Interhemisphärische Variation mesosphärischer Eisteilchen

R. Latteck, W. Singer, U. Berger Leibniz-Institut für Atmosphärenphysik, Kühlungsborn

R.J. Morris, D.J. Murphy

Australian Antarctic Division, Kingston, Tasmania, Australia

D.A. Holdsworth

Atmospheric Radar Systems, Thebarton, South Australia, Australia

Polare Mesosphärische Sommer Echos

Das ALOMAR Wind Radar

Blick durch das Antennenfeld

VHF-Radarstationen auf der Nordhalbkugel

VHF-Radarstationen auf der Südhalbkugel

Motivation

Vergleich polarer mesosphärische Sommerechos aus 65°N und 62°S

Vergleich der Ergebnisse verschiedener Stationen ist beeinflusst durch Unterschiede in

- Systemparametern: Sendeleistung, Antennengewinn, Empfangsfilterbreite, ...
- Experimentkonfigurationen: kohärente Integrationen, Kodelänge, Pulsbreite, ...

Volumenreflektivität η

$$\eta_{radar}[m^{-1}] = \frac{P_r \cdot 128 \cdot \pi^2 \cdot 2 \cdot \ln(2) \cdot r^2}{P_t \cdot G_t \cdot G_r \cdot \lambda^2 \cdot e \cdot \Theta_{\frac{1}{2}}^2 \cdot c \cdot \tau}$$

$$\eta_{radar}[m^{-1}] = \sum_{i} \frac{\sigma_i}{1[m^{-3}]} = \frac{\sigma}{V}$$

 P_t = gesendete Spitzenleistung [W]

 P_r = empfangene Signalleistung [W]

 G_{\star} = Gewinn der Sendeantenne

 G_r = Gewinn der Empfangsantenne

 λ = Radar-Wellenlänge

e = Verlustfaktor

 $\Theta_{1/2}$ = halbe Breite des Antennenstrahls

r = Entfernung zur Volumenmitte

2 ln(2) = Strahlbreitenkorrekturfaktor

c = Lichtgeschwindigkeit

 τ = Pulsbreite

$$\eta_{radar} = P_r \cdot c_{sys} \cdot r^2$$

- Volumenreflektivität η (Hocking and Röttger