Observations of Polar Mesosphere Summer Echoes with calibrated VHF radars in the Northern and Southern hemisphere.

R. Latteck⁽¹⁾, W. Singer⁽¹⁾, R. J. Morris⁽²⁾, D. J. Murphy⁽²⁾, D. A. Holdsworth⁽²⁾

- (1) Leibniz-Institut für Atmosphärenphysik, Kühlungsborn
- (2) Australian Antarctic Division, Kingston, Tasmania, Australia

Introduction

- Polar mesosphere summer echoes (PMSE) are strong enhancements of signal power at very high radar frequencies that occur between about 80 and 95 km in altitude at polar and middle latitudes during summer.
- PMSE are caused by inhomogeneities in the electron density of a size comparable to the radar Bragg scale in the presence of charged particles.
- PMSE are observed with VHF radars at 50 MHz since more than 20 years in the northern hemisphere
 - **PMSE** (polar NH in summer)
 - **PMWE** (polar NH in winter)
- Characteristics of PMSE are determined by e.g.
 - Electron density, temperature
 - Water vapour concentration
- Very rare PMSE observations in SH

Motivation

Polar Mesosphere Summer Echoes at 65°N and 62°S

Comparison of PMSE observations from different sites based on SNR is affected by

- system parameters: power, antenna gain, receiver bandwidth, ...
- experiment configurations: coherent integrations, code lengths, pulse width, ...

Volume reflectivity η

$$\eta_{radar}[m^{-1}] = \frac{P_r \cdot 128 \cdot \pi^2 \cdot 2 \cdot \ln(2) \cdot r^2}{P_t \cdot G_t \cdot G_r \cdot \lambda^2 \cdot e \cdot \Theta_{\frac{1}{2}}^2 \cdot c \cdot \tau}$$

$$\eta_{radar}[m^{-1}] = \sum_i \frac{\sigma_i}{1[m^{-3}]} = \frac{\sigma}{V}$$

$$P_t = \text{transmitted peak power [W]}$$

$$P_r = \text{received signal power [W]}$$

$$G_t = \text{gain of transmit antenna}$$

$$G_r = \text{gain of receive antenna}$$

$$\lambda = \text{radar wave length}$$

$$e = \text{efficiency}$$

$$\Theta_{1/2} = \text{half power half width of transmit antenna}$$

$$r = \text{range to volume center}$$

$$2 \ln(2) = \text{beam correction factor}$$

$$c = \text{speed of light}$$

$$\pi = \text{pulse width} \quad \Delta_z = \frac{c \cdot \tau}{2}$$

r C_{sys}

volume reflectivity η

 (Hocking and Röttger, RS, 1997)

- Sum of all backscatter cross sections σ_i per unit volume
- includes all system parameters !
- determination of other physical parameters from received signal power
 - Energy dissipations rates
- calibration is required

 η_{radar} –

Comparison of PMSE observations from 69°N and 69°S (Andenes 2004 – Davis 2004/2005)

Parameters	ALWIN 69°N; 16°E	Davis-VHF-Radar 69°S; 78°E					
Installation / upgrade	1998	2003	2005	2006			
Radar wavelength	5.6 m	5.5 m					
Peak power	36 kW	20 kW	36 kW	41 kW			
Gain of Tx antenna array	28.3 dBi	28.9 dBi					
Half-power beam width	6°	6°					
Gain of SA receiving antenna array	20.6 dBi	21.0 dBi					
Efficiency	0.6	0.5					
Effective pulse width	300 m	600 m 450 m					
\rightarrow system factor c_{sys}	2.1e-08	1.9e-08	1.4e-08	1.2e-08			
Experiment parameters							
Number of coherent integrations	32	116	104				
Number of code elements	16	1	8				
Receiver gain	101 dB	81 dB	81 dB				
Receiver bandwidth	500 kHz	368 kHz	280 kHz				
\rightarrow signal factor c_s	3.5e-19	1.5e-21	1.5e-20				

Comparison of PMSE observations from 69°N and 69°S distribution of PMSE volume reflectivity

International CAWSES Symposium, Kyoto, Japan, October, 23-27, 2007

Comparison of PMSE observations from 69°N and 69°S seasonal variation of PMSE occurrence for $\eta > 1.10^{-15} \text{ m}^{-1}$

International CAWSES Symposium, Kyoto, Japan, October, 23-27, 2007

Latteck et al., GRL, 2007

PMSE observations at 69°S in 2004/2005

Solar activity after observations of the GOES-satellite

increased X-ray radiation and high energetic particles on 17 and 20 Jan. 2005

International CAWSES Symposium, Kyoto, Japan, October, 23-27, 2007

PMWE/PMSE observations at 69°N and 69°S

Andenes (69N) - Davis (69°S)

First and last PMSE

Radar site	Year	First PMSE		Last PMSE	
		Date	day relative to solstice	Date	day relative to solstice
Andenes	2004	19 May	-33	30 Aug	70
Andenes	2005	13 May	-39	02 Sep	73
Andenes	2006	14 May	-38	29 Aug	69
mean Andenes	2004-2006	15 May	-37	28 Aug	70
Davis	2004/2005	23 Nov	-28	18 Feb	59
Davis	2005/2006	17 Nov	-34	19 Feb	60
Davis	2006/2007	19 Nov	-32	18 Feb	59
mean Davis	2003-2006	18 Nov	-33	18 Feb	59

➤ the PMSE season at Davis (SH) is shorter than at Andenes (NH)

mean temperatures and mean meridional winds

Comparison of PMSE observations from 69°N and 69°S mean seasonal and diurnal variation of PMSE occurrence for $\eta > 1.10^{-15} \text{ m}^{-1}$

PMSE height distribution

International CAWSES Symposium, Kyoto, Japan, October, 23-27, 2007

Summary

- The comparison of radar results based on signal-to-noise ratios is difficult
 - different system parameters, different experiment configurations
 - volume reflectivity
 - ➤ requires radar calibration
- PMSE observed at Davis (69°S) have
 - a weaker volume reflectivity (4 ·10⁻¹¹ m⁻¹) than PMSE observed at Andenes (69°N, 2 ·10⁻⁹ m⁻¹)
 - a less seasonal occurrence but more seasonal variation than comparable observations at Andenes (69°N)
 - a peak in height distribution at ~86 km (85 km at Andenes)
- The duration of the mean PMSE season at Davis is about 14 days shorter than at Andenes.
 - the shorter PMSE season observed at Davis is related to earlier change of the mesospheric circulation to winter conditions.

