgement. These additional features will be implemented in the current
radar software development.
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2.1 Operating System

For the current development of the radar stations, a decision of the used operating
system is forced. This is the reference for the radar system installation, because the
current development of the software is not operating system independent and version
independent. The used operating system is:

• Xubuntu 16.04.1 LTS

The reason why using this operating system ([20]) is the capability to use an optimized
desktop environment (XFCE) to be able to quickly handle some figures and operating
system configurations in a X11 based graphical environment. This avoids to do all the
configurations by terminal and pure script manipulation.

Another fact is the usage of the newest stable release, to be in state-of-the-art de-
velopments and also be able to find quick supports when specific operating system
manipulation or configuration problems arise. The following list covers some web based
tutorials, necessary for the specific usage of the operating system in the radar applica-
tions:

• Networking Interfaces ([46])
• Network Time Protocol - NTP ([49],[14])
• RAM-Disk ([52])
• Secure Shell - SSH ([55])
• Mobile Shell - MOSH ([52])
• UDP based FTP - UFTP ([3])
• Hamachi LogMeIn ([44])
• Systemd ([57])
• Secure Shell File System - SSHFS ([56])
• Network File System - NFS ([48])
• GNU-Zip - GZIP ([43])
• Python-Virtual-Environment ([29])
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2.2 Software Defined Radio

In the last years the capabilities on using digital-signal-processing (DSP) on high sam-
pling rate hardware devices like field-programmable-gate-arrays (FPGA) and analog-
digital-converters (ADC) provides a reasonable digital bandwidth to implement com-
munication systems. There are different SDR devices on the market which could be
used, but the universal-software-radio-peripheral network device (USRP-N200/210)
from Ettus-Research ([32]) provides a high bandwidth of interfacing over gigabit eth-
ernet with a personal computer. This is the reason, why this device is in the focus of
the current developments.

2.2.1 USRP-N200

The USRP-N200 provides one transmission chain and two receiving chains. It is pos-
sible to use transmission and reception at the same time, but this implies to initialize
them in the same process. Due to this fact it is assumed that the USRP-N200 is used as
a transmitter or a receiver separated. This makes the software design and management
implementation more easier and flexible.

Figure 4: USRP-N200 Hardware Device

The USRP-N200 transmitter and receiver architecture is detailed described in [27].
Therefore, only the illustrations of the transmission (Fig.5) and receiving chain (Fig.5)
is shown. This gives a basic overview on technical implementation details to follow the
concept and ideas behind the USRP-N200 devices.
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Figure 5: USRP-N200 Transmitter and Receiver Chain
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As illustrated in Fig.6, the interpolation and decimation stages ([21]) are in an cas-
caded order for the transmitter and receiver. This cascade could be defined by the user
and it is highly recommended to use the full interpolation and decimation cascaded
processing chain ([33]), to avoid frequency images and aliasing ([21]).
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Figure 6: USRP-N200 Cascaded Interpolation/Decimation

At this point, one fact due to experience is the usage of a digital receiver near to
a transmitter. When the center frequency of the transmitter is near to the receivers
center frequency and the transmitting power is high related to the receiver dynamic
range, then aliasing of the transmitter signal could occur in the receivers baseband
signal. This could be avoided when using customized notch filters to reduce the signal
power of the transmitter influencing the receiver.

The digital-analog-converter (DAC) used in the USRP-N200 is a special device to
increase the sampling rate further to provide more bandwidth. Also the DAC is not
using any image rejection filters to reduce the first-order model generated spectral im-
ages ([21]). Therefore the radar operator is forced to provide analog filters to remove
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this spectral components of the transmitter signal, before feeeding the signal into the
amplifier stages. If not, a lot of spectral components occur after the amplifier stage
which are not easy to reject since the signal is on the higher power level. An example
is given in the statutory provisions section.

2.2.2 GNU-Radio

To communicate with the USRP-N200 a soft-realtime DSP software tool, called GNU-
Radio ([13]) is used. This software tool grows over the last decade in large steps and
provides modularized implemented DSP techniques in a buffered streaming flow. The
USRP-N200 use the USRP-hardware-drive (UHD) software to communicate and error
handle the hardware device ([32]).

The main GNU-Radio software is written in C++ ([10]) and provides a really good
performance and Python ([30]) is used to interface the C++ application-programming-
interface (API) functions as a wrapper ([16]). This makes it very easy to write software
scripts, since GNU-Radio provides also a graphical-user-interface (GUI) to manage the
DSP flowgraph it is not the aim to use the GUI to manage and control our radar
applications.

Figure 7: GNU-Radio Companion Workspace
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2.2.3 Digital-RF

For raw data acquisition, a software tool called Digital-RF was developed from a work-
ing group of the MIT Millstone Hill Observatory. This group works on an open radar
software ([24]) and one part of this software is this tool. The basic software is written in
C++ and Python to store and access digital generated raw data. An additional out-of-
tree-module in GNU-Radio ([13]) is implemented to get the data from the GNU-Radio
flowgraph and store them into files.

The features are the usage of the scientific hierarchical-data-format (HDF5), which
is well optimized to store a large amount of data and also access in a performant way
the sampled raw data. Since using the HDF5 libraries, the possibility to use different
compression techniques is implemented in the Digital-RF software and the storage of
different kind of variable types were the complex 16-bit integer format is the most in-
teresting part in the implementation for this thesis.

Now only the core idea of the raw data acquistion directory and file structure, re-
lated to the raw data stream should be given and is illustrated in Fig.8 This makes it
easier to understand some of the later design and implementation decisions.

channel based time series

t / s[UTC]
ti

∆tFile = NSample ∆tSample

∆tDirectory = NFile ∆tFile

∆tSample

sub-directory chunks
file chunk

Figure 8: Digital-RF Parameter/Hierarchy

The timestamp ti is given by the knowledge of the receiver starttime and this is related
to the beginning of the coordinated-universal-time (UTC) format. This information is
incremented due to the sampling rate and the user can define the time for the sub-
directory and the file duration. From this parameters, the naming of the subdirectories
and files are derived and given with timing information, which are also stored as a
metadata file called metadata.h5. The acquisition file-structure for one channel is listed:



14 2 Theory and Basics

./<CHANNEL-NAME>/

<DIRECTORY-TIMESTAMP>/

rf@<UTC-FILE-TIMESTAMP>
...
rf@<UTC-FILE-TIMESTAMP>

<DIRECTORY-TIMESTAMP>/

rf@<UTC-FILE-TIMESTAMP>
...
rf@<UTC-FILE-TIMESTAMP>

...

metadata.h5
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2.3 DSP Basics

The field of digital signal processing is widely spread. To cover the basic topics up to
the advanced onces is not possible to describe them in detail. The literature for this
discipline is also not possible to overlook, but in [21] the main concepts and techniques
are very detailed described. The aim is to point out some special DSP concepts and
techniques to follow some implementation and design details for our radar applications.

2.3.1 Integer-Band-Position

When using an ADC at some point of the signal chain, it is the interface from the
analog-signal-processing (ASP) to the DSP domain. Since the USRP-N200 is used
with an interfacing printed-circuit-board (PCB) called Basic-RX Daughterboard [32]
it is important to understand that this board only interfaces to the ADC without
any further filtering or amplification of radio signals. To plug an antenna direct on the
input connectors it is not recommended because aliasing acts on the measured rawdata.

Aliasing is one of the most critical topics in DSP and is always present. The inten-
sity of aliasing effects on the signal depends on the attenuation tolerance scheme of the
digital filters that are used after the ADC and an analog anti-aliasing filter in front of
the ADC is recommended to provide good radar signal quality.

