Turbulent Kinetic energy dissipation rates in the polar mesosphere
measured by a 3-MHz-Doppler radar
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Introduction

Turbulence is a heat source in the mesosphere and lower thermosphere and also

The Saura MF radar

important for diffusive processes. It transfers potential and kinetic energy from Radar frequency |3.17 MHz

medium scales (e.g. generated by the breaking of gravity waves) to very small Peak power 116 kW

spatial scales, where the energy is converted to heat by viscous dissipation. Mean power 230 W (0.2% dc)
Typical turbulent energy dissipation rates for mesospheric altitudes are 10 to Pulse shape Gaussian

200 mW/kg which correspond to heating rates of about 1 to 20 K/d. The turbu- Pulse width >7us

lent heating is comparable to other heating mechanisms, such as absorption of Range resolution | 1000m

solar UV and EUV radiation. In addition, turbulence also indirectly affects the Antenna 29 crossed dipoles
thermal and dynamical structure of the atmosphere by frictional forces on the Beam width 6.4°

momentum budget. The breaking of gravity waves induces drag via turbulent Beam directions | Vertical, 8 off -zenith

The method

Turbulence produces changes in the spectral width of a backscattered
radar signal what can be used to deduce turbulent energy dissipation
rates at the region of the scatter. The observed spectral width f, of a
received radarsignal is defined as the half power half width of its power
density spectrum. The radar signal spectrum is also influenced by the
background wind field causing broadening of the spectrum.
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A system with a relative small beam width as well as a corresponding
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method to correct the non-turbulent broadening of the spectrumf, ., are
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lent energy dissipation rates from these heights is possi-

ble, too. The values of € show a behaviour with small val-
ues less than 10 mW/kg below 70 km, and larger values
up to 200 mW/kg increasing with height.
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Short time variability of £: Hourly mean values (dots) of
energy dissipation rates from three days radar observa-
tions in September2003. The median (black line) derived
from the spectral width measurements and the € profile
(dashed blue line) from previous rocket soundings during
winter are in qualitative agreement.
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€ variations related to the spring transition of the
mesospheric circulation: ¢ profiles from radar (solid
lines) and rocket measurements (dashed lines) before
(blue lines) and after (red lines) spring transition of the
mesospheric circulation in 2004. The horizontal bars indi-
cate the range between lower and upper quartile.
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Individual profiles of turbulent energy dissipation
rates: Individual ¢ profiles derived from radar observa-
tions and rocket soundings are compared with a summer
climatology based on sounding rocket data. The radar &
profile shows also a steep increase of energy dissipation
above 80 km comparable to the in-situ data.

Climatological turbulence data from radar and
rocket observations, and the Kiihlungsborn Mecha-
nistic general Circulation Model [Becker, 2004]: The
model profile for a run simulating heating rates associ-
ated with gravity wave saturation for summer conditions
at mid-latitudes fits very well in shape to the radar profile
but peaks at a lower altitude and lower latitude.

Summer to winter transition of turbulence: The ¢ pro-
files based on radar measurements (mean values with stan-
dard deviation) show smaller values below 85 km in
August (red) than in September/October (blue and black)
but the inverse relation above 80 km. This relation corre-
sponds qualitatively to previous rocket observations.

Summary and outlook

The new Saura MF radar provides continuous real-
time estimations of turbulent energy dissipation rates
among undisturbed measurement conditions in the
altitude range from 50km to about 85km with a time
resolution of 1 hour and a range resolution of 1 km
since September 2003.

The energy dissipation rates vary in the order of 2 to10
mW/kg around 70km and between about 10 and
200mW/kg around 85km. The radar observations are
in qualitative good agreement with model results and
results from previous rocket soundings.

The current time and height coverage of the data is
quite good during daytime but limited during night
time due to external interferences. To reduce the influ-
ence of these disturbances on the radar echo signal,
future upgrades will include weighting of the transmit

and receive antenna polar diagram.




