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Abstract

In this study a parametrisation of the vertical transport of horizontal

momentum by cumulus convection for use with the Kühlungsborn

Mechanistic Climate Model (KMCM) is presented. The KMCM uses a

relaxation scheme in the style of Frierson [8]. Existing schemes are

commonly based on mass-flux convection schemes. In order to apply

these existing schemes to the KMCM the cloud-scale horizontal mo-

mentum equations is redesigned and a formulation for the cloud-scale

vertical mass-flux is presented.

The parametrisation has been tested in ’offline’ simulations with the

KMCM and it is found to be in good agreement with the results pre-

sented in previous studies. An analysis of the effects of the imple-

mented cloud-scale pressure gradient by Zhang and Cho [27] on the

cloud-scale horizontal momentum is made. It is found to be of small

influence on the CMT. This confirms recent findings by Romps [18]

and Richter and Rasch [17].
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Zusammenfassung

In dieser Arbeit wird eine Parametrisierung der Effekte des vertikalen

Transports von horizontalem Impuls durch Cumulus Konvektion (CMT)

präsentiert. Die Parametrisierung wird für die Verwendung im Küh-

lungsborn Mechanistic Climate Model (KMCM) modelliert. Im KMCM

wird ein Relaxations-Ansatz in der Form von Frierson [8] verwen-

det, um Konvektion zu modellieren. Bisherige Parametrisierungen

des CMT benutzen Kovektions-Routinen, die auf Massenfluss Konvek-

tionsparametrisierungen basieren. Frühere CMT Parametriserungen

werden überarbeitet um im KMCM angewendet werden zu können. Zu

diesem Zweck wird die horizontale Wolken-Impuls Gleichung überar-

beitet und eine Formulierung für den vertikalen Massen-Fluss in der

horizontalen Größenordnung der Wolken hergeleitet.

Die Parametrisierung wurde mittels ’offline’ Rechnungen des KMCM

getestet. Die Ergebnisse liefern gute Übereinstimmung mit in vorheri-

gen Studien veröffentlichten Ergebnissen. Eine Analyse der implemen-

tierten Parametrisierung des Druck-Gradienten zwischen Wolke und

Umgebung von Zhang and Cho [27], zeigt das dieser geringen Einfluss

auf den errechneten Impulstransport hat. Dies bestätigt Ergebnisse aus

Veröffentlichungen von Romps [18] und Richter and Rasch [17].
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Chapter 1.

Introduction

The mechanics of the atmosphere and climate have become of increasing interest in

recent times. Even before the pressing of imminent climate change, daily weather

forecasts have made people want to understand the physics behind weather. The Primi-

tive Equations physically describe momentum tendencies and temperature tendencies

within a fluid. The atmosphere though is not a fluid in the general sense. It is a

composite of different gasses. For the general dynamics water vapour and general

air are the determining factors, but as earth is subject to constant perturbations it is

prevented from reaching its equilibrium state. This is due to radiative exchange with

outer space. The effects of these daily perturbations result in ever reoccurring change in

the temperature distribution and interactions of ionized layers with the earth’s magnetic

fields. These effects improve the complexity of the earth’s climate and make it more

complicated to understand than can be grasped by the primitive equations.

Tools devised to help with forecasting the evolution of the climate and have been much

improved in recent years are models of the atmosphere. Diverse in kind they can

be used to model the dynamics of a region or of the general circulation, providing a

playground for researchers to test and prove theories and find out about mechanics of

the atmosphere.

The model has its own limitations. The most crucial one lies with the sheer compu-

tational resources needed to model the atmosphere, and the limitations of numerics

in solving differential equations. A set of partial differential equations which has to

be solved in four dimensions is something that may not be solved for every molecule

in the atmosphere. To address this limitation the atmosphere is divided into columns,

each the area of a fraction of the earth’s surface. These are divided into layers. Each

of these volumes is considered to be homogeneous in all relevant physical properties.

Certain boundary conditions are devised to describe the limits of the model and solve

1



2 Introduction

the equations.

These models are based on the general idea that each flow consists of two components,

its mean component and the deviations from it. Averaging over an area will remove the

deviations from the mean flows and leave the means to compute with. The equations

are however non-linear and not all of the effects by deviations are lost, certain turbulent

fluxes remain and connect the small scale deviations with the large scale flows. Since

in models these small scales are outside the resolution, expressions for these turbulent

fluxes are needed in order to correctly model the climate. This process of finding

influential small scale phenomena and expressing them through large scale quantities

is called parametrisation. Parametrisations are used wherever the small scales have

important impact on the large scales.

These parametrisations do not only have a large impact on models, but also express an

important aspect of understanding the processes defining the dynamics of the atmo-

sphere.

This work is about the parametrization of a specific problem; the momentum transport

by convection associated to cumulus clouds or deep convection, Cumulus Momentum

Transport (CMT). Several studies have been published on CMT, the earliest proposed by

Ooyama [16]. Subsequently the parametrisation by Schneider and Lindzen [19] is the

one mostly accepted and improved in subsequent studies. Using this parameterization

scheme Helfand [11] found an enhancement of the winter Hadley circulation and the

wind fields in his model were found to be closer to experimental observations. Zhang

and McFarlane [25] incorporated an improved parametrisation, which includes cloud-

scale pressure-gradients, derived by Zhang and Cho [27] (ZC95) into the Canadian

Climate Centre (CCC) GCM. They as well observed an enhanced Hadley circulation

in summer and an improvement in their wind field, similar to that of Helfand [11].

Gregory, Kershaw, and Inness [10] achieved similar results when implementing their

improved version of the ZC95 CMT parametrisation into the Hadley Centre Climate

Model.

Wu, Liang, and Zhang [21] undertook a 20-yr simulation, in which ZC95 was imple-

mented, into the Community Research Model developed by the National Center for

Atmospheric Research in order to evaluate the effect of the CMT on climate simulation

utilising long-term climate statistics. A secondary meridional circulation, characterized

by strong upward motion along the strongest ascending belt of the Hadley circulation

and a downward motion north and south of the belt, within the Hadley circulation was

found. In a study by Wu et al. [23] a modification of the simulated tropical circulation,
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precipitation, cloud distribution and radiation due to CMT was found. Similar results

were achieved by Cheng and Xu [5]. In more recent years secondary effects of CMT are

studied. A study by Zhou and Kang [29] for example found that CMT is important to

determine the meridional scale of the tropical waveguide. It can lead to wave instabili-

ties as well as induce upscale momentum and energy transfer from the planetary-wave

scale to the large scale.

Parametrisations are always specific to their certain model and its surroundings. The

subject of this study is to design a parametrisation of the CMT to be used with the

Kühlungsborn Mechanistic Climate Model (KMCM) [2] to model earth’s climate. The

KMCM uses a parametrisation for cumulus convection into which the parametrisation

presented here is fitted. Therefore the principles of convection, stability of the atmo-

sphere and the concept of this convection parametrization will be laid out in the second

chapter. The parametrisation of CMT shall follow in the third chapter, building on what

has been found before. The fourth and fifth chapters will centre on the implementa-

tion and evaluation of the parametrization. The evaluation will be performed using

’offline’ calculations of the KMCM with the parametrisation included. In conclusion an

overview of the work will be given followed by a discussion of the limitations of the

parametrisation presented here and suggestions for future improvements.
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Chapter 2.