This is the point to describe in more detail the concept of integer-band-position (IBP)
sampling technique. The scenario is applied to the USRP-N200 technical specifica-
tions. The ADC and FPGA of the USRP-N200 is referenced with a 100MHz signal
and the ADC amplitude response in frequency domain is a lowpass filter with a cut-off
frequency at 300MHz. Within 300MHz bandwidth the assumption is to describe the
ADC as a linear-time-invariant (LTI) system without attenuation.

f / MHz

|H(f)| / dB

−50−100−150−200−250−300 +50 +100 +150 +200 +250 +300+0

Figure 9: ADC Lowpass Characteristic
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To understand the problem in detail, some scenarios are explained by examples. The
easiest part for the anti-aliasing realization is an analog low-pass filtering to receive
the spectral components from the first IBP. When using such analog filters, there is
nothing to be aware of and the signal is in good quality after the ADC. This example
is shown in Fig.10.
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Hδ(f) = F
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δ(f − kF )
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Figure 10: Integer Band Position, Baseband

Another example is related to the usage of our IAP used center frequencies and Fig.11
shows the usage of one anti-aliasing analog band-pass filter, to cover all the frequencies
at once. As illustrated it is not possible to do this with one analog band-pass filter.
Aliasing of the next IBP occurs in the first IBP and this causes problems in the signal
quality.
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Figure 11: Integer Band Position, Aliasing

To use the IAP center frequencies above 50MHz another anti-aliasing analog band-pass
filter is required in the analog receiver frontend. As seen in Fig.12, the signal is shifted
to the baseband frequency spectrum without aliasing, but the frequencies are mirrored
around the zero-frequency in the digital frequency domain. This is called even and odd
frequency conversion and is directly related to the currently used IBP of the frequency
spectrum.
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Figure 12: Integer Band Position, Bandpass
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The last example (Fig.13) should demonstrate the wrong application of overlapping
IBP’s around the nyquist frequency. When the nyquist frequency is the center frequency,
a total distortion of the signal occurs due to aliasing and is not usable for receiving a
good quality of the radar signal. The dangerous part is, data is received, but the basic
theory needs to be understand here to be able to design the right receiver frontend for
the specific radar application.
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Figure 13: Integer Band Position, Bandpass Aliasing

2.3.2 Resampling

When using an arbitrary sampling rate from the USRP-N200 complex baseband signal,
it is important to be able to increase or decrease the sampling rate on the computer
with GNU-Radio to acquire the rawdata. Therefore, a technique called rational resam-
pling is used to keep the processing as easy as possible and since the radar parameters
are defined to match together it is enough to use this resampling concept.

The rational resampling is the combination of an interpolator and a decimator (Fig.14).
An interpolator is an up-sampler followed by an finite-impulse-response (FIR) filter and
the decimator is implemented by first apply a FIR filter followed by a down-sampler.
The radar system parameters are defined intuitive easy that the possibility is given
by using interpolator stages only on the transmission signal processing chain and the
decimator stages only on the reception signal processing chain. This makes the design
of the SDR radar transmitter and receiver very easy on configuration and parameter
setup.
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Figure 14: Interpolation/Decimation Structure

When using center frequencies near to the sampling rate nyquist frequency a com-
plication of designing extremely sharp analog anti-aliasing filters is the result. One
possibility is to change the receivers ADC sampling rate to shift the nyquist frequency
away from the center frequency or to use an analog oscillator to shift the center fre-
quency away from the nyquist frequency.

Both techniques implies a simplification on anti-aliasing filter design, but both tech-
niques also imply other negative properties to take into account. This is not in the focus
of this thesis because the usage of the first IBP is in focus. The possibilities are only
explained, to keep it in mind when extending the radar application to such scenarios.
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2.4 GPS Receiver

This devices is a good choice to realize a synchronized multi-static radar network. On
the current market a lot of GPS receivers are ready to buy, but not all of them are
capable for using with the USRP-N200 since the USRP-N200 needs a pulse-per-second
(PPS) and a 10MHz reference signal ([33]) which is not provided by all GPS receivers.
Further important parameters for buying GPS receivers is the accuracy on frequency
long-time and short-time stability.

This accuracy parameters are take into account on the radar baseband signal and
the radar center frequency. Since the synchronization of the baseband radar coherency
is very important, the accuracy should be at least within this parameter conditions like
complex baseband sampling rate and bit duration. For the occuring frequency jitter
impacted by the used center frequency on separated transmitter and receiver it should
be at least smaller than ferr ≤ 0.01Hz to fullfill a reasonable interval of the resulting
doppler-frequency error.

2.4.1 Trimble Thunderbolt-E

With the previous requirements for a GPS receiver to synchronize a radar network, the
used GPS receiver is the Trimble Tunderbolt-E device ([58]). This devices provides the
necessary reference signal output and provides also enough accuracy to use this devices
for our specific radar system parameters. The device is communicating over a RS-232
serial interface, which can be connected to a computer with a USB/RS-232 adapter.
Fig.15 shows the used GPS receiver.

Figure 15: Trimble Thunderbolt E Hardware Device
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2.4.2 Timestamp Formats

GPS Timestamp The most important parameter from the GPS receiver is the times-
tamp to trigger an interfacing computers datetime. This timestamp provided by the
GPS receiver is given by separated time values:

• Nweek .... Week Number since 1980.01.06 00:00:00
• Tweek .... Week Seconds
• Nleap .... Leap Second

The leap-second time value is very important because this value is take some time to
be fetched by the GPS receiver and this parameter needs to trigger permanently by the
computer that should be synchronized. When the leap second occurs, then the GPS
time values are ready to be converted to a UTC timestamp to update the computers
datetime.

UTC Timestamp The UTC timestamp is an incremental timestamp since 1970.01.01
00:00:00 and could be calculated from the GPS time values provided by the GPS
receiver. This is converted with the following formula:

Tutc = 315964800 + 7 ·Nweek + Tweek −Nleap

2.4.3 Reference Signal Splitter

When using one GPS receiver, a possibility to distribute the reference signal to the
different devices is necessary. Fortunately there is a device produced by Ettus Research
called Octo-Clock ([32]). This is an active 8-way splitter to provide the 1PPS and
10MHz reference signals. When using more than 8 referencing devices it is possible to
build a tree structure of the splitters. The ratio of the price from the reference signal
splitter related to the GPS receiver is 1 over 3 and therefore a good argument to use
and buy it.

Figure 16: Ettus Research Reference Signal Splitter
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2.5 Statutory Provisions

During the working period of this thesis, the arrangement to find places for transmitters
and receivers is not only decided by the institution that uses the radar systems and
the ground owners. In germany, a special authority (Bundes-Netz-Agentur) ([2]) takes
the position to proof the legal operation of radio-wave applied systems. The main
focus is here on the transmission, because this is the instrument that creates a spectra
and adding this spectral component into the frequency spectra. The frequency spectra
could also be seen as natural resource that is used by people, military and providers.
Therefore some special laws existing to fullfill the specifications without interrupting
other users of the frequency spectrum.

Frequency Certificate One part is the compliance of the assigned center frequency
and the bandwidth used to transmit information in any way with electromagnetic waves
and is detained in a frequency license. When generating spectral components out of
the specified interval, forced from the authority institution, is extralegal. Examples
are the usage of wrong pulse shaped sequences or the generation of higher harmonics
due to non-linear behaviour of transmission power-amplifiers (PA) or DAC generated
frequency images. The operator needs to take all of this conditions into account to
match the statutory provisions.
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Figure 17: USRP-N200 Transmitter Signal Output
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An example of generated higher order harmonics is shown in Fig.17 and the left figure
on top shows the spectra in the bandwidth of interest, but when zooming over a wider
frequency range, the higher harmonics produced from the DAC are present. These
needs to be analog filtered before feeding this signal into the next ASP stages. The
bottom figure on the left shows a filter output spectrum of the DAC signal output.
In [27] a special designed pulse shape filter is used to operate transmitters within the
specified bandwidth interval. In Fig.18, two types of pulse shaping filters are shown.
On top, the classical root-raised-cosine filter response in time and frequency domain is
illustrated. In comparison to this pulse shape filter, the designed pulse shaping filter
with less filter coefficients is shown on the bottom figures.
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Figure 18: Root-Raised-Cosine/-Gaussian Pulse Shaping Filter

A higher-order harmonic rejection filter is used to remove the higher order spectral
components, generated by the power amplifiers, before feeding the signal into the trans-
mitter antenna.

Location Certificate Another important part is the electromagnetic compatibility
(EMC). There are special limitations for electric and magnetic field strengths to avoid
the harm of people. These limitations define the barrier distance to the transmitter
antennas. This transmitter location properties are detained in a location certificate.
These certificated documents needs to be present at all operating stations.
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2.6 Radar Sequence Synthesis

The radar applications at IAP are focusing on Impulse-Doppler-Radars. This type of
radar allows to extract physical parameters like distance, doppler-frequency and with
the concept of interferometry it is also possible to determine with multiple channel
phase-differences the conversion from distance to an altitude information of a scatterer
([5]). To achive this parameters, different transmission sequences are used.

Power Amplifiers After the low power sequence generation, the signal is amplified
with an amplifier. For the specific radar application, two different type of amplifiers
are used to provide enough power of the transmitted signal to be able to detect echoes
on the receiver site.

• Pulse Amplifier
• Continuous Wave Amplifier

Both Amplifiers are different in design. The Pulse Amplifier is optimized to produce
the highest signal output power when operating at a specified duty-cycle, which is a
constant and forced the sequence parameters to match as best as possible to the duty-
cycle. The Continuous Wave Amplifier is designed to amplify a signal that is permanent
present in the time domain which is equal to a 100% duty-cycle. Both sequence types
are related by a formula and is illustrated in Fig.19:

PCW

PPulse
=
TPulse

TCW
= Duty Cycle

PPulse

PCW

TPulse

0
TCW

APulse = ACW

Figure 19: Peak-Power and Average-Power Relation
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In Fig.20, the amplifier type is related to the sequence type that will be transmit. The
operational class of the amplifier is also a factor in power consumptions related to the
electrical efficiency. To avoid a lot of other technical issues like high non-linearities,
Class-AB amplifiers are in operational use ([18],[34]). This class is not overall perfect
in sense of linearity, but a good compromise to focus with the development on other
currently more critical parts.

