Interhemisphärische Variation mesosphärischer Eisteilchen

<u>R. Latteck</u>, W. Singer, U. Berger Leibniz-Institut für Atmosphärenphysik, Kühlungsborn R.J. Morris, D.J. Murphy Australian Antarctic Division, Kingston, Tasmania, Australia D.A. Holdsworth Atmospheric Radar Systems, Thebarton, South Australia, Australia

Polare Mesosphärische Sommer Echos

Das ALOMAR Wind Radar Blick durch das Antennenfeld

VHF-Radarstationen auf der Nordhalbkugel

VHF-Radarstationen auf der Südhalbkugel

Kleinheubacher Tagung 2008, Miltenberg, 22. - 25. September 2008

Motivation

Vergleich polarer mesosphärische Sommerechos aus 65°N und 62°S

Vergleich der Ergebnisse verschiedener Stationen ist beeinflusst durch Unterschiede in

- Systemparametern: Sendeleistung, Antennengewinn, Empfangsfilterbreite, ...
- Experimentkonfigurationen: kohärente Integrationen, Kodelänge, Pulsbreite, ...

Volumenreflektivität η

$$\eta_{radar}[m^{-1}] = \frac{P_r \cdot 128 \cdot \pi^2 \cdot 2 \cdot \ln(2) \cdot r^2}{P_t \cdot G_t \cdot G_r \cdot \lambda^2 \cdot e \cdot \Theta_{\frac{1}{2}}^2 \cdot c \cdot \tau}$$
$$\eta_{radar}[m^{-1}] = \sum_i \frac{\sigma_i}{1[m^{-3}]} = \frac{\sigma}{V}$$

	=	gesendete Spitzenleistung [W]
	=	empfangene Signalleistung [W]
	=	Gewinn der Sendeantenne
	=	Gewinn der Empfangsantenne
	=	Radar-Wellenlänge
	=	Verlustfaktor
2	=	halbe Breite des Antennenstrahls
_	=	Entfernung zur Volumenmitte
n(2)	=	Strahlbreitenkorrekturfaktor
	=	Lichtgeschwindigkeit
		Dulabraita

= Pulsbreite

 $C_{sys} \cdot r^2$ $\eta_{radar} = (P_r)$

- Volumenreflektivität **η** (*Hocking and Röttger, RS, 1997*)
 - Summe alle Rückstreuquerschnitte σ_i pro Einheitsvolumen
 - berücksichtigt alleSystemparameter !
- Bestimmung weiterer physikalischer Parameter aus der absoluten Empfangsleistung
 - Energiedissipationsraten
- Kalibrierung erforderlich!

 $P_t \\ P_r \\ G_t \\ G_r$

λ

e

r 2 lr

 $\frac{c}{\tau}$

 Θ_L

Empfängerkalibrierung mit geeichter Rauschquelle

Empfängerkalibrierung mit Verzögerungsleitung

Polare Mesosphärische Sommer Echos

PMSE-Vergleich zwischen 69°N und 69°S

(Andenes – Davis)

TANKS	Radar	ALWIN	Dav
Wigo Wigo	Parameter	69°N; 16°E	
	Installation / Upgrade	1998	2003
07.90° E110'	Radarwellenlänge	5.6 m	
00 80° W, 10° Prime Meridian	Spitzensendeleistung	36 kW	20 kW
E 1017 / E 30° E 50°	Gewinn der Sendeantenne	28.3 dBi	
Andenes, Norway	Breite des Antennenstrahls	6°	
	Gewinn der SA- Empfangsantenne	20.6 dBi	
	Verlustfaktor	0.6	
	Effektive Pulsbreite	300 m	600 m
Antarctite-Circle	\rightarrow SA-Systemfaktor c_{sys}	2.1e-08	1.9e-08
Davis, Antarctica	Experimentparameter		
Prime vEarph B 60° a 60°	Kohärente Integrationen	32	116
W 10° B C0° B C0° C B C0°	Anzahl der Kodeelemente	16	1
W 70° (3)50° W 60° (3)50°	Empfängerverstärkung	101 dB	81 dB
Wites, Milles, Gill	Empfängerbandbreite	500 kHz	368 kHz
	\rightarrow Signalfaktor c _s	3.5e-19	1.5e-21

The second se

Davis-VHF-Radar 69°S; 78°E

2005

5.5 m

36 kW

28.9 dBi

6°

21.0 dBi

0.5

1.4e-08

450 m

104

8

81 dB

280 kHz

1.5e-20

2006

41 kW

1.2e-08

Andenes (69N) – Davis (69°S)

Verteilung der 2004 bzw. 2004/2005 gemessenen Volumenreflektivitäten

Andenes (69N) – Davis (69 $^{\circ}$ S)

Verteilung der gemessenen Volumenreflektivitäten

Andenes (69N) – Davis (69°S)

mittlere jahreszeitliche Variation der PMSE-Häufigkeiten für $\eta > 1.10^{-15} \text{ m}^{-1}$

Andenes (69N) – Davis (69°S) Vergleich der PMSE Höhenverteilung

Andenes (69N) – Davis (69°S)

aus MF-Radar- und Meteor-Radar-Messungen 180 69°N 160 ΓK 140 90 km 120-15 Meridionalwind / m/s → 5 69°N -5 -15 85 km 15 5 -5 69°S 86 km -15--40 -20 20 40 60 80 -60 0 Tag relativ zum Solstitium \rightarrow

Mittlere Temperaturen und Meridionalwinde in 69°N aus Meteor-Radar-Messungen

Modellierung des NH/SH-Temperaturunterschiedes der polaren Sommermesopause mit LIMA

Lübken und Berger, JASTP, 2007

LIMA-ICE Modellierung

Saisonale Variation von PMSE als Funktion der geographischen Breite

- PMSE-Häufigkeit steigt mit zunehmenden polaren Breiten in beiden Hemisphären an.
- PMSE sind in beiden Hemisphären
 - vom Pol bis ~75° ständig vorhanden
 - lösen sich in Richtung des Äquators bei etwa 50° N bzw. 60° S auf
- erklärt die geringen PMSE-Beobachtungen in 62°S (Balsley et al., GRL, 1995).

PMSE-Häufigkeiten aus Beobachtungen und LIMA-Modellierung Andenes (69°N,16°O; 2001) und Davis (69°S,78°O; 2004/2005)

- LIMA gibt die wesentlichen Eigenschaften der saisonalen Verteilung der PMSE-Häufigkeiten und die hemisphärischen Unterschiede, wie sie in den Beobachtungen gefunden wurden, wieder.
- Die PMSE-Saison im Modell beginnt allerdings etwas später als in den Beobachtungen.

- PMSE-Beobachtungen aus Davis (69°S) zeigen im Vergleich zu PMSE-Beobachtungen aus Andenes (69°N)
 - eine schwächere Volumenreflektivität
 - eine ähnliche Höhenverteilung, aber ein etwa 0,7km höher liegendes Maximum der Höhenverteilung
 - eine geringere jahreszeitliche Häufigkeitsrate verbunden mit einer größere jahreszeitliche Variabilität
 - eine um etwa 14 Tage kürzer PMSE-Saison
- Eisschichten treten häufiger in der Nordhemisphäre auf und sind ,stärker'
 - LIMA generiert und reproduziert die Grundzüge der interhemisphärischen Unterschiede von Eisschichten sehr gut
 - Temperatur ist der Hauptgrund für Unterschiede im NH/SH-Vergleich
 - Differenz steigt mit abnehmender geografischer Breite