Convection

Convection is buoyant forcing manifested in our environment. Air rises because it is

positively buoyant and vice versa. As simple as this may be if condensed down to its

essence, convection is a complex phenomenon that has led to many years of research

over the past decades. It is not simply one thing rising form one place in the atmosphere

to another, but also what it carries with it while doing so.

Convection is a prominent effect throughout the atmosphere. It changes the vertical

structure of the atmosphere substantially. In higher latitudes convection usually affects

a few tens of meters. In this case the parametrisation chosen is a diffusion of physical

properties, which is well understood. Close to the equator though the instabilities

reach up to 200 hPa which results in large scale cumulus convection over several hun-

dreds of meters. Due to this concentrated convection the vertical wind speeds become

substantially larger than in the rest of the atmosphere, where vertical wind speeds

are considered negligible in relation to the large scales. These winds result in mass

transport, which in return carries humidity, heat, momentum and tracers. The identifi-

cation of these processes resulted in the necessity of an adequate parametrisation of

the effects of cumulus convection. Atmospheric convection releases latent heat through

condensation and absorbs it through evaporation. It transports heat as well as moisture

and, the subject of this work, it transports momentum.

5



6 Convection

2.1. Characterisation of stratification

In order to physically describe convection the picture of finite parcels of air is introduced.

Convection is driven through buoyant forcing, which is described by the Archimedes

law:

F = g · δV (ρs − ρp)

The force on a submerged body of volume δV and of density ρp is equal to the difference

of its density and the density of the fluid ρs it is submerged in, times the gravity constant.

In atmospheric physics, forces and energies are represented as forcing or energy per

mass, accordingly the buoyant forcing can be represented as:

F = g · ρs − ρp
ρp

Here the law for fluids is transferred to a gas. The properties of gasses are assumed

to develop according to the ideal gas law. Further, to describe convective processes,

parcels are assumed to be lifted without exchanges with the environment, i.e. the

process is assumed to be adiabatic. The ideal gas law is used to reformulate, to achieve

F (Tp, Ts):

F = g · Tp − Ts
Ts

Therefore, the parcel is accelerated when the temperature of the parcel Tp at a given

height is higher than the temperature of the surrounding air Ts at that height. To

determine whether or not a given parcel will be accelerated upward, resulting in

convection, the temperature dependency Tp(z) with height needs to be determined.

During ascent the atmosphere does work on the parcel, but in assuming the process to

be adiabatic no energy is added to it, i.e Q = 0. The heating rate Q is defined as:

Q = Cv
dT

dt
+ p

dV

dt
= 0
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Combining this relation with the ideal gas law results in:

1
γ − 1

1
T

+ 1
V

dV

dt
= 0 (2.1)

γ = Cp
Cv
≥ 1

We now assume γ to be independent of temperature and integrate eq. 2.1, yielding:

TV γ−1 = p(1−γ)/γT = pV γ = const.

To find the temperature gradient for an adiabatic ascent we differentiate with respect

to height, z and get:

dT

dz
+ 1− γ

γ

T

p

dp

dz
= 0

dp
dz

represents the pressure change experienced by the parcel. The characteristic of an

adiabatic ascent requires that the pressure of the parcel is always that of its surroundings,

implying: dp
dz

= dps

dz
. In hydrostatic equilibrium the vertical pressure gradient has to be

balanced by gravity i.e. dp
dz

= −ρs ∗ g. Joining these findings we get:

dT

dz
= −γ − 1

γ

g

R

T

Ts

The dry adiabatic lapse rate Γd defines the atmospheric temperature profile for which a

parcel that ascends or descends adiabatically without condensation of water vapour is

always at the temperature of its surroundings T = Ts. This way it is ensured that the

process undergone by the parcel is adiabatic:

dT

dz
= dTs

dz
= −γ − 1

γ

g

R
= −Γ = − g

cp

The stability criteria may now be reformulated based upon the temperature gradients.

The parcel temperature Tp may only be larger than that of the surroundings if the

adiabatic lapse rate is larger than the temperature gradient of the atmosphere, hence:

stable:
dTs
dz

< −Γ

unstable:
dTs
dz
≤ −Γ
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So far it was assumed that the parcel undergoing scrutiny is moved without water

vapour condensing or water evaporating. Examining the effect of the freezing of water

is beyond the scope of this study, and thus only water vapour will be examined. It will

further be assumed that condensate is immediately precipitated. The concentration of

water vapour in air is expressed as vapour pressure e. The absolute humidity expressed

as the number density nv of water molecules or the mass density, ρv follows:

nv = e

kT

ρv = e

Rv ∗ T

Here Rv is the gas constant for water vapour. Consequently a vapour pressure is

defined for every specific temperature, at which the vapour is in equilibrium with its

condensed phase. At the equilibrium point the exchanges between the two phases

are equal; evaporation and condensation are in equilibrium. When the temperature

drops below this point vapour will be condensed, so that equilibrium is reinstated;

when it rises above water will be evaporated, again until equilibrium is reached. In

general within the atmosphere the water vapour is seldom in equilibrium with its

condensed phase. Often the vapour pressure e of gas is below the equilibrium vapour

pressure es. Therefore the approximation which we made above is relatively accurate.

The equilibrium vapour pressure is a function of temperature, whereby at a specific

temperature the vapour will condense or evaporate until it reaches the corresponding

equilibrium vapour pressure. Consequently, there may be cases in which no liquid phase

is evident within the parcel, therefore no equilibrium with a condensed phase may be

reinstated. A specific temperature Ts is defined, which is the exact point at which a

condensed phase would start forming if the parcel were to be cooled further. Until this

specific point, as seen above, the temperature will change with the dry adiabatic lapse

rate Γd.

As the parcel rises it will reach the equilibrium vapour pressure temperature Ts. Sub-

sequently its vapour will begin to change its phase as the parcel is cooled further by

rising, in order to achieve equilibrium with its condensed phase. Condensing vapour
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Figure 2.1: green,solid: Tr
black,dashed: T .
Example profiles from the
convection routine of the
KMCM. Note how the
profiles align at around
350hPa, this is the cap for
convective processes. Be-
yond this point density be-
comes so low that the ap-
proximations made for the
moist and dry adiabatic
lapse rates no longer ap-
ply.

results in the release of latent heat following:

q = ρv
ρ

dT

dz
= L
cp
∗ dqe
dz

(2.2)

Here q, the specific humidity, is used. Since the specific humidity is kept at the equi-

librium specific humidity when rising, the change in equilibrium humidity gives the

change in humidity, i.e. condensed vapour. L is the latent heat per unit mass.

A correction is added to the dry adiabatic lapse rate to describe the temperature

evolution beyond the equilibrium point temperature Te:

Γ =

Γd = g
cp

if T < Te

Γm = g
cp
− L

cp
|dqe

dz
| if T ≥ Te

This gives the full definition of temperature changes during adiabatic ascent of an air

parcel. The definition of stable stratification of the air column can be derived :

stable: Γm ≥
dTs
dz

conditionally unstable: Γd ≥
dTs
dz
≥ Γm

unstable:
dTs
dz
≥ Γd

Another measure for stability is the Brunt-Väisälä-Frequency N2, it is the frequency

with which a parcel would oscillate, were it slightly displaced from it’s resting position.