Continuous Wave

Mono Pulse
Barker Codes
Complementary Codes

Pseudo Random Codes
Customized Sequence

Sequence Type Amplifier Type

Pulse Amplifier
Pulse Amplifier
Pulse Amplifier
CW Amplifier
CW Amplifier

???

Figure 20: Transmitter Sequence and Amplifier Relation

2.6.1 Mono Pulse

The easiest way to operate a pulsed radar transmitter is the mono-pulse. This sequence
is intuitive and covers one single information bit. This implies no decoding efforts on the
receiver side. This sequence is shown in Fig.21, where the left side shows the samples
and pulse shape envelope of the mono pulse and the right side shows a full sequence
at an example duty-cycle of 10%.
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Figure 21: Mono Pulse Sequence
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Now it is clear, that the sampling resolution for the ranges is not really high. One
possibility is to reduce the duty-cycle to a reasonable value or to use other techniques
for sequence transmission.

2.6.2 Pulse Compression Sequences

The technique used for increasing the range resolution and detectability from signals
covered in atmospheric noise is the pulse compression technique. To demonstrate the
principle, the duty cycle stays at 10% for all sequences. Not all the possible sequences
are covered here, only the pulse shaped baseband patterns are illustrated.

Barker Codes One type of pulse compression sequences are the barker codes ([1]).
These codes are repeating every pulse. In Fig.22, the top figures shows the barker-7
code in a zoomed graphic and the whole pulse sequence. The bottom figures show the
same for the barker-13 code.
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Figure 22: Barker-7 and Barker-13 Sequences
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Complementary Codes Another type of pulse compression sequences are the comple-
mentary sequences. How these sequences are look like and what is the concept behind is
given by [17]. These sequences are composed of two pulse patterns (pattern A and pat-
tern B), which are transmitted in a concatinated way and then start repeating again.
In Fig.23 an 8-bit complementary sequence is illustrated to understand the concept.
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Figure 23: 8-Bit Complementary Code Sequence
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2.6.3 Pseudo Random Codes

With pseudo random codes, the principle of pulse transmission sequences is not given
anymore. This sequences are continuous. The concept is explained in [42]. These se-
quences are easy to generate as long the used pseudo random generator and the initial
seed is known. In Fig.24, two different seed intitialized sequences are illustrated.
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Figure 24: Seed 471/329 Pseudo Random Sequences
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2.7 Radar Sequence Analysis

In the previous section, the typical radar sequence synthesis is given. Now, the analysis
in sense of decoding is in the focus. Also the decoding concepts are explained by the
given literature for signal synthesis. Only the differences between the decoded signals
are explained and illustrated.

2.7.1 Pulse Compression Sequences

Barker Codes The barker codes are decoded via correlation analysis. After decoding,
the correlated signal arised out of noise with one mainlobe and multiple sidelobes (left
side ficures in Fig.25) related to the used code length. In Fig.25, the decoded barker-7
and barker-13 are shown. From this figures, the meaning of pulse compression is clearly
seen on the right side.
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Figure 25: Decoded Barker-7 and Barker-13 Sequences
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The fact, that a static sidelobe attenuation is given, the distortion between detected
signals in different ranges is related to the amplitude of the scattered signal, if weak
enough the sidelobes are still covered in noise and the mainlobe is still there.

Complementary Codes When using complementary sequences, the advantage is the
vanishing of the sidelobes by coherent integration of both correlation decoded se-
quences. The disadvantage is the reduced time resolution by a factor of two. The
decoding of complementary sequence with length 8 is illustrated in Fig.26 and the
compression property is the same as for barker codes when increasing the code length.
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Figure 26: Decoded 8-Bit Complementary Code Sequence
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2.7.2 Pseudo Random Codes

Decoding of pseudo random sequences is different. Here the concepts of deconvolution
is used and the result after a lot of assumptions is a matrix vector multiplication. When
applied to the received raw data, this multiplication finds the signals in the noise and
a mainlobe spike is seen from the noise. This is illustrated in Fig.27 for two different
pseudo random sequences covered in noise, and to clearly see the decoded mainlobe in
the noise, a shift of 20 bits is applied.
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2.8 Radar Signal Detection

At IAP, the development for signal processing of the raw data to detect and identify
specific atmospheric signal types is done and also still in progress for further extension.
So far, the source code provides the detection and identification of specular meteor
echoes. This is described in detail in [5] and this software tool is used to let it run
under realtime conditions.

The additional software modifications to have a online processing capability is de-
scribed in the implementation section of this thesis. Now, only the block diagram of
the signal processing chain is shown in Fig.28.
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3 Design
This section contains the objectives, ideas and design decisions to provide ground-based
measurement systems to study and extract atmospheric science parameters in a multi-
static radar network. The essential elements of each radar measurement system is the
combination of one transmitter and a receiver, which is called monostatic system if the
transmitter and receiver are at the same location. By separating the transmitter and
receiver spatially it converts to a bistatic system. If multiple combinations of monos-
tatic and bistatic systems are in the network, the system is called multistatic system.
The difference between the radar network types ([40]) is illustrated in Fig.29:
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3.1 Objectives and Requirements

Multistatic Radar Network Architecture The design of multistatic radar networks
is very flexible, since a lot of possibilities comes up to place the transmitters and re-
ceivers. It is fact to have less receivers as possible. The reasons for this argument is the
larger size of the receiver antenna array and also the cost of interferometric receiver
systems and their installation. This ends up to focus on building multiple transmitters
around the receivers, because transmitters are less expensive than receivers. The struc-
ture of a receiver centralized multistatic radar network is shown in Fig.30:
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Figure 30: Receiver Centralized Multi-Static Radar Network

Radar Network Synchronization For geophysical measurement systems, especially
in atmospheric science, the most important feature is to have a spatially distributed
synchronization to keep the time of the measurement and the coherence ([40]) of the
periodically transmitted sequences. If this is not given, a clear measurement with a
known state of time is impossible. This problem is solved by using GPS receivers to
synchronize technical devices like transmitter, receiver and computers.
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Radar Network Accessibility A really important property of a multistatic radar net-
work is to reach the distributed stations. This is clearly realized by using the internet.
The fact that the transmitter and receiver installation is not always done on IAP owned
ground results in a dependency to have a third-party-access (TPA) to a network ([37])
which is mainly managed by network administrators or public users. In some cases
this could be a long and hard way of progress to get the wanted access. Therefore
a mechanism is designed to have an independent network access and control of the
radar. Since the buildout of mobile communication systems of different providers in
most industrialized countries, it is a good opportunity to match the visions and ideas
to intercommunicate with the multistatic radar network. Therefore, hardware devices
called mobile routers are usable and an example device ([7]) is shown in Fig.31:

Figure 31: Mobile LTE Router

Computer Nowadays computers are standardly equipped with multicore processors
and are relative cheap. This makes them suitable to also cover more heavy processing
tasks in sense of software implementations, instead of bring most of the algorithmic
calculations to hardware devices like FPGA’s. To use computers in a multistatic radar
network the hardware is forced to provide a mechanism to power cycle again after a
system failure or a power off implied by power supply instabilities. Not all computers
have this essential feature. An example of a Mini-PC ([62]) is shown in the picture of
Fig.32:
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Figure 32: Example Personal Computer

Transmitter/Receiver As mentioned before, one fundamental component is a trans-
mitter. For our current applications they are very easy in architecture because only one
or two antennas are in use. The requirements are very basic to fullfill. The transmitter
should be configurable in some parameters and log information of the status to a file.
The overall receiver architecture is more complicated to realize which depends on the
case of application. But the application to observe meteors in the earth’s atmosphere
is in the main focus. At first only one frequency will be used in the receiver architec-
ture and a channel based interferometer measurement system that is able to process
the acquired raw data for different forward scatter links. The logging of status, easy
configuration and pre-detected datasets are required.

Radar Signal Processing Another issue is the amount of receiver raw data collected
by the acquisition. The raw data size of bytes depends on the system sampling rate
and the number of channels to acquire. The higher the size of bytes become the more
difficulties occur to share raw data to a central file server to process the raw data.
Therefore it is necessary to process the raw data locally at the receiver stations. By
using many digital receivers to fullfill the requirements of an interferometric measure-
ment system, the processing power needs to take into account. To realize a receiver
station that acquires data for one specified center frequency and process this data for
different types of transmitter sequences, the processing power of a normal computer
is not enough. One possibility to solve this problem is to use an expensive computing
server with many processing units. But a granularity is given by processing the same
raw data for different transmitter sequences. For one so called forward scatter link be-
tween a transmitter and receiver, a normal computer is enough to do the work of data
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reduction by using detection techniques to get the signals of interest out of the raw
data. This leads to a computer cluster ([28],[61]).

