Gravity wave activity and dissipation around tropospheric jet streams

W. Singer, R. Latteck P. Hoffmann, A. Serafimovich

Leibniz-Institute of Atmospheric Physics, 18225 Kühlungsborn, Germany (email: <u>singer@iap-kborn.de</u>)

Outline

Study of gravity waves and their dissipation in the troposphere and lower stratosphere in connection with tropospheric jets at Andenes (69°N) in January 2005 using a VHF radar and radiosondes

- Estimation of gravity wave parameters
 - wavelengths, periods, energy propagation
- Determination of energy dissipation rates from
 - spectral width of received radar signal
 - absolute echo power of received radar signal
- Discussion of gravity wave propagation and observed turbulent energy dissipation rates

23 – 29 January 2005

strong southeastward directed winds above Andenes

)aten: GFS-Modeli des amerikanischen Wetterdienstes (C) Wetterzentrale ww.wetterzentrale.de

Observations in January 2005

- Andenes (69.2°N; 16.0°E)
- MST radar ALWIN
 - backscattered echo power
 - 3D-winds
 - ➤ waves, dissipation rates
 - altitude range: 1 16 km
 - resolution: 300m, 2min
- Radiosonde launches
 - horizontal winds, temperature

ALWIN MST radar				
Radar frequency	53.5 MHz			
Peak power	36 kW			
Pulse width	600m			
Range resolution	300m			
Altitude range	1 – 16 km, 50 – 114 km			
Operation modes	DBS, SA			
Half power beam width	6.0°			
Beam directions	Vertical, 4 off-zenith			

23 – 29 January 2005 horizontal wind components from ALWIN VHF radar

- two southward directed jets at tropopause altitudes
- weak low level jet at around 3 km on 25 January 2005
 - mountain waves
- gravity wave analysis for selected periods

Gravity Wave Parameters

- observed frequency ω_{ob}
- vertical wavenumber *m*
- ratio of the polarization ellipse *R*
 - mean horizontal wind components || and \perp to the wave propagation \overline{U} and \overline{V}

Coriolis parameter f

Brunt - Väisällä frequency N

$$R = \left| \frac{f}{\omega_{in}} - \frac{k}{m \omega_{in}} \frac{\partial \overline{V}}{\partial z} \right| \qquad \omega_{in}^2 = f^2 + \frac{N^2 k^2}{m^2} - \frac{2 f k}{m} \frac{\partial \overline{V}}{\partial z} \qquad \omega_{ob} = \omega_{in} + \overline{U} k$$

intrinsic frequency ω_{in}
horizontal wavenumber k

$$Phase velocity $\upsilon_{ph}, \upsilon_{pz}$

$$Group velocity $c_{gh}, c_{gz}$$$$$

•

Case 1: 24 January 2005

Wavelet transform

Wavelet spectra applied to the meridional winds for periods < 20 h

- a) wavelet transform of the time series averaged over the altitude ranges 6-7.8 km
 - ➤ wave with observed periods of ~ 7 11 hours on 24 January
 - typical for inertia gravity waves

IAP

- b) wavelet transforms of vertical profiles of meridional winds
 - ➤ waves with vertical wavelengths of 3 4 km

Case 1: 24 January 2005

Hodograph wave analysis

- applied to radar measurements on 24.01.05, 06:30 UT
 - solid line: measured profiles
 - dashed line: fitted ellipse,
 - X starting point of the hodograph)
- Results
 - \succ wave propagate north \leftrightarrow south
 - \blacktriangleright change in the vertical propagation direction at about 5 km

Case 1: 24 January 2005

Gravity wave parameters above 6 km

Observed period	<i>T_{ob}</i> [h]	10	Vertical phase	v [m/s]	0.4
Intrinsic period	<i>T_{in}</i> [h]	2.4	velocity	, pz [, ~]	
Horizontal wavelength	L_h [km]	71	Horizontal group	<i>v_{gh}</i> [m/s]	7.9
Vertical wavelength	L_{z} [km]	3.8	Vertical group		
Horizontal phase velocity	<i>v_{ph}</i> [m/s]	8.2	velocity	v_{pz} [m/s]	-0.4

Mean propagation direction, derived from Stokes analysis

Compare hodograph !