The derivation is similar to that of an harmonic oscillator, friction will be neglected.
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The force acting on the displaced parcel is the buoyancy force found by Archimedes to

be proportional to the difference in densities of displacing ρp and displaced ρs fluid, the

volume displaced by the displacing parcel V and the gravitational constant g.

F = −gV · (ρp − ρs) = M
d2z

dt2
= ρp ·V

d2z

dt2
(2.3)

We defined these effects to be adiabatic, therefore the pressure p of the displaced parcel

is always that of it’s surroundings. In good approximation the ideal gas equation may

be used to describe the physical processes in the atmosphere.

p = ρstsR = ρpTpR (2.4)

combining 2.3 and 2.4 gives

d2

dt2
z = g

{Tp(z)− Ts(z)
Ts(z)

}
(2.5)

Using our findings from above we may formulate a function for the parcel temperature

for the dry adiabatic ascent and the moist adiabatic ascent.

Tmoist(z) = Tp(z0) +
( g
cp

+ L
cp

dqsat
dz

)
(z − z0)

Tdry(z) = Ts(z0)− dT

dz
(z − z0)

⇒ N2
moist = g

T

( g
cp

+ dT

dz
+ L
cp

dqsat
dz

)
N2
dry = g

T

( g
cp

+ dT

dz

)
(2.6)

Where the latter is for the dry adiabatic case. Following the stability conditions from

above, we get:

stable: N2
moist > 0

conditionally stable: N2
dry > 0 > N2

moist

unstable: 0 > N2
dry

This concept gives rise to three distinct levels in a certain parcels rise. The level at

which water vapour begins to condense is the lifting condensation level (LCL), from

where on its ascent will be moist adiabatic. The level at which the atmosphere becomes
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Figure 2.2: green,solid: Tr
black,dashed: T
Example profiles from the
convection routine of the
KMCM. For this example
the capping as well as the
implicit condition for con-
vection have been deacti-
vated. The level of no
buoyancy (LNB)has been
marked red.

LNB

Figure 2.3: green,solid: qr
black,dashed: q
Example profiles from the
convection routine of the
KMCM. Note that where
ever the moisture is less
than the reference mois-
ture the temperature pro-
file follows the dry adia-
batic lapse rate. The inter-
section between the two
profiles is the lifting con-
densation level (LCL).

LCL

unstable with respect to the parcel is the level of free convection (LFC). From there on

the parcel will remain positively buoyant until it reaches the level of neutral buoyancy

(LNB).
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2.2. Parametrisation of convection

In the past many parametrisations have been devised aiming to correctly depict convec-

tion. There are two broad types of convection schemes, the Mass-Flux-Type-schemes

and the Relaxation-Type-Schemes. An Mass-Flux-scheme hinges on mass conservation

and continuity equations. Whenever mass is brought into or out of a convective column

it carries its respective properties. Though these parametrisations of convection strive

towards a holistic description, they have become very complicated over time. A lot

of tuning parameters and correction towards not only representability of cloud-scale

processes but also the desired outcome takes place.

The latter scheme takes a more practical approach. Convection occurs whenever the

atmosphere is in an unstable state and it continues until the convective column is

in a state of stability. The Relaxation-Type schemes use this. The state of stability is

defined and the process of convection is described as incremental steps towards stability.

The first scheme of the kind was proposed by Betts and Miller [4] and it was fur-

ther simplified by Frierson [8]. This scheme was developed for maximum simplicity to

be applied in General Circulation Models (GCM’s). The intricacy and correctness of the

parametrisation schemes based on Mass-Flux-schemes come at the price of computation.

The advantages of the simplified are that it includes convection, and also has a low

requirement on computational resources. The KMCM uses this advantage.

2.2.1. The Frierson convection scheme

The scheme devised by Frierson relaxes humidity and temperature to reference values:

∂T

∂t
= −T − Tref

τ
(2.7)

∂q

∂t
= −q − qref

τ
(2.8)

With τ being the relaxation time, a parameter of the scheme. His reference temperature

Tref is the virtual pseudoadiabat, taking into account water vapour content of the

parcel and the environment. Condensate is approximated to immediately fall out. The

humidity reference profile is set to be a fixed humidity distribution relative to the

reference temperature profile, following Eq. 2.2 and findings by Neelin and Yu [15].
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Three cases of convection are identified depending on the precipitation due to drying

Pq and on the precipitation due to warming PT :

Pq = −
∫ pLNB

p0
δq
dp

g

PT = −
∫ pLNB

p0

cp
L
δT

dp

g

The integrals range from the surface level to the level of no buoyancy (LNB). In the case

that the precipitation due to warming PT is positive this means CAPE + CINE > 0
(see Ch. 3.3). Pq > 0 implies an over saturated column that is more moisture is in the

column than in the reference profile.

Deep Convection

In the first case both, PT and Pq, are larger than zero; the condition for deep convection

is met. To conserve enthalpy the reference temperature profile specified before is

corrected:

∆k = 1
∆p

∫ pLNB

p0
−(cpT + Lq − cpTref − Lqref )dp (2.9)

Tref2 = Tref −
∆k
cp

This done following Betts [3]. In changing the profile by a uniform amount with height,

the changes in temperature (in enthalpy units) are opposite to the changes in humidity

(in enthalpy units). Consequently it is ensured that PT = Pq. A consequence of this

correction is a cooling in the lower troposphere, which is associated with the effects of

cooling downdrafts at lower levels.

Precipitation in this scheme is solely dependent on the moisture relaxation, the temper-

ature profile is adjusted to match the moisture relaxation.

Shallow Convection

In case of Pq being negative after the enthalpy conservation done previously (eq. 2.9),

their scheme switches to shallow convection. Shallow convection describes those

convective processes during which precipitation is evaporated on its way downward. In
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this case moisture is conserved. To ensure this an additional equation is introduced to

the set:

0 =
∫ pshall

p0

(
− q − qref

τSBM

)



Chapter 3.

Theory of Parametrisation

In this chapter the parametrisation of the CMT will be derived. The general state of

research on the matter shall be presented, along with an analysis and solutions to the

problems which were found to apply a cumulus momentum transport parametrisation

to the KMCM.

When air is transported upward, due to the instabilities and buoyant processes within

the cloud, mass conservation demands air to be entrained i.e. imported into the cloud

or convective column. The air transported upward is described as a mass-flux. When

it changes new mass is added to the flux or taken away from it, thus resulting in the

entrainment or detrainment of air into or out of the convective column, respectively. An

exchange of physical properties between environment and convective column occurs

wherever air is entrained or detrained.

A convective column (or cumulus cloud) can be pictured to initially move at the

same speed as its surroundings. The large vertical velocities associated with convection

result in a cloud-scale vertical mass-flux. The changes in the flux, following mass

conservation, result in entrainment and detrainment of air into and out of the cloud.

These two effects, the vertical transport and the exchange with the large-scale flow,

result in changes in the vertical profile of horizontal velocities within the cloud. Over

time it starts to deviate from the initial profile of horizontal velocities of the large

scale flux surrounding it. The convective column, now moving at parts slower, at parts

faster than its surroundings, consequently imposes a drag or friction on the large scale

flow. Effectively this results in vertical transport of horizontal momentum from lower

levels of the atmosphere to upper levels of the atmosphere. In order to describe these

processes a definition of cloud-scale averages is introduced.