Radar Signal Archiving Since the detection and identification is currently at the state
to extract specular meteor echoes from the raw data there could also be observed other
atmospheric signals of interest with the radar system. An example is the measurement
of E-Region Echoes from the ionosphere. This could be easily seen in the daily summary
plots and the radar administrator is in position to define a time range when the echoes
of further interest occur. Therefore a raw data archiving over a given time is needed.
When such echoes are observed by the user these time series could be extracted and
stored separated within the archive.
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3.2 Architecture Design

3.2.1 Fundamental Structure

Computer Cluster The requirements from the previous section gives the rudimen-
tal approach to realize a multistatic radar network design. For operating transmitters
and receivers, the synchronization has the highest priority and the SDR hardware is
synchronized by 1PPS and a 10MHz reference signal, while the computer interfacing
with the GPS needs to be synchronized via a UTC timestamp provided over a serial
interface, if using a Trimble Thunderbolt-E GPS receiver. The next part is to have
multiple computers available to do the acquisition and radar signal processing within
a cluster. To use multiple computers in a cluster they need to be connected and com-
municate together. This can be realized in a LAN configuration. Since only one GPS
receiver is needed to synchronize a radar station, a concept to synchronize a whole
computer cluster needs to be applied. This could be realized by configure a local NTP
server on the machine that communicates with the GPS receiver. It is highly recom-
mended to use an original future-technology-devices-international (FTDI) USB-Serial
adapter cable. Over the time a lot of communication problems occur when using cheap
adapters and sometimes these devices are damaged before using them. After triggering
the timestamp from the GPS receiver to the local NTP server, the computer is synchro-
nized with the GPS receiver. This is the origin to configure the other computers in the
LAN as NTP clients that listen and synchronize to the NTP server. After reaching the
synchronization state, the cluster is ready to be used for radar runtime applications.

Mobile Router Another important interfacing device is the mobile router. This acts
as the internet gateway ([36]) and allows the radar network administrator to have ac-
cess to the main machine in the cluster and vice versa the radar station can provide
logging information and datasets to a central file server. This mobile routers can be
easily add in the LAN configuration. The realization to access the remote computers
is done by using Hamachi-LogMeIn in combination with MOSH. Between the different
radar adminstrators, a redundant virtual-private-network (VPN) ([33]) server is han-
dling the sub-networks and VPN client addresses provided by Hamachi-LogMeIn. The
accessability chain is shown in Fig.33 and gives an overview on how the computers are
connected.
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Figure 33: Radar Network Internet Connection

Layer-3 LAN Architecture During experimenting with archiving and distributing
raw data within a network it figured out that using filesystem mounts like SSHFS or
NFS are not good to use them for raw data sharing in a LAN. The reason is the net-
work bandwidth limitation in the LAN. The file system mounts do not transfer the
data once, instead the computer that keeps the data waits for requests from other com-
puters and starts transferring the data to each computer in a peer-to-peer connection.
When transfering the same data to multiple computer, the bandwidth in the LAN is
not optimal used and can rapidly limited. This is the reason for the decision to use
multicasting with a software tool called UFTP. When using multicasting techniques it
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is necessary to use a more special type of network switch, called Layer-3 switch ([22])
which should have at least gigabit ethernet connection with non-blocking capabilities.

LAN Configuration Now it is of interest to have a unified scheme to build up a com-
puter cluster for the network stations. The LAN configuration should be implemented
static which gives always the possibility to have control on the cluster and the radar
administrator knows which software is executed on a node within the cluster. This
static configuration is shown in Fig.34:
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3.2.2 Transmitter

Sequences The concept of a radar transmitter are periodically repeating sequences
of different types. The focus in this thesis is to provide mono pulse, pulse compression
(barker and complementary codes) and pseudo random sequences. These sequences are
generated by pre-processing with a computer and stores a single-bit sample pattern in
a binary file. The sequence is further online processed with the Gnu-Radio API’s and
interfacing with the USRP-N200. The online processing modifies the signal by inter-
polate and pulse shape the baseband signal. Then the signal is transferred over gigabit
ethernet to the USRP-N200 which up-converts the signal to the wanted transmitting
center frequency with a given bandwidth around the carrier.
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Figure 35: Transmitter Block Diagram
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3.2.3 Receiver

Prototype Receiver Chain An interferometric receiver build up with multiple chan-
nels implies also the usage of multiple USRP-N200. Only a brief report of the acquisition
is given because the architecture and implementation is described in [27]. The prototype
receiver chain is illustrated in Fig.36 and was used for campaign based experiments,
where no buffering or continuous sampling was in focus. The data processing of the
acquired raw data was done after the campaign to extract the results.
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Figure 36: Prototype Receiver Block Diagram

This is the basis of proceeding with the further work on how to make the processing and
data distribution more robust and have a better system configuration and management.
Now the focus on one channel is take into account. This simplfies the idea and concept
of the new design and features of the receiver system architecture. The raw data is
sampled by the USRP-N200 and down converted into complex baseband signal and
then decimated by an arbitrary factor to a reasonable sampling rate to transfer the
complex samples over gigabit ethernet to an online signal processing computer which
do further processing until the raw data is sampled to the Digital-RF.
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Acquisition Design After type casting to 16-bit integer complex samples the raw
data is sampled to the radio signal file system. The Digital-RF supports also lossless
data compression in GZIP file formats and now the benefit of using 16-bit integer
for data acquisition is omnipresent ([6]). Most of the radar raw data is noise and if
correctly tuned by the receiver frontend and signal processing noise normalization, at
least 3 or 4-bit for noise resolution are used to cover also diurnal variation of the noise
level and keep the dynamic range as high as possible. If this is the case the integer
complex samples in bit representation have less 1 toward 0. This is a perfect situation
to achive high compression rates with the GZIP compression technique and allows a
further reduction of data rates to distribute the raw data. Assume a static data rate is
not possible since there could also be radio interference of other radar systems, passing
cars or radio-wave reflections. This leads to a dynamic data rate, but always less than
the full data rate needed without lossless GZIP compression. The raw data files are
written to a computers ramdisk which supports fast writing and reading rates.
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44 3 Design

Noise Power Gaining The new concept is to keep the data from the USRP-N200 in
a 16-bit integer format and type convert the data stream to 32-bit float numbers since
the range of the complex floating-point samples is in the set of u(n) ∈ [−1.0,+1.0]
([13],[33]) and this gives the possibility to design the receiver chain in a normalized sig-
nal processing ([21]). The standard normalization techniques are related to the signal
amplitude or energy. But the maximum capable dynamic range and receiver sensitiv-
ity should be achieved. This points to keep the focus on the noise level and this is
called noise-power-gaining (NPG), a non-trivial analytical procedure to apply ([39]).
This technique is used to have a proportional relation of the input noise variance to the
output noise variance of the acquired noise levels from the raw data. During filtering
the digitized raw data signal-to-noise-ratio (SNR) increases and the noise power will
be reduced. If not take care of the calculation, the noise amplitudes could be clipped
at the end of the processing chain because the acquisition of 16-bit integer complex
samples is forced. Therefore a pre-processing filter training is applied to calculate the
proportional factor for same input and output variance to avoid intensive analytical
calculations and clipping explained before.
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Figure 38: Noise Power Gain Training Block Diagram
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Circular Buffer Design By acquire the raw data in a continuous stream of files the
size of the filesystem space is a limitation factor and therefore a filesystem buffer is
designed to avoid an overflow of the filesystem. The filesystem buffer is not only de-
signed to avoid an overflow. This part of the acquisition takes the requirements of raw
data archiving and distribution over UFTP into account. To realize the data distribu-
tion the structure of the Digital-RF is the key to make it more easy and efficient. The
Digital-RF structure is intuitive implemented by separating the channels in directories
and the sub-directory structure for one channel is to keep the timestamps in ordered
configurable way to put a finite number of raw data files in a timestamp indicated
sub-directory. This timestamp sub-directory needs to be compressed to reduce the hi-
erarchical structure of the filesystem by one level. This reduces loops and sensitive
triggers in the source code and is designed as a simple state machine. Also the design
follows a strong hierarchy to have more control and a better opportunity to debug some
contingencies.
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Signal Detection Chain After distributing the raw data to a specific node in the
computer cluster, the developed detection and identification software ([5]) is able to
access the raw data to do the main data extraction procedures. Before putting the
raw data to the signal processing chain, an inverted concept of the previous described
circular buffer of the acquisition chain is needed. This basically takes care of the buffer
overflow and de-compresses the raw data sub-directories from the Digital-RF. The de-
tection software was modified to be able to read the raw data from the dynamically
updating circular buffer and buffers also the produced detected datasets to avoid again
possible overflows. The rest of the detection software is working as before with the
same concepts and implementation details. Another feature is additionally included to
the processing chain related to the decoding of the raw data, explained in the imple-
mentation section. The basic structure of the further data reduction chain is illustrated
in Fig.40 to have an idea of what is the working flow to extract the data.
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4 Implementation

This section describes the concepts and part of implementation details of the software
engineering ([16]) and radar-system process management. A combination of currently
available software tools and own development ideas is in focus and gives at the end an
overview of the whole workflow of the previous explained designs.
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4.1 Client-Server Model

SSH Communication At this point the possibility to work in a LAN configuration
with multiple nodes in a computer cluster is realized. But an important thing is the
inter-communication between the nodes in the cluster. To keep it as intuitive and se-
cure as possible the communication is implemented by using SSH. With SSH on Linux
operating systems it is possible to execute server scripts and also return informations
back from remote terminal printed informations into subprocess pipes ([29]).

