Application of the dual-beam width method to a narrow beam MF radar for estimation of spectral width

R. Latteck, W. Singer, N. Engler

Leibniz-Institut für Atmosphärenphysik, Schloss-Str. 6, D-18225 Kühlungsborn, Germany

- Energy dissipation rate from spectral width
- Spectral width and beam broadening effects
- Dual-beamwidth method for estimation of turbulent spectral width
- Experiment configuration of Saura MF radar
- First results
- Outlook

Turbulent kinetic energy dissipation rate

<u>Turbulent kinetic energy dissipation rate</u> $\varepsilon_{turb} \approx c \cdot v_{RMS}^2 \cdot \omega_B$ $(c \approx 0.4)$

Observations without Fresnel scatter/reflection

 \blacktriangleright Determination of σ_{turb}^2 from the observed spectral width

Spectral width and beam broadening effects

$$\sigma_{obs}^{2} = \sigma_{turb}^{2} + \sigma_{beam+shear}^{2} + \sigma_{wave}^{2}$$
$$\sigma_{obs}^{2} = \sigma_{turb}^{2} + \sigma_{corr}^{2}$$

Correction for beam broadening <u>vertical beam</u>

$$\sigma_{corr}^2 = \frac{\theta^2}{3} \left(U^2 + V^2 \right)$$

Hocking, JATP, 1983

off-vertical beams

$$\sigma_{corr}^{2} = \frac{\theta^{2}}{3} \Big[\Big(\cos^{2} \alpha U^{2} + V^{2} \Big) - 2 \cos \alpha \sin^{2} \alpha U \big(u_{z} R \big) + \sin^{4} \alpha \big(u_{z} R \big)^{2} \Big]$$

$$R - \text{Range}$$

$$U, V - \text{Horizontal wind components}$$

$$u_{z} \equiv \frac{dU}{dz}$$

The dual-beamwitdh method

- The dominant terms in $\sigma^2_{\text{beam+shear}}$ are proportional to θ^2
- $\succ \sigma^2_{\text{corr}}$ is also approximately proportional to θ^2
- > σ^2_{obs} is measured simultaneously in nested volumes with a narrow beamwidth θ_n and a wide beamwidth θ_w that for both beamwidths the same fraction of the pulse volume is filled with turbulence

$$\sigma_{turb}^{2} = \frac{\theta_{w}^{2} \cdot \sigma_{obs,n}^{2} - \theta_{n}^{2} \cdot \sigma_{obs,w}^{2}}{\theta_{w}^{2} - \theta_{n}^{2}}$$

$$\sigma_{corr,n}^{2} = \theta_{n}^{2} \left[\frac{\sigma_{obs,w}^{2} - \sigma_{obs,n}^{2}}{\theta_{w}^{2} - \theta_{n}^{2}} \right] \quad \sigma_{corr,w}^{2} = \left(\frac{\theta_{w}^{2}}{\theta_{n}^{2}} \right) \cdot \sigma_{corr,n}^{2}$$

VanZandt, T.E., G.D.Nastrom, J. Furumoto, T. Tsuda, and W.L. Clark, A dualbeamwidth radar method for measuring atmospheric turbulent kinetic energy, *Geophys. Res. Lett.*, Vol. 29, No. 12, 13-1 - 13-3, 2002

Saura MF radar

Radar frequency	3.17 MHz
Peak power	116 kW
Mean power (0.2% dc)	230 W
Pulse form	Gauss
Pulse width	$>7 \ \mu s$
Range resolution	1000m
Antenna	29 crossed dipoles
Half power beam width	6.4°
Beam directions	Vertical, 8 off-zenith

Experiment configuration

Forming of narrow and broad beams for 17.2° ZA

Signal power and radial velocity

Observed spectral widths

Results obtained from 1BW method

Results obtained from 2BW method

- New Saura MF radar allows flexible beam steering and beam forming
- Successful test of dual-beamwidth (2BW) method for estimation of turbulent spectral width
- Turbulent spectral widths detected with 2BW and traditional 1BW method are comparable at low wind speeds
- Preliminary energy dissipation rates are in the order of 20 to 60 mW/kg in April

Outlook

- Further test of dual-beamwidth method for high wind speeds during summer mesopause jet
- Common volume observations at mesospheric altitudes with the nearby located ALWIN VHF radar
- Comparison of conventional single beamwidth methods and dual beamwidth method (including other new techniques)

Outlook

Method	Saura MF radar 3.18 MHz		ALWIN 53.5 MHz	
	Beam	ZA $(\Delta \theta_{3dB})$	Beam	$ZA (\Delta \theta_{3dB})$
Dual beam width	Oblique	17.2°		
Dual azimuth	Oblique	17.2° (6,6° 13.8°)	Oblique	7° (6°)
		7.2° (6.6°)		14° (6°)
Traditional	Vertical		Vertical	
	Oblique	17.2° (6.6°)	Oblique	7° (6°)
		7.2° (6.6°)		14° (6°)
Full deconvolution	October 2003			