15



16 Theory of Parametrisation

3.1. Subscale processes

The set of equations used to physically describe the atmosphere requires the solution

of a system of non-linear partial differential equations for each of the components of

the atmosphere. Therefore, when regarding the atmosphere, processes are represented

as areal or temporal means of these processes and deviations from these means. This

is done in order to depict the atmosphere in models. In doing so however only an

approximate solution of these equations is achieved. The process of horizontal averaging

intersects the earth’s atmosphere in volumes, each the horizontal area of a few hundred

kilometres squared and a height of a few hundred meters in case of the KMCM. The

average of a quantity I over a certain area A according to the Reynolds-Average is:

I = I + I ′ (3.1)

I = 1
A

∫
IdA (3.2)

I = I (3.3)

I ′ = 0 (3.4)

If averaged, the mean part of the quantity shall remain the same (eq. 3.3), while the

deviations shall level out so as to amount to nought (eq. 3.4). As the equations are

however of non-linear nature not all of these processes disappear. In the case two

quantities I and J appear in a product, their average is:

J = J + J ′

I = I + I ′

I · J = (J + J ′) · (I + I ′)

= IJ + IJ ′ + I ′J + I ′J ′

= IJ + I ′J ′

The results are averaged products of the deviations. These processes are understood to

be small scale processes influencing the large scale averages, such as CMT for example
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or wave processes such as gravity waves. To account for these processes they have

to be identified from observations or thorough consideration and then need to be

parametrised. A parametrisation strives to express these small scale processes through

Aci

Ae

Figure 3.1.: Example area A with environmental area Ae and cloud areas Aci

the large scale averages, to express the correct physical behaviour of the system. This

work will be concerned with cumulus clouds, or more precisely convective columns.

The horizontal extend of an individual convective column (i) is denoted as Aci. The

combined area covered by convective processes is denoted as Ac. The areas not subject

to convection shall be called environment or surroundings of the cloud. For all of these

averages are formulated using Eq. 3.2:

I = σcIc + (1− σc)I
e (3.5)

I
ci = 1

Aci

∫
IdAci

I
c =

∑
i

Aci
Ac

I
ci

Eq. 3.5 addresses the fact that the combined, weighted averages of both, environment

and convective column shall give the large scale average. Above σc = ∑
iAci/A = Ac/A

is defined to be the fractional area subjected to convection. The vertical extend of these

convective columns, also referred to as clouds within the text, here is assumed to reach

from the level of free convection up to the level of no buoyancy.

In this context a common approximation shall be introduced, the scale separation prin-

ciple introduced by Arakawa and Schubert [1]. The fractional coverage of convection

is assumed to be much smaller than that of the environment and hence the influence of
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in-cloud quantities on the large-scale average are assumed to be small i.e.

σc << 1

⇒ I ≈ I
e (3.6)

In the following I
c is simplified to Ic, denoting the weighted average of cloud quantities.

3.2. The Lindzen and Schneider parametrisation

Most of the modern parametrisations for the vertical eddy momentum flux divergence
1
ρ
∂
∂z
ρw′u′ by clouds are build upon the paper by Schneider and Lindzen [19] (LS76).

They abandoned the idea of uc being conserved during CMT, in the sense of cloud heat

as proposed by Arakawa and Schubert [1] or vorticity as proposed by Fraedrich [7].

3.2.1. Derivation of the LS76 scheme

In the mean Navier-Stokes-Equations the subscale vertical momentum transports are

represented by the subscale advection of horizontal momentum u′ by vertical momen-

tum w′:

1
ρ
∂zρu′w′ (3.7)

Schneider and Lindzen derived the relation:

ρu′w′ = −Mc(u− uc)

Rc = −1
ρ
∂z(Mc(u− uc)) (3.8)

Where ρ is the density, Mc is the cloud-mass-flux, and u,uc are the large scale average

horizontal wind velocities and cloud scale average horizontal velocities, respectively.

The vector Rc represents the net friction on the environment due to Cumulus Momen-

tum Transport. It is no friction in the physically correct sense, as friction is a dissipative

effect. The original expression by LS76 may therefore be misleading

In order to derive eq. 3.8 they use the separation of cloud and environmental quantities
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eq.3.5:

ρuw = ρ · (σcuwc + (1− σc)uwe) (3.9)

= ρ
∑
i

(Aci
A

uci ·wci
)

+ (1− σc)ρuwe (3.10)

using the scale separation principle (eq. 3.6), they show:

ρuw u ρu ·w + ρ
∑
i

(Aci
A

uci ·wci
)

︸ ︷︷ ︸
Mcuc

−u ρ
∑
i

(Aci
A
wci
)

︸ ︷︷ ︸
Mc=ρwc

(3.11)

ρuw = ρu ·w −Mc(u− uc) (3.12)

Inserting equations 3.1, 3.3 and 3.4 into equation 3.12, they arrive at 3.8.

The parametrisation by LS76 differs from earlier parametrisations by Ooyama [16]

and Arakawa and Schubert [1] through the inclusion of a term proportional to ∂uc

∂z
.

However if cloud-scale momentum is assumed conservative in equation 3.8 it becomes

equivalent to the previous formulations.

The most substantial approximation leading to the parametrisation is that the fractional

area covered by active clouds (convective columns) is much smaller than unity. Only

following this approximation cloud and environment may be treated separately, with

only certain cloud properties contributing significantly to the areal averages. This

approximation is often used in literature up to day. A recent paper by Yano [24],

suggests there may be a contradiction in assuming both the fractional area covered

by active clouds and the relative time-scales of large-scale atmospheric motion τL and

cumulus convection τc to be close to zero i.e. σc → 0 and τC

τL
→ 0. This is of large

interest to models of cumulus convection, since both are used in combination during

their derivation. In this case only the former approximation is used therefore its use is

unproblematic.

The task of incorporating this parametrisation focuses mainly on two components.

The vertical cloud mass flux Mc and the horizontal cloud momentum uc. Later papers

on the subject focus on the derivation of the cloud-scale momentum equation and on

the computation of the cloud-scale mass flux. The latter is for most if not all of the
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studies undertaken intrinsically given due to the cumulus parametrisation scheme, as

CMT schemes have been only applied to mass-flux convection parametrisations. The

former is subject to great consideration. Since there is little experimental data on

the dynamics within a cloud the derivation of a cloud-scale momentum equation is a

complex task. The equations used in this work will be derived in the following sections.

3.3. The cloud-scale mass-flux equation

Two approaches on a expression for the vertical mass-flux are made. One of the

approaches will prove to be giving dissatisfying results. None the less it’s physical

picture is of interest, since the view taken on the processes will be crucial on the

form our parametrisation takes and greatly supports the process of understanding the

processes inside a convective column.