Permissions Since SSH is a secure transfer mechanism, a password is required to au-
thenticate the communication between two nodes. When running scripts in a cluster
this results in a lot of password input of the radar administrator. Fortunately, there
is way out of this dilemma by using authorized keys ([55]), based on a Diffie-Hellman
Key-Exchange. Whenever a cluster is build up, the password-less communication be-
tween the client-node and the server-nodes is forced.

Master-Slaves Cluster The previous requirements of the inter-communication in the
cluster implies an easy way to define the communication bi-directional model asMaster-
Slave implementation. The master-node acts as a client and the slave-nodes acting as
servers and the pronouncing in this special type of cluster application is Master-Client
and Slave-Servers ([61],[26]). This abstraction of the fundamental basement for cluster
computing is illustrated in Fig.41:
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4.2 Client Scripts

4.2.1 Configuration Hierarchy

The configuration of the radar system is implemented with java-script-object-notation
(JSON) ([9]) configuration files in the project management. All hardware components
are connected with a specific node in the cluster and do a specific task by communicat-
ing over interfaces. This is also a good point to define a hierarchy for the configuration
parameters. The top level of the hierarchy is the server-node internet-protocol (IP)
address in the LAN, so the client script maps the server script and specific parameters
to the node where the server script needs to be executed. By communicating with the
hardware over interfaces, this is the next level in the configuration hierarchy. All the
underlying configuration parameters depending on the parameters of the specific client
and server scripts.

After reading the configuration files in the client scripts, these configuration variables
are separated for the server scripts to point the right parameters for the correct ex-
ecution. For some server scripts the parameters are large and it is not recommended
to put all the parameters over argument parsing. To avoid this, the separated JSON
parameters are stored in a unique sub-configuration JSON file and will be send to the
specific server-node. Only by giving the absolute path to the configuration file on the
server node, the parameters will be read from the JSON file by the server script. This
intuitive configuration hierarchy is shown in Fig.42:
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4.2.2 Logging Hierarchy

For each started server script exists a logging file in the project management. These
logging file registers the state and the errors of the radar system operation. Whenever
an error occurs, the radar administrator is able to know where the error happens and
what was the origin of the error ([31]). That implies an easy identification and allows a
quick repair/exchange of the damaged hardware. The logging files are one of the parts
to transfer to a central file server, because these files are not large in size of bytes. All
logging prints were ordered in a structured hierarchy specified by a timestamp, server
application and process state information. This hierarchy is illustrated in Fig.43:
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4.2.3 Systemd

Service Scripts For radar system operation it is important to be able to start, stop
and restart the client scripts. These are the basic command implementation for Linux
operating system daemons and this concept is adaptable for our radar system manage-
ment. In Linux the core implementations are so-called init.d scripts ([45]), but trying
it out to execute python scripts, a lot of problems arised. Fortunately, another system
daemon project is implemented in Linux in the last years, called systemd ([57]). This
is a very easy to configure and understandable software tool, to realize an automated
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and programming-language independent script execution. The basic synthax is almost
the same as with the init.d implementation.

• $ sudo systemctl start <SERVICE-TO-EXECUTE>
• $ sudo systemctl restart <SERVICE-TO-EXECUTE>
• $ sudo systemctl stop <SERVICE-TO-EXECUTE>
• $ sudo systemctl status <SERVICE-TO-EXECUTE>
• $ sudo systemctl enable <SERVICE-TO-EXECUTE>
• $ sudo systemctl daemon-reload

Handler Scripts With such handler scripts, which works stringent together with the
client scripts, it is possible to do a script execution with systemd before and after the
main client script. This is very comfortable, because the project management will be
cleaned anyway by all kind of system failures or total radar system collapse due to power
off. This realizes a system self-survey without interaction of the radar administrator.

Daemon-Workflow When the scripts are ready, the system daemon services and han-
dlers are ready to be executed through systemd. In Fig.44, the workflow is illustrated.
The core concept is the service script for systemd. This holds each necessary parame-
ter for the daemon process execution. For the service configuration files, templates are
created in the software project to be able to quickly find the modification steps and
the meaning behind the parameters.
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Figure 44: Systemd Service Workflow
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4.2.4 Synchronization

GPS Receiver Interfaces Without a synchronized radar system it is not recom-
mended to operate a radar system. This clearly implies that the synchronization for
each station is set with the highest priority in the management hierarchy. Since the
Trimble Thunderbolt-E GPS receiver is used, the handling and hardware observation
during runtime is in the focus of the implementation. The device itself provides the
folllowing interface ([58]):

• GPS receiver antenna
• 1PPS
• 10MHz reference signal
• RS-232 serial interface

GPS Receiver Information All the information of the GPS receiver state is trans-
ferred over the serial interface based on the trimble-serial-interface-protocol (TSIP)
information exchange ([58]). For this special protocol, developed by Trimble them-
selve, exists a Python module called Python-TSIP ([19]). With this software part it
is possible to get the specific information from the receiver that is needed. The GPS
receiver documentation showed that there are a lot of information parameters the GPS
receiver can deliver if needed. But not all information is necessary to get the synchro-
nization status. There is one special protocol information report (0x8F-0xAC) with
bit-coded information of the following states:

• receiver mode
• disciplining mode
• holdover duration
• minor alarms
• gps decoding
• disciplining activity

The listed parameters are the most critical to take care during runtime and have a
general overview of the GPS receiver synchronization and interface state. These pa-
rameters can be read out in a loop with a program and a decision of the synchronization
state can be made during runtime. The main output of the program is the receiver in-
formation of synchronization or un-synchronization, which provides the information for
the next hierarchy level in the radar system.
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Datetime Update But this is not the only thing needed to synchronize one node
in the computer cluster. When the synchronization state is reached, the client script
starts to read out another parameter. This parameter is the GPS receiver time given by
the GPS-Time-Format, which is a special time format. After reading this information,
a conversion to the UTC-Time-Format is calculated and this timestamp updates the
computer date time. This is the basic implementation of the synchronization script.
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Figure 45: GPS Client Script Workflow

4.2.5 Network Time Protocol

Local NTP Server After the synchronization state is reached, the other computers
in the cluster needs to be synchronized. This is very rudiment work for NTP. The
computer which interfaces with the GPS receiver updates the date time and therefore
this computer acts as the NTP server. This server is a configured local NTP server and
broadcasts the timing information within the LAN ([14]). All the other nodes in the
LAN are configured as NTP clients and updating their own date time.
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NTP-Daemon This sounds very easy, but an important fact needs to take into ac-
count. The NTP that synchronizes a LAN is not synchronizing ad-hoc. The inter-
communication between NTP server and clients is based on exchanging a lot of infor-
mation and is doing an iterative statistically convergence to the true time of the server
and this procedure takes a bit of time. This information of the NTP synchronization
state of the server and the clients is provided by the NTP-daemon (NTPD) ([49]). The
client script to manage the NTP synchronization provides a state information file of all
the nodes in the computer cluster and if all of them are synchronized the transmitter
and receiver client scripts are able to run and do the right job.