Case 2: 26 January 2005

Wavelet transform

Case 2: 26 January 2005

Wave analysis and gravity waves parameters

- spectra averaged for 12 h starting on 26.01.03, 12:00 UT
- gravity waves with vertical wavelengths of 3–6 km and >7 km are present between 1.8 km and 13.5 km

Mean rotary spectra height range 1.8 – 13.5 km

- mean rotary spectra (12hrs averaged) shifted by 6 hrs
- no gravity waves with a vertical wavelengths of 3–6 km were observed in absence of jets above Andenes
- gravity waves with vertical wavelengths > 7 km are characterised by a predominant upward directed energy propagation ▲
- gravity waves with vertical wavelengths of 3–6 km and downward directed energy propagation ▼ dominated in times of full developed jets above Andenes

Wind speed and dominating energy propagation of GW derived from 12 hrs averaged spectra

Determination of turbulent kinetic energy dissipation rate from spectral width of a received radar signal

 accurate calculation of spectral beam broadening (σ_{non-turb}) by means of background wind field and wind gradient, antenna radiation pattern, pulse form and aspect sensitivity

Mean fluctuating velocity

<u>Turbulent kinetic energy</u> <u>dissipation rate</u>

$$v_{RMS}^{2} = \frac{\sigma_{turb}^{2}}{2 \cdot \ln(2)}$$
$$\varepsilon_{turb} \approx c \cdot v_{RMS}^{2} \cdot \omega_{B}$$

Hocking, *JATP* 1983, Hocking, MST10 proceedings

$$c = 0.4$$

 $\omega_B =$ Brunt-Väisälä frequency from radiosondes

Determination of turbulent kinetic energy dissipation rate from absolute power P_r of a received radar signal

Hocking, *Radio Science*, 1985 Cohn, *JAOT*, 1995

Volume reflectivity

$$\eta = \frac{P_r \cdot 128 \cdot \pi^2 \cdot 2 \cdot \ln(2) \cdot r^2}{P_t \cdot G_t \cdot G_r \cdot \lambda^2 \cdot e \cdot \Theta_{\frac{1}{2}}^2 \cdot c \cdot \tau}$$
$$\eta = P_r \cdot c_{sys} \cdot r^2$$

 P_r [W] \rightarrow absolute calibration !

<u>Turbulent refractivity</u> <u>structure constant</u>

$$C_n^2 = \frac{1}{0.38} \cdot \eta \cdot \lambda^{\frac{1}{3}}$$

<u>Turbulent kinetic energy</u> <u>dissipation rate</u>

$$\overline{\varepsilon}_{turb} = \left(1.43 \cdot C_n^2 \cdot \omega_B^2 \cdot M^{-2} \cdot F^{-1}\right)^{\frac{2}{3}}$$

 $M = \text{generalized potential refractive} = -77.6 \cdot 10^{-6} \cdot \frac{P}{T \cdot g} \cdot \omega_B^2$

 ω_B = Brunt-Väisälä frequency

P = pressure

T = Temperature

- g = acceleration due to gravity
- F = volume fill factor = 1

Turbulent kinetic energy dissipation rates derived with different methods

- radar volume filled with turbulent scatterers (F=1) is assumed
- Brunt-Väisälä frequency from simultaneous radiosonde sounding
- disturbed power profiles due to external interference \bigcirc
- turbulent energy dissipation rate profiles from both methods are in good agreement
- turbulence generation at altitudes of wind gradient

#IAP

Brunt-Väisälä frequency from GPS radiosondes 24 – 25 – 26 – 27 January 2005

Turbulent energy dissipation rates from spectral widths

Estimation of the radar tropopause based on Gage/Green 1985

Tropopause altitude and energy dissipation

Summary

- VHF radar measurements and radiosonde soundings performed during the passage of tropospheric jet streams with core wind speeds up to 110 m/s have been analysed
 - gravity waves with vertical wavelengths of 3-4 km and > 7 km have been identified
 - short period waves were generated during jet passages
 - a stable tropopause around 12 km has been detected
- turbulent energy dissipation rates derived from
 - the spectral width of the received radar signal and
 - the absolute echo power of received radar signal are in good agreement
- enhanced turbulence energy dissipation (up to 30 mW/kg) was observed in regions of enhanced atmospheric stability around a stable tropopause of about 12 km
 - dissipation of gravity waves due to a rapid increase of atmospheric stability in the tropopause region (van Zandt & Fritts, 1989)