3.3.1. The distinct-parcel approach

To describe the cloud-scale mass-flux energy considerations of convective processes are

used. The convective available potential energy (CAPE) of a parcel (i) is defined by it’s

buoyancy at each point of the column up to the level where it’s buoyancy (see eq. 2.5)

is zero (LNB):

CAPE =
∫ zLNB

zi

apdz

CAPE =
∫ zLNB

zi

g
{Tp(z)− Ts(z)

Ts(z)
}
dz (3.13)

When regarding a common pre-storm vertical temperature profile Ts and the reference

temperature Tp is plotted for comparison, see figure 3.2, areas of positive and negative

buoyancy can be identified. The levels of negative buoyant forcing function as a

potential barrier preventing the convective process. The work that needs to be done by

a parcel rising through that area to its LFC inhibits the convective process, and is hence

called convective inhibitive energy The potential energy (CINE):

CINE =
∫ zLF C

zi

apdz (3.14)
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Figure 3.2: Example Temperature profiles
from the convection routine of
the KMCM.
green: Areas of positive buoy-
ancy ∝ CAPE
red: Areas of negative buoy-
ancy ∝ CINE
The intersection of the two
temperature profiles marks the
LNB, the green area is pro-
portional to the CAPE. Before
convection an area of negative
buoyancy would be apparent
below the green area. The lev-
els beyond the LNB are usually
disregarded since they are of
no importance to the convec-
tive process (except being up-
per boundary).

Here zLFC is the level of free convection. Once the CINE is reduced to zero by at-

mospheric processes such as advection moisture, heat or through radiative processes,

the convection occurs. CINE may also be overcome by the upward momentum of the

considered parcel:

wmin =
√
CINE

Similarly the vertically averaged vertical cloud-scale velocity during convection may be

estimated:

wz =
√
CAPE

Note that both CAPE and CINE are usually defined as energy per mass quantities, a def-

inition different from the usually used energy definitions, but practical in atmospheric

sciences, since density changes vastly with height.

During convection this energy is reduced towards zero as the vertical temperature

and moisture profiles approach equilibrium. According to Fritsch and Chapell [9] the
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temporal evolution of CAPE may be parametrised using the convective time-scale τc:

∂CAPE

∂t
= −CAPE

τc
≈
∫ zLNB

zi

g

Ts

∂Ts
∂t

c

Where it is acknowledged that convection changes the vertical temperature profile

only within the convective column. Using 2.7 and the definition of heating rates the

parametrisation by Frierson is reformulated:

∂CAPE

∂t
≈
∫ zLNB

zi

g

Ts

Qc

cp
(3.15)

Which physical picture is conveyed through this parametrisation? Here each parcel

is assigned it’s respective CAPE, this energy will be transformed into kinetic energy

during the process of convection and eventually be dissipated as the parcel overshoots

the point of no buoyancy and rises, by excess momentum, into the area of negative

buoyancy. Such processes are described by as a damped oscillator, oscillating with the

Brunt-Väisälä-Frequency (Eq.2.6). This process is undergone by each of the parcels,

each rising along its’ respective pseudo adiabats to their respective points of zero

buoyancy.

This representation of convection is somewhat complicated to use, since in a physically

correct sense, the effects of slower upward moving parcels on faster moving parcels

and the overall changing temperature profile of the convective column make it hard to

deduce the actual mass-flux at a given height. This becomes even more troubling since

the mass-flux must somehow develop over time.

Furthermore using the concept of CAPE only a estimation of the average vertical

velocities can be given. To make use of the parametrisation by LS76 however, vertical

gradients within the convective column have to be computed.

A different approach to this problem is needed.

3.3.2. The level approach

Some consideration of the applied convective parametrisation has to be done. Informa-

tion is only gained on the heating rate at which each respective level of our convective

column changes it’s temperature in each time step τc.

Using this information it can be deduced how much work is done by this level, resulting
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in cooling or in case the convection results in heating, how much work is done on it.

The heating rate, which is gotten from the convective scheme following Frierson [8],

therefore has to be balanced by the rate of work done in form of vertical cloud-scale

mass transport. Therefore, if the column is viewed as a whole, a redistribution of ther-

mal energy through the mass-flux is taking place. Take notice that this parametrisation

is not in fact used to compute this redistribution of thermal energy, the opposite is

done. Here the effective vertical redistribution of thermal energy is used to compute

the accompanying mass-flux.

It is assumed here that each level of the convective column is a isolated system during

convection i.e. that it’s internal energy is supposed to be constant. A change in internal

energy through heating (see 2.2.1) consequently has to be balanced through a change

in the work done:

dU = δQ+ δW

∂U

∂t
= 0 = ∂Q

∂t
+ ∂W

∂t

Qc(z) = −w(z)a(z) ⇒ Mc = Qcρ

a(z) (3.16)

Physically speaking, the picture applied here is not the representation through parcels

rising upwards. Effects of vertical gradients of the mass-fluxes are in this formulation

intrinsically given. The ’reverse engineering’ through the heating rates implies this. An

expression is found to express the vertical mass-flux on behalf of the convective heating

rate. However an expression for the acceleration in 3.16 is not as clearly to be found.

The acceleration of an air parcel can be expressed through buoyant forcing following

equation 3.17:

a(z) = g
{Tp(z)− Ts(z)

Ts(z)
}

= g · (Tp
Ts
− 1) (3.17)

It is not clear whether this expression fits the framework applied here. Physically

speaking the change in kinetic energy is accompanied by an acceleration. From this it

is expected to have a vertical momentum equation which needs solving. The form of

this equation would be analogous to the horizontal momentum equations i.e.:

ρ∂wc
∂t

+ ρ∇(ucwc) = −∂zpc + ... (3.18)
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It is seems only consequent to then use eq. 3.16 to express ∂wc

∂t
using the heating rate

specified by the convection scheme:

−ρQc(z)wc(z) + ρ∇(ucwc) = −∂zpc + ... (3.19)

A boundary condition for the solution of the equation cloud-scale vertical momentum

equation 3.19 would be wc(z0) = w. An increase of the vertical velocities is expected

over the duration of convection as well as interactions with the environment through

advection. However the task of correctly specifying this equation is left for future

studies. For the remainder of this work it is assumed that equation 3.19 is sufficient. The

acceleration, following eq. 3.17, is assumed to be g. This is justified as a parametrisation,

which is found to yield sufficient results. Thus the equation for the cloud-scale mass-flux

used is:

Mc = Qcρ

g
(3.20)

3.4. The cloud-scale horizontal momentum equation

In their work LS76 use a simplified cloud scale momentum equation. They assume the

cloud-scale mass-flux Mc to be constant over height, reducing eq. 3.8 to:

Rc = −Mc

ρ
∂z(u− uc)

To solve the colud-scale horizontal momentum equation uc at cloud bottom is taken

to be equal to the large-scale horizontal momentum u. In their argumentation en-

trainment and detrainment are considered conservative processes i.e. there are no

apparent sources of momentum or mass in the process of momentum exchange be-

tween environment and cloud. Furthermore they assume that, in case cloud velocities

are sufficiently large, drag forces will have insufficient time to significantly modify

the in-cloud momentum uc. Following this argument, cloud-scale horizontal momen-

tum will therefore approximately be conserved during the ascent. By definition, they

therefore neglect the effect of cloud-scale pressure gradients and any entrainment or

detrainment of momentum during the transport within the convective column. Their

study however was no exhaustive study on the effects of CMT, but rather a proposal

for a parametrisation. Later studies intensively worked on the correct incorporation of
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those effects.