LAN Availability Another additive information of the NTP synchronization state
check routine is the possibility to take care of the inter-connection of all nodes in the
computer cluster. This directly gives information of the availability for all computers
in the LAN configuration. The status of computer availability is also put in an infor-
mation file.

init:

- read JSON configuration

- check project directories

- trigger the PID

while:

- check LAN connection

- check NTP server status

- check NTP client status

- check GPS status

if gps status==ready:

- initialize local NTP server

PID

LOG

ntp.server@<SERVER-IP>.dead‖

ntp.json

error:

- log current status

- change status file

sandra-ntp-client-main

ntp.server@<SERVER-IP>.init‖
ntp.server@<SERVER-IP>.work‖
ntp.server@<SERVER-IP>.stop

radar@<SERVER-IP>.dead‖
radar@<SERVER-IP>.work

- check NTP status in LAN

- check GPS status
gps.date.true‖
gps.date.false

NTP client 000

NTP client 001

NTP client 00K

Figure 46: NTP Client Script Workflow
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4.2.6 Transmitter/Receiver

The client scripts are the core of the whole radar system. These scripts are working as
main execution script and take control of the specific system requirements like GPS and
NTP synchronization or transmission and reception. Part of the scripts are a mapping
of radar administrator configuration parameters to the specific started server scripts
on a specific computer within the cluster. In Fig.47 the main structure of the client
scripts is shown.

init:
- load configuration
- check directories

while:
- check LAN status
- check GPS status
if lan state==work:

if gps state==True:
while:

- check LAN status
- check GPS status
- check NTP status
if ntp state==sync:

- start SEQ/ACQ processes
- create PID files
while:

- check process status

error:
- terminate processes
- reset circular buffers
- log current status
- change status file

- distribute configuration

configuration
files

status
input files

status
output files

PID

LOG

server
input status

sandra-seq-client-main ‖
sandra-acq-client-main

Figure 47: Transmitter/Receiver Client Script Workflow
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4.2.7 Server Script Start

When the configuration parameters are separated and distributed, the server scripts
will be executed remotely over SSH and the script will be started with the so-called
no-hangup (NOHUP) signaling ([50]), which lets the process run in the background.
The process-identifier (PID) of the started process is also send back from the execution
server to the client server process and these PID’s are logged in a state information
file.

client
script

config

server
script

main specific
config

LAN

PID/LOG back-path

PID/CFG forward-path

Master-Client Slave-Server

NOHUP
Process

SSH

SSH

Process
SYSTEMD

Figure 48: Remote Server Script Execution Workflow

After starting the server scripts from the clients, a mechanism to observe the PID’s
of the remote started server script is necessary. This is very easy by checking the PID
is alive over the linux implemented ps command ([51]). If some process is terminated
due to an error or from the operating system itself, the client triggers the missing
process execution and starts to terminate/kill the other spawned server processes in
the computer cluster. The PID control is not the only indicator for a failure operation
of the radar system. While GPS and NTP servers are programmed to run continuously
and report information of the states of the hardware they observe, it is necessary to
trigger the states. When a failure state occurs, the client script is also able to terminate
the spawned PID’s.
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4.3 Server Scripts

Over the last 3 years it figured out that a lot of software and hardware project where
developed in a hierarchy structure. With this development concept, a clear interface
between different software parts is available and also modularity of the software is
given. Since hardware and software is working stringently together, the first thing is to
write programs that are only focusing on the hardware that is used. This results in an
easy way to extend the radar system with additional hardware without big problems.
All the servers have the same implementation concept:

• parse configuration and system parameters as terminal arguments
• initialize and run the hardware
• if an error occurs, then terminate/kill the specific hardware process
• write the error ad-hoc to a file

This makes it easy to write software for other hardware and implement it within the
whole project structure.

4.3.1 Transmitter

sandra-seq-server-main

init:

- load configuration
- generate sequence pattern

- parse command line arguments

- generate FIR coefficients
- initialize UHD device instance
- initialize GNU-Radio DSP blocks
- initialize GNU-Radio flowgraph

while:
- check device connection
- check reference signals

- start GNU-Radio flowgraph

- check master-client connection

error:
- LOG error to master-client
- terminate server script execution

configuration
files

commandline
arguments

LOG

Figure 49: Transmitter Server Script Workflow
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Error Handling The USRP-N200 is not only transferring the complex samples over
the gigabit ethernet interface. The UHD provides also the status of the USRP-N200
and this status reports are readable by the UHD API functions included in the GNU-
Radio libraries. Also a good error indicator is the object instantiation through the API
itself. If for example the connection or a power error of the USRP-N200 occurs the
runtime environment throws a runtime error and this implies whether the device is
cut off from power-supply or the ethernet connection failures. While referencing the
USRP-N200 with a 1PPS and a 10MHz reference signal the API provides information
of the status from the device itself. This is very useful, if for example the reference is
lost from the reference signal splitter or maybe a cable is not working properly. Then
the script is ready to detect such errors and will terminate the execution and delivers
an information state of the hardware.

4.3.2 Receiver

sandra-acq-server-main

init:

- load configuration
- parse command line arguments

- generate FIR coefficients
- initialize UHD device instance
- initialize GNU-Radio DSP blocks
- initialize GNU-Radio flowgraph

while:
- check device connection
- check reference signals

- start GNU-Radio flowgraph

- check master-client connection

error:
- LOG error to master-client
- terminate server script execution

configuration
files

commandline
arguments

LOG

for channel in channels:
- check archive directories
- check ramdisk directories
- check ramdisk compressed files

- copy compressed sub-directory to archive
- compress sub-directory in ramdisk

- remove sub-directory from ramdisk
- distribute raw data over UFTP
- remove raw data from ramdisk

- distribute configuration files

Figure 50: Receiver Server Script Workflow
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Error Handling While using also the USRP-N200 on reception, the same error han-
dling procedures as for transmitters are take into account. But one additional error is
included related to the acquisition of the raw data with the Digital-RF library. This
throws an error if a packet is lost through the GNU-Radio signal processing stream.
This is also extremely important, because by imagine a packet is lost within the stream,
a leackage of bytes is the result and this ends up in incoherence of the complex baseband
signal raw data. When ever such errors occur, that impacts on kind of a synchronization
distortion, a nearly ad-hoc reaction on the errors is realized. This is very helpful for a
reduced effort of radar system monitoring and the system is able to fetch such states
and the error handling is implemented in pure software, so the radar administrator is
not forced anymore to search for possible errors on the whole receiver system.

4.3.3 Buffer

The buffer script is very easy in execution, since only using operating system imple-
mented commands. There are no special needs for an error handling, since the script
is only working as a state machine to observe the directories and clean up the circular
buffer. After doing the cleaning, the script simply waits, until the buffer triggers back
into the next rotation cycle. In Fig.51, the buffer workflow is illustrated.

sandra-buf-server-main

while:
commandline
arguments

for channel in channels:
- check compressed files

- check channel directories

- de-compress raw data files
- remove compressed raw data files
- check buffer directories

Figure 51: Buffer Server Script Workflow

4.3.4 Detection-Software Decoding-Extension

Script Template The core implementation of the detection and identification is al-
ready in operational mode. But the implementation has no decoding of pseudo-random
sequences included. This is added during the working period and this was a non-trivial
implementation since the decoding is a deconvolution of the acquired raw data. The
mathematics are already described and the assumptions are also derived by [59]. But
the main problem is the speed and the resources used by this delivered deconvolution
script.
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Since the assumption for the raw data deconvolution results in a matrix multiplication,
the mathematics become very easy on a sheet of paper. But the real problem is the
multi-dimensional array structure ([23]) of the radar raw data to cover range, time and
channel as the main dimensions of the raw data array.

Source Code Bottlenecks The basic implementation and the recipe was given by a
script from Juha Vierinen. The programming language used to do the heavy mathe-
matics is Python with the modules NumPy ([23]) and SciPy ([38]). The bottleneck of
the execution speed of the script was for-looping over the dimensions of the raw data
array, this is not using the advantage of NumPY. NumPy is a High-Level API that is
based on the Low-Level languages Fortran or C++. If using the NumPy-API right, a
really optimzed and very powerful execution of array-manipulation can be achieved.
The best practice is given by static multi-dimensional array manipulation ([25],[8]),
which allows to operate axis-based on the raw data array.

Runtime Improvements The problem should now be reduced to the main deconvolu-
tion. The whole array is allocated as a 3-dimensional complex array with dimensions in
range, time and channel. This is the generated output from the HDF5 reading routine
of the detection routine. The first thing is to clean the raw data from radio interference
and unwanted voltage spikes to reduce leakage effects of the deconvolution. When the
raw data is clean, the deconvolution matrix multiplication is only done over the whole
range axis of the array for each time-bin and each channel-bin. To make this operation
very fast, the NumPy routine numpy.einsum(...) ([23]) is used. This routine is very
well implemented in sense of doing tensor-algebraic calculations over multiple dimen-
sions with full optimzed usage of resources. This improvement brings the deconvolution
to a reasonable usage of one CPU for the parameters we’ll use in the MMARIA-CW
project. If the parameters changed to values where the task could not be done anymore
by one CPU, the decoding provides a parallelization of the problem ([61],[28]) over the
channel dimension and points the channel separated raw data array to different cores
of the computer. This is known as single-instruction-multiple-data (SIMD) method in
parallel computing.
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5 Evaluation and Verification
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5.1 Experimental Purpose

For the evaluation/verification of the developed software and hardware it is necessary
to define an experiment to point out the new system features. The following list of
points should explain in short, for what the system should be evaluated/verified and
also the necessary steps to prepare the system for a real world application.