3.4.1. The general approach

The initial assumption is that the cloud-scale mean horizontal momentum equation can

be expressed similar to the large-scale mean horizontal momentum-equation. Using

the inelastic approximation the equation can be written as:

ρ∂uc

∂t
+ ρ∇ · (ucuc + u′u′c) + ∂

ρ∂z
(wuc + w′u′) + ρfk × uc = −∇pc

ρ is the air density, f is the Coriolis parameter, ∇ represents the horizontal gradient

operator. Here it is assumed that the eddy momentum fluxes on the cloud-scale are

negligible. They influence the very small scales which shall be omitted in the grand

scheme. Thus, we are left with:

∂uc

∂t
+∇ · (ucuc) + ∂

∂z
(wcuc) + fk × uc = −1

ρ
∇pc

Following Gregory, Kershaw, and Inness [10][12], it is assumed that the convection

averaged over the domain is steady, so time derivatives are zero. The last term on the

LHS is the Coriolis-Force. This term is assumed to be negligible, since it’s effect on

the cloud-scale momentum is rather small, due to the comparatively small area of the

convective columns.

In consequence expressions are needed for the horizontal advection of horizontal mo-

mentum, the vertical advection of horizontal momentum and the cloud-scale pressure

gradient:

∇ · (ucuc) + ∂

∂z
(wcuc) = −1

ρ
∇pc

The easiest to find is the vertical advection- term. Using 3.11 it may be expressed:

wc
∂

∂z
(uc) = 1

ρ
vg

∂

∂z
(Mcuc)
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3.4.2. The horizontal-advection-term

Shapiro and Stevens [20] applied the concept of entrainment and detrainment rates to

the conservation of cloud momentum:

∂Mci

∂z
= εi − δi (3.21)

Where εi and δi are the rates of entrainment and detrainment of cloud-mass. Using this

3.8 may be expressed as:

Rc = (u− uc) · εi − (u− uc) · δi) +Mc
∂

∂z
(u− uc)

The first two terms denote the entrainment and the detrainment of momentum re-

spectively. Consequently the vertical divergence of the cloud-scale mass-flux acts to

exchange cloud momentum with the environment. Contrary to SL76, where CMT acts

like an elevator only affecting the levels at the bottom and the top of the convective

column, in this model CMT affects the environment surrounding the convective column.

Usually it is assumed that the entrained air has the environmental momentum and the

detrained air the cloud-scale momentum [20][22][10][12], therefore:

∇ · (ρucuc) = u · εi − uc · δi

wcuc

∇p

Rc

Rc

Figure 3.3.: Momentum is entrained and detrained at different levels of the convective column
due to cumulus friction. Horizontal momentum is carried upwards by vertical
advection being acted upon by the pressure gradient in the process.
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A height dependent equation for the cloud-scale vertical mass-flux has been presented

(eq. 3.20), the concept of entrainment and detrainment rates is therefore not needed.

Entrainment and detrainment appear wherever the gradient of the cloud-scale vertical

mass-flux is positive or negative, respectively.

However using the concept the horizontal advection of cloud-scale momentum is

expressed here by the exchange of momentum between environment and cloud. This

exchange is expressed using the cumulus friction parametrisation 3.8.

∇ · (ucuc) = Rc

Were all other terms neglected, the momentum advected vertically inside the cloud

would therefore be balanced by the momentum horizontally advected across the

boundaries of the cloud.

3.4.3. The pressure-perturbation-term

In the years after the publication of the paper by Lindzen and Schneider several studies

on the pressure gradients or preturbation pressure fields within convective cells have

been published. According to studies by LeMone [14] [13] on lines of cumulonimbus

during GATE in September 1974, the vertical transport of horizontal momentum is

connected to the vertical wind shear. In squall lines the momentum transport seems

to be upgradient normal to a line of cumulonimbus and downgradient parallel to it,

while when the convection is less organised, i.e. when convective columns are more

randomly distributed and smaller in size both components of horizontal momentum

are transported downgradient. These results show the importance of these gradients on

the momentum transported and thus several authors worked on new parametrisations

extending the CMT[6][27][28][10][12][20][22].

The idea behind formulations incorporating the cloud-scale pressure gradients is that

it acts on the cloud-scale horizontal momentum effectively decreasing the difference

between cloud and environmental momentum. The problem was most rigorously

approached in a study by Cho [6] and later again by Zhang and Cho [27][28](ZC95).

They found the effect of the pressure term to be dependent on cloud form and internal

structure. The formulation used by most studies today is based on a study by Wu and
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Yanai [22] who found the relation:

−1
ρ

(∂p
′

∂x
)ci = γki

∂u

∂z
wci

−1
ρ

( ∂p′

∂xy)ci
= γli

∂v

∂z
wci

γki = 2k2
i

(k2
i + l2i +m2)

γli = 2l2i
(k2
i + l2i +m2)

k,l and m spectrally characterise the updraft in x,y and z, respectively. The use of k

and l makes it possible to include organised convection, i.e. squall lines (l2 � k2) or

disorganised convection (k ≈ l). In the later case 0 < γk ≈ γly < 1, and therefore uc

will never exceed the environmental wind in magnitude. In contrast in the former case,

since γl ≈ 0 and 0 < γk < 2, the line-normal component and the line-parallel compo-

nent will behave quite differently. This mirrors what has been found in measurements

by LeMone. Usually disorganized convection is assumed. Studies by Gregory et. al.

[10] [12] use a value of γk = γl = 0.7 while a more recent study by Zhang and Wu [26]

uses a value of γk = γl = 0.55. The latter value is used, since results obtained are in

agreement with the earlier study by ZC95.

A recent study by Romps [18] proposes to turn the parameter to zero, effectively only

using the parametrisation by Schneider and Lindzen [19]. However the parametri-

sation above shall be incorporated for a better physical representation. The pressure

perturbation term will be incorporated using:

1
ρ
∇∂pc
∂z

= γ
Mc

ρ

∂u

∂z

With γ = 0.55 according to Zhang and Wu.

Note that this parametrisation with a fixed γ does not represent the effects of orga-

nized convection. The up-gradient transport found by LeMone [14] [13] may not be

represented in this study. Models aiming to include these effects need a higher spacial

resolution than the KMCM. Furthermore a model of the cloud distribution is needed.



Theory of Parametrisation 29

3.5. The complete set of equations

Combining the findings from sections 3.2,3.3 and 3.4 the model equations for the

parametrisation are:

Rc = −1
ρ
∂z(Mc(u− uc)) (3.22)

Mc(z) = Q̇cρ

g
(3.23)

∂

∂z
(Mcuc) = ∂z(Mc(u− uc))− γMc

∂u

∂z
(3.24)

Expressions for the cloud-scale horizontal momentum (eq. 3.24) and vertical mass-flux

(eq. 3.23) in respect to the large scale quantities have been found. The equation (eq.

3.22) yields the large scale change of horizontal momentum due to CMT.
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Chapter 4.

Application to the KMCM

4.1. Implementation

The KMCM model is a General Circulation Model (GCM) which can be adapted to

different vertical resolutions. Common resolutions for long-term modelling are T32L70,

with 450 km horizontal resolution and 70 layers up to a height of 130 km, and T42L115,

with 300 km horizontal resolution and 115 layers up to a height of 125 km. It is calcu-

lated using a spectral-transformation for vorticity, enthalpy, surface pressure, surface

temperature and tracers. The model has parametrisations for gravity waves, radiation

and moisture cycles, including convection.

The output of the model is given as a series of spherical harmonics and post-processing

is needed to evaluate the computed data. This allows to test new parametrisations

’offline’, i.e. using outputs and computing the next time step including the new parts to

see whether they work properly or not.

The model makes use of so called model-levels (l) and hybrid-levels (l ± 1
2). Quantities

used for derivatives are computed on the hybrid levels. This is to ensure correct gradient

values on the model-layers. Outputs are generated on the model layers.
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Cloud-scale mass-flux

The discretisation of the mass-flux equation expressed thus:

Mc(l + 1
2) = Q̇c(l + 1

2 · ρ(l + 1
2)

g
(4.1)

∂Mc

∂z
(l) =

Mc(l − 1
2)−Mc(l + 1

2)
∆z (4.2)

Where ∆z is derived from the hydrostatic pressure equation:

∆z = g · ρ
∆p (4.3)

At the levels − 1
2 and lmax + 1

2 the mass-flux is set to zero. Everywhere else it should

follow the behaviour of the convective heating Q̇c.

Cloud-scale momentum

In order to discretise the momentum equation, Mc(l) is expressed as the average of its

two neighbouring hybrid level values to get:

uc(l − 1
2) = (uc(l + 1

2) ·Mc(l + 1
2)

+ 1
2u(l − 1

2) · ((1− γ

2 ) ·Mc(l − 1
2)− γ

2 ·Mc(l + 1
2))

− 1
2u(l + 1

2) · ((1− γ

2 ) ·Mc(l + 1
2)− γ

2 ·Mc(l − 1
2)))/Mc(l − 1

2)

Here it is implied that Mc(l − 1
2) 6= 0. Furthermore uc is initialised to be uc = u along

the whole column, guaranteeing zero cumulus momentum transport when there is no

convection, where γ = 0.55 and the zonal and meridional components are computed

individually.

Cumulus friction

The momentum-flux through cumulus convection is defined as:

F c = Mc · (u− uc)
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Utilising this definition of the flux, the initial values are set to zero for two reasons:

to guarantee the boundary conditions for the surface and the top of the atmosphere,

where F c = 0, and to guarantee zero transport where no convection occurs. Finally Rc

is computed:

Rc(l) = − 1
ρ(l)

F c(l − 1
2)− F c(1 + 1

2)
∆z(l)

Note that Rc is computed on model layers.

Output

The output of other quantities is generated by taking the average of two values on

hybrid layers above and below the layer under examination, i.e.:

I(l) = (I(l − 1
2) + I(l + 1

2)) · 1
2 (4.4)

4.2. Results

The parametrisation was tested for a series of ’offline’ snapshots of the KMCM. The

Cumulus-Friction Rc, cloud-scale mass-flux Mc and cloud-scale horizontal velocity uc

have been computed for the model year January to December 1997. A sample was

taken every five days, averaged over ten time steps of the KMCM. All information taken

from the computations are zonal averages. The results presented here are averaged

over the winter months December, January and February (DJF) and the summer months

June, July and August (JJA). The CMT model uses the convective heating rates Qc from

the convection routine of the KMCM. As mentioned earlier, the approximations used

for the designation of the reference temperature profiles are only correct to a certain

height. To account for that the convective routine in the KMCM has a lid-condition.

This is applied to the CMT scheme in order to keep both routines in a synchronous

state. Other inputs from the KMCM are the horizontal wind profiles as well as the

vertical pressure and density profiles. The Cumulus-Friction Rc, cloud-scale mass-flux

Mc, cloud scale velocity uc and cumulus induced vertical momentum transport F c are

given as outputs of the routine.
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4.2.1. Cloud-scale vertical mass-flux

Figure 4.1 shows the averages of the vertical cloud-scale mass-flux. During DJF a

structure of three distinct areas of mass-fluxes between 60◦ and 30◦ S, at the equator

and between 30◦ and 60◦ N can be seen. During the summer the maximum between

30◦ and 60◦ N has vanished, while the maximum at 60◦ and 30◦ S is somewhat more

pronounced. Its elongated maxima reach values of 200 kg
m2d

and stretch up to 200 hPa at

the equator, while at the sides the maxima reach values of only 120 kg
m2d

stretch up to

800 hPa.

(a) Mc in Kg
m2d during DJF (b) Mc in Kg

m2d during JJA

Figure 4.1.: Averages of the vertical cloud-scale mass-flux during the summer and winter
months

4.2.2. Cloud-scale horizontal-velocities

The difference between large-scale average horizontal wind velocity and cloud-scale

horizontal wind velocity is plotted in figure 4.2 and figure 4.3. The structure of the

zonal wind profile is largely similar for winter (DJF) and summer (JJA). At the equator

and up to the height of 400 hPa cloud-scale momentum is larger than the environmental

momentum. Above and towards the poles cloud-scale momentum is lesser than the

environmental momentum, indicating friction.

The meridional cloud-scale momentum during DJF (fig. 4.3a) has several pronounced

maxima at the equator. The most pronounced lies at 350 hPa indicating strong friction.

During the summer (JJA) the structure is mirrored along the equator, with cloud
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velocities below the environmental wind speeds close to the surface and on the northern

hemisphere and large areas above the equator between 800 hPa and 200 hPa where the

cloud-scale velocities are up to 2 m
s

larger than environmental velocities.

(a) uc − u in m
s during DJF (b) uc − u in m

s during JJA

Figure 4.2.: Difference between environmental and cloud-scale horizontal velocities

(a) vc − v in m
s during DJF (b) vc − v in m

s during JJA

Figure 4.3.: Difference between environmental and cloud-scale horizontal velocities
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Figure 4.4.: Meridional averages of the zonal component of Rc during the winter months.

4.2.3. Cumulus Friction

Winter (DJF)

Figure 4.4 shows the zonal component of the cumulus friction resulting from the simu-

lation averaged over DJF. The upward extent of the convective momentum transport is

largely dependent on the convective mass-flux, hence it is only in the tropics, where

deep convection occurs, that the effect reaches into the upper troposphere. Westerly

cumulus friction reaches maxima of 0.8 m
s · d . Easterly cumulus friction goes up to values

of -0.6 m
s · d . The northerly (southerly) cumulus friction reaches 0.4 m

s · d (-0.3 m
s · d). There

is a distinct structure with westerly friction between 900 hPa and 700 hPa in the range

between 0◦ and 30◦ and reaching down below 900 hPa towards the poles between 30◦

and 60◦ on both hemispheres. These two areas of westerly friction are separated by

two areas of easterly friction located close to the equator, one below on the northern

side being the maximum easterly friction and the other at 700 hPa. Another distinct

area of westerly friction occurs at 200 hPa at the equator, accompanied by two peaks of

easterly friction.

The meridional component of the cumulus friction during DJF shown in figure 4.5

behaves significantly different from its zonal component. Its northerly maximum lies

between 900 hPa and 800 hPa at a value of 0.6 m
s · d . Its southerly maximum is located
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Figure 4.5.: Meridional averages of the meridional component of Rc during the winter months
(DJF).

at around 200 hPa reaching -0.4 m
s · d . The vertical structure of the cumulus friction is

similar, reaching up to 200 hPa at the equator and being limited to 800 hPa between 30◦

and 60◦ on both hemispheres.