• cluster hardware setup
• cluster synchronization
• mobile network accessability
• transmitter/receiver configuration
• decoding techniques
• system calibration

In Fig.52, a testbed for the wanted purpose is illustrated as a block diagram and Fig.53
shows the real world testbed setup. The testbed includes a cluster of 3 computers. All
computers are connected together over a LAN configuration, realized with an 8-port
Layer-3 gigabit ethernet non-blocking switch. The master-client node in the cluster
is the computer to configure the radar testbed setup. The computers in use provides
two gigabit ethernet interfaces. One interface of the master-client is connected to the
LAN network and the other interface is connected with another 5-port gigabit ethernet
switch. The other two remaining computers are the slave-server computers in the LAN.

The last device in the LAN is the mobile router. This device is used to verify the
system accessability through the internet. Therefore the router is configured with a
static IP address and the router acts as the internet gateway for the domain-name-
system (DNS) configuration. Only the master-client computer is first of all configured
to be reachable through the internet.

The master-client is used to configure and execute a 5 channel receiver system and one
channel transmitter independent from each other. Another main task of the master-
client is the synchronization of the cluster by interfacing and communicating with the
GPS receiver. The last point is the acquisition of the data. All the 5 channels are
received, processed and stored on ramdisk as compressed data.
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To verify also the cluster capability to process the data at a receiver station with
different links directly, 2 slave-servers are configured to aquire the received data over
UFTP and do the further detection signal processing. In this case there is nothing
to detect, since using a testbed configuration. But the detection software is able to
run in non-detection mode and be able to provide also figures of the processed range-
time-intensity (RTI), power-spectral-density (PSD) and noise levels, including long-
time overview plots to verify the decoding under realtime conditions. The processing
is evaluated with 4 independent decoding processes realized by one pulsed compres-
sion sequence decoding and 3 pseudo-random deconvolution decodings. This defenetly
shows the advantage of the system to parallel process the data at a remote station.

This experiment is also a good point to calibrate the radar system under real world
conditions. Therefore a range-offset and phase-difference calibration is performed. For
the range calibration an additional oscilloscope is included in the testbed. The reason
is the measurement of the transmitter delay in comparison to a 1PPS signal but this
is explained later in this section.

Figure 52: Real World Testbed Setup
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Figure 53: Testbed Setup Block Diagram
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5.2 Experimental Testbed

The radar is now ready to use in a verification application. This application should be
as easy as possible and should provide as much information and functionality proofs.
Therefore a special customized test signal is designed to provide the required verifica-
tion results.

5.2.1 Test Signal Design

Test Signal Description This signal is designed to simulate a real world multistatic
radar application and should cover the information of different radar transmitter sta-
tions operated with different codes. Under this conditions some special signal modifi-
cations are taken into account. To cover the right decoding and signal separation, the
complex baseband signal is admitted with a range delay, a timing gap, a doppler-shift
and a complex additive-white-gaussian-noise (AWGN).

Test Signal Parameter After the distributed rawdata is processed in the separated
detection processes, the ability to verify the correct processing is given. These specific
parameters are listed in Fig.54. These parameters are unique and there is no possibility
to do some misinterpretation which is the most important part for the verification.

Type

Barker-7

Pseudo-471

Pseudo-329

Pseudo-100

Range / km

600

3000

3000

3000

Delay / km

0

150

300

450

Timegap / s

0...5

5...10

10...15

15...20

Doppler / Hz

-15

-5

+5

+15

Figure 54: Table of Testbed Parameters

Test Signal Synthesis A block diagram on how the test signal is generated is illus-
trated in Fig.55 and the sequence is stored as a binary file. The block diagram also
includes the verification processing chain of the test signal correctness. This is im-
portant to more or less playing to find the right parameters for the signal generation
because all the signal information is present in the same sequence at the same time.
This is the worst-case scenario of the radar multistatic application.
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Figure 55: Testbed Signal Generator Block Diagram
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Test Signal Baseband After program execution the complex baseband test signal
is illustrated in Fig.56 in real and imaginary part. As seen in the figure some spikes
occur in the time domain, which implies that the signals are not totally covered in the
noise. These spikes are related to the doppler shifted barker-7 code and the reason of
the higher amplitude is the decoding coverage of the signal, since the cross-correlation
of all the signal mixed together is not perfect and orthogonal at all.
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Figure 56: Complex Baseband Testbed Signal

5.2.2 Transmitter Signal Verification

Barker-7 Code To proof the correct test signal design, a first verification test is
done, to check the parameters and the decoding properties. In Fig.57, the undecoded
reshaped raw data time series for the barker-7 sequence is illustrated as a RTI. The
undecoded barker sequence is seen at the bottom of the RTI plot with the required
time gap and the PSD shows also the spectral components of the test signal. Notice
the occurance of the spectral properties of the pseudo random sequences covered in the
noise.
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Figure 57: Undecoded Barker-7 RTI
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After correlation decoding the barker-7 sequence, the RTI and PSD shows the expected
peak-to-sidelobe sequence and the spectral properties are also present in the PSD. The
timegap also provides a good visibility of the decoded raw data. The expected decoding
and radar properties are marked within the red boxes, to extract the wanted informa-
tion out of the RTI and PSD pictures. The comparison of the undecoded test signal
with the decoded test signal RTI shows that the decoded peak occurs with a delay,
related to barker-7 code length. This is shown in Fig.58 for verification.
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Figure 58: Decoded Barker-7 Testbed Signal RTI

Pseudo-Random Codes The next verification test is to deconvolve the covered pseudo
random sequences within the noise. Before doing deconvolution, the raw data time se-
ries is reshaped in another order, to do the decoding of the sequences. Since the barker-7
code is covered 5 times within one pseudo random sequence, the undecoded RTI and
PSD shows also 5 times the occurance of the barker-7 code. In Fig.59, these plots are
shown.
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Figure 59: Undecoded Pseudo Random Testbed Signal RTI
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Now the deconvolution on the same raw data is done for the 3 different pseudo random
seuqences and the original range bins are reduced from 1000 bins to 200 bins. All the
decoded pseudo random sequences showing the expected parameter configurations in
the RTI and PSD. These are also marked as red boxes in the RTI and PSD plots and
Fig.60 illustrates the verified parameters after deconvolution.
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Figure 60: Decoded Pseudo Random Testbed Signal RTI
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5.2.3 Receiver Signal Verification

The test signal is stored within a binary file and the custom-sequence feature of the
SanDRA transmitter is used to convert the test signal from baseband to 32.55MHz and
the signal is attenuated and split into the 5 receiver channels. Since the transmitter
and receiver are synchronized with the same GPS reference and operating on the same
computer cluster, the decoded signals should appear in the RTI and PSD generated by
the distributed executed detection software. The graphical results from the detection
software are illustrated in the following listed figures.

Barker-7 Code For the barker-7 code, the received signal after decoding is illustrated
in Fig. 61 The parameters from the test signal are as expected and occurs in the decoded
receiver raw data the same. The only difference is the delay in the range axis, but this
is explained later in the calibration section.
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Figure 61: Decoded Barker-7 Receiver Signal RTI

Pseudo-Random Codes The pseudo random sequences are also as expected and also
a range delay is seen in the decoded raw data. Since the detection software works with
integration over all channels, more sensitivity is gained and the PSD shows a weak
spectral line for the specific doppler frequency in the range gates because the doppler
frequency offset is applied as a continuous oscillation in the test signal. Fig.62 shows
the results from the detection sofware.
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Figure 62: Decoded Pseudo Random Receiver Signal RTI
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5.2.4 Calibration

Transmitter Delay During the execution of the test signal verification, an oscilloscope
is used to trigger a 1PPS signal and the synthesized test signal, to measure the time
delay implied from the transmitter signal processing chain time delays. This value is
important and needs to be converted into an integer sample value. The conversion to
the integer sample delay is done by the following formula:

∆NTX = b∆τTX fS,RXc

∆NTX = b65µs 100kHzc

∆NTX = 6

Total Delay The decoded raw data in the RTI and PSD from the detection software,
seen in Fig.63, shows also a range delay. This delay is a composition of the transmitter
and receiver time delay. In a more general case a third value is included in the radar
time delay, seen in the receiver. This value is the nearly direct ground wave propagation
between transmitter and receiver. Since feeding the transmitter signal into the receiver
directly and assuming the operation of the analog hardware devices are in the linear
parameter domain, where no group delay implies an occuring wave propagation of the
test signal, this third time delay value is cancelled in the calculation for the receiver
time delay.
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Figure 63: Decoded Testbed and Receiver RTI Comparison

In Fig.63, one additional feature of the extended detection software is the implemen-
tation of the pre-cleaning of the raw data before decoding with the pseudo random
deconvolution matrix. The left column shows the uncleaned decoded test signal raw
data of the receiver and the right column shows the cleaned decoded raw data from
the detection software.