Summer (JJA)

A second evaluation has been made for the summer. Generally the effect for both the

zonal and meridional component of the cumulus friction are concentrated on the winter

hemisphere, and nonapparent on the summer hemisphere. Figure 4.6 shows the zonal

component. While the vertical extent is comparable, the overall structure is distinctly

different from the winter months. The maxima lie on the winter hemisphere. Westerly

friction with a maximum value of 1 m
s · d is found between 60◦ and 30◦ S and below 900

hPa, above it at 800 hPa the maximum easterly friction is found reaching values of -0.6
m
s · d .

Similar results are found for the meridional component (fig. 4.7). Its maxima again

lie between 60◦ and 30◦ S with maximum values of -0.45 m
s · d southerly friction close to

the surface and 0.2 m
s · d northerly friction located above between 900 hPa and 800 hPa.
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Above 800 hPa influences on the meridional momentum are negligible. The distinct

maxima of friction found above 700 hPa during DJF are not found during JJA.

Figure 4.6.: Meridional averages of the zonal component of Rc during the summer months
(JJA).

Figure 4.7.: Meridional averages of the meridional component of Rc during the summer
months (JJA).
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4.2.4. Impact of pressure gradient

To quantifiy the effects of the parametrisation of the pressure gradient proposed by

Gregory et. al [10][12] and Wu [21], a test run was made without the pressure gradient.

The results from this run were subtracted from the results obtained with the gradient

parametrisation. Results (fig. 4.8) show an increase of the overall tendencies of the

friction throughout the whole atmosphere by ± 0.2 m
s · d . This amounts to an increase of

approximately 20% in friction through cumulus momentum transport by introducing

the pressure gradient term.

(a) Isolated effect of the pressure-gradient dur-
ing DJF.

(b) Isolated effect of the pressure-gradient dur-
ing JJA.

(c) Isolated effect of the pressure-gradient dur-
ing DJF.

(d) Isolated effect of the pressure-gradient dur-
ing JJA.

Figure 4.8.: Effects of the pressure gradient term on cumulus friction.
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4.2.5. Evaluation

In their paper Richter and Rasch [17] compare the two schemes presented by Schneider

and Lindzen and Gregory et. al.. They present computations made for DJF (their figure

1) using the Community Atmospheric Model, Version 3 (CAM3). In comparison the

overall structure for the zonal component of the cumulus friction is quite similar to

the findings presented here. The meridional component of the cumulus friction has

a similar distribution throughout the atmosphere, but the orientation of the friction

is different from results found here. Below 800 hPa, in the region between 30◦ S and

the equator, Richter and Rasch find a pronounced area of northerly friction, where

here southerly friction is found. This may be explained by different wind fields used

for the simulation; the year for which their simulation was made is not specified and

differences in the models used may account for these differences. For the magnitude of

zonal cumulus friction, they find ranges between ± 3.5 m
s · d without pressure gradient

and 0.8 m
s · d and -1.4 m

s · d with pressure gradient included. Former values are far beyond

what is found here, the latter are well in agreement with what is found using the

parametrisation presented here. The same can be said for the meridional components

of the cumulus friction.

The influence of the pressure gradient term was found to be of rather small impact

on the cumulus friction. Additionally, rather than decreasing the cumulus friction it

increases it, which is contrary to the findings presented by Richter [17] and what is

expected. However according to what is found in a study by Romps [18], the effects

of the pressure gradient are negligible. He concludes the parametrisation made for

the pressure gradient, though it represents the cloud-scale physics more realistically,

to be of little effect and proposes to leave it out of cumulus momentum transport

parametrisations. His findings are confirmed through the results found in this study.



Chapter 5.

Conclusion and Outlook

A convective momentum transport (CMT) scheme was developed and implemented in

the Kühlungsborn Mechanistic Climate Model (KMCM). The scheme is based on the

scheme proposed by Schneider and Lindzen and was improved following publications

by later authors. The scheme consists of a cloud-scale horizontal momentum equation

and a cloud-scale mass-flux equation. The results of these are then combined in the

parametrisation of the turbulent vertical eddy momentum flux found by Schneider and

Lindzen to equate the cumulus friction.

It was found that the parametrisation of convection applied in the respective model has

a large impact on the parametrisation of CMT. Adjustments were made to translate the

parametrisations from the mass-flux convection schemes used by previous authors into

the relaxation kind convection scheme implemented in the KMCM. To that length a

cloud-scale horizontal momentum equation and a cloud-scale mass-flux equation were

derived. In the cloud-scale horizontal momentum equation the horizontal advection

term is set to be equal to the momentum transported over the clouds boundary i.e. the

friction between cloud and environment is used to model entrainment and detrainment

of momentum.

The clod-scale vertical mass-flux is found using the heating rate specified by the convec-

tion scheme of the KMCM. The formulation is found through the application of two

different approaches to the problem of representing convection. Following consider-

ations of distinct parcels to define the convective available energy. It is understood

that energy is accumulated before a convective event and translated into kinetic energy

in form of a vertical mass-flux and eventually dissipated during the convective event.

Based on this the heating rates are considered the result of work done on the system,

allowing to ’re engineer’ the cloud-scale mass flux.

41
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Results from ’offline’ simulations with the KMCM are presented and evaluated. It

is found that spatial distribution as well as magnitude are in agreement with findings

by Richter and Rasch [17]. The overall impact of the much discussed pressure gradient

could however not be reproduced. This can be explained by the insignificance or insuffi-

ciency of the applied parametrisation of the pressure gradient, following the arguments

of Romps [18]. On the other hand it is also possible that the parametrisation of the

cloud-scale horizontal advection term is responsible. This was modified, in respect to

other schemes, to adapt to the different representation of cloud-scale mass-fluxes in this

CMT scheme. The role of pressure gradients and the resulting changes in the direction

of cumulus momentum transport are a wide field that could only be superficially be

touched in this work. Based on more recent studies however it is evident that a correct

representation of upgradient and downgradient momentum transports due to cumulus

convection can not be fully represented by a relaxation-type convection scheme. The

pressure gradient parametrisation used here is an approximation. Cloud Resolving

Models (CRM’s) are used to model orientation and organization of convection. Without

such a distinct representation of clouds it is difficult to account for such effects. How-

ever it is the authors opinion that the gradient term should be both included as well

as improved in the future, since there is evidence of the importance of its effect on CMT.

The vertical momentum is in this simulation implemented as a catalyst for the effect

of cumulus transport of horizontal momentum. It is assumed that it can be repre-

sented as a function of the heating rate and the acceleration of the vertical mass-flux,

which is approximated to be g. This representation yields adequate results, however to

guarantee physical representability the idea of a cloud-scale vertical velocity equation

should be reviewed. This representation could yield interactions between clouds and

environment, resulting in vertical acceleration of the environment and generally in a

more realistic representation of the cumulus friction and vertical transports of tracers

and mass through convection. Furthermore the effect of accelerated air moving past the

LNB, referred to as overshoot that is not simulated here, could be included using this

vertical momentum equation. It is suggested that future considerations should include

these effects to ensure little errors are made in specifying the cloud-scale mass-flux,

since uncertainties in the determination of it result in uncertainties in the CMT.

In the future ’online’ simulations with the KMCM will be made. Using the results

from these simulations the parametrisation presented here can be further evaluated.

The results achieved by ’online’ runs of the KMCM may be compared to the results
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of previous authors. Based on previous publications general improvements in the

representation of the atmospheric circulation by the model are expected.



44 Conclusion and Outlook



Appendix A.

Comotra.f
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