Receiver Delay The starting point is the extraction of the integer time delay from the
detection software produced RTI. This is simply the integer value from the array, where
the maximum of the decoded raw data arise. The formula to calculate the receiver time
delay is:

∆NRTI = ∆NTX +�����:
0∆NGW + ∆NRX

∆NRX = ∆NRTI −∆NTX

∆τRX = ∆NRX TS,RX

∆τRX = (∆NRTI −∆NTX) TS,RX
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Figure 64: Total Range Delay of Transmitter and Receiver Signal

Fig.64 shows the mean range dependency of the SNR for all time bins of the channel
mean RTI. The black curve is the original transmitter decoded signal and the blue
curve is the receiver decoded signal. The difference ∆NRTI of both peaks is the total
delay between transmitter and receiver. Now all necessary parameters for the range
calibration are known and the values could be determined.

Range Calibration The results of the range calibration are shown in Fig.65 The
results are for all the differetn sequences the same, because the same parameters for
the bits and center frequency are used.

∆NTX∆τTX / µs ∆rTX / km ∆NRTI ∆NRX ∆τRX / µs ∆rRX / km

665 18 9 3 30 9

Figure 65: Table of Range Delay Results
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Phase Calibration For phase calibration, the maximum peak for each time bin of the
decoded raw data is of interest. Since the radar is coherent in time, the array index for
the maximum peak stays the same for all time bins and the array could be sliced for all
channels. Now we need to convert the frequency shift to the zero baseband frequency
by applying a simple multiplication with a complex harmonic of inverted frequency.

Then the angle of the complex array is calculated for each time bin over all chan-
nels and the mean value over the time bins gives the phase value for all channels. The
last step is to convert the radiant angle to degrees and subtract the last channel angle
from all angle values, to convert to the wanted phase differences. This is known as
relative phase calibration. The results are shown in Fig.66, and the values are quasi
equal for all the different codes. This is clear, since using the same frequency and same
hardware for raw data acquisition. The last row in the table shows the mean phase
differences of the calibration. For the last channel all values are equal to zero and not
shown in the table.

(ϕ1 − ϕ5) /
◦ (ϕ2 − ϕ5) /

◦ (ϕ3 − ϕ5) /
◦ (ϕ4 − ϕ5) /

◦

−0.573

−0.567

−0.546

−0.554

−9.616

−9.744

−9.778

−9.743

+1.030

+1.067

+1.025

+1.047

−5.253

−5.218

−5.238

−5.225

Barker 7

Pseudo 471

Pseudo 329

Pseudo 100

Mean Values −0.561 −9.720 +1.042 −5.234

Figure 66: Table of Phase Difference Results
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5.3 Experimental Field Campaign

In the previous section, the realtime decoding and data distribution of the same raw
data is verified by a testbed experiment. Now a real world experiment is in focus to
proof also the accessability through the internet and configuration. For this experiment
current installed hardware is used. One problem is the fact, that the planned radar net-
work for the MMARIA-CW project is not existing at all. Therefore a special campaign
is designed to verify the functionality of the system.

5.3.1 Field Campaign Design

For the field campaign, a pulse transmitter in Juliusruh is used. This transmitter
operates with a barker-7 sequence. The installed testbed receiver is further used in
Kuehlungsborn and plugged into the antenna interface, to receive and acuire data from
a 5 Yagi-Antenna Cross-Dipole Jones-Configuration at 32.55MHz center frequency. To
addtionally have the possibility to use pseudo random codes, the prototype pseudo
random transmitter in the metal box is used and installed in Kröpelin, very close to
Kühlungsborn. Therefore the pseudo random transmitter is operating at a very low
power of only 20W. For verification of the arbitrary station access, the configuration
and operation monitoring is done in Wismar University.

Function Location

Transmitter
Receiver

Administrator 23966, Wismar

18236, Kröpelin
18225, Kühlungsborn

Transmitter 18556, Juliusruh

Operation

Barker-7
Pseudo-471/329/100
Acquire/Process

Configuration

Figure 67: Field Campaign Setup Parameter

For the experiment a sweep of the pseudo random seeds is done in a time multiplexing
session, because only one transmitter exists at this moment. The receiver is processing
for all the configured sequences at the same time in parallel. The transmission sequence
timeline is shown in Fig.68

Barker-7
Pseudo-471
Pseudo-329
Pseudo-100

2017-07-12 15:00:00 UTC
2017-07-12 15:00:00 UTC
2017-07-12 15:20:00 UTC
2017-07-12 15:40:00 UTC

2017-07-12 16:00:00 UTC

2017-07-12 16:00:00 UTC

2017-07-12 15:20:00 UTC
2017-07-12 15:40:00 UTC

< >

Sequence Start Timestamp Stop Timestamp System

Genesis
SanDRA
SanDRA
SanDRA

Figure 68: Field Campaign Timeline
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5.3.2 Field Campaign Verification

In Fig.69, the block diagram for the field campaign is illustrated. Only the used com-
puter and network hardware is shown to see the access flow to the stations and also
the computers are marked with the executed scripts, to see which services running
on the distributed computers. The results of the parallel processing are listed in the
paragraphs 5.3.2, 5.3.2 and 5.3.2.

Computer

User: radar

Host: machine-000

Master-Client

192.168.20.2

Computer

User: radar

Host: machine-001

Slave-Server

192.168.20.4

Computer

User: radar

Host: machine-003

Slave-Server

192.168.20.6

Layer-3 Gigabit-Ethernet

Non-Blocking Switch

LTE/4G

MIMO-Antenna

Mobile-Router

192.168.20.1

192.168.20.0

sandra-gps-client-main/hndl
sandra-ntp-client-main/hndl
sandra-acq-client-main/hndl
sandra-acq-server-main

sandra-buf-server-main
start-detection-barker-7
start-detection-pseudo-471

sandra-buf-server-main
start-detection-pseudo-329
start-detection-pseudo-100

&&
&&
&&

&&
&&

&&
&&

192.168.10.1

LTE/4G

MIMO-Antenna

Mobile-Router

Computer

User: radar

Host: machine-005

Master-Client

192.168.20.2 sandra-gps-client-main/hndl
sandra-ntp-client-main/hndl
sandra-seq-client-main/hndl
sandra-seq-server-main

&&
&&
&&192.168.10.1

Layer-3 Gigabit-Ethernet

Non-Blocking Switch

192.168.20.0

to digital
receivers

192.168.20.1

to digital
transmitter

I
N
T
E
R
N
E
T

Laptop Pfeffer

LogMeIn

MOSH
VPN

Figure 69: Field Campaign Setup Block Diagram
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Pseudo Random Seed 471 Results

Figure 70: Barker-7 Decoded RTI and PSD for Seed-471

Figure 71: Pseudo-471 Decoded RTI and PSD for Seed-471
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Pseudo Random Seed 329 Results

Figure 72: Barker-7 Decoded RTI and PSD for Seed-329

Figure 73: Pseudo-329 Decoded RTI and PSD for Seed-329
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Pseudo Random Seed 100 Results

Figure 74: Barker-7 Decoded RTI and PSD for Seed-100

Figure 75: Pseudo-100 Decoded RTI and PSD for Seed-100
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6 Conclusion
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6.1 Summary

In this thesis, the main aspects of the developed software are verified. The data dis-
tribution over multi-casting is working as expected and the logging information of the
current observed errors are triggered and forcing the system to stop the processes and
restarting again. This works for the transmitter and receiver as well.

The connection to the remote computers with mobile networking is working well. Also
the configuration of transmitter and receiver is working and with the usage of systemd,
the process monitoring is as expected. The system also restarts after a power failure
and is also reachable over internet after a reboot. These essential features allows to do
further system observations and improvements in a multi-static radar network.

6.2 Future Work

Radar Network Installations During the working period of this thesis, the neces-
sary steps for the radar network installations were done. This includes the visiting of
all the 6 sites for transmission and proof the mobile connectivity. Also the statutory
provisions are fullfilled and the frequency and location licenses are owned by IAP and
certified by Bundes-Netzagentur to built up the stations in northern germany. Currently
the progress is a Deutsche-Industrie-Norm (DIN) conform circuitry case prototype de-
velopment for the transmitters. The further weeks will focus on the progress of the
transmitter installations, to be able to start the radar network in an operational state.

System Validation When the radar network is in operation, the engineering of the
system needs to be validated with the produced data. The processed data needs to be
analyzed and bring some scientifical results. This process is also iterative, because the
opinions and meanings of the scientists are input information to improve and modify
some system specifications.

Digital Pre-Distortion As mentioned in this thesis, the used amplifiers are not perfect
in sense of linearity. Therefore, digital-pre-distortion (DPD) is a technique to compen-
sate the non-linear characterstic curve of the amplifiers, by manipulate the amplifier
input signal with the current output signal information. To do DPD, a reasonable
bandwidth is necessary, to cover the spectral non-linearities and avoid also aliasing
effects for the DPD.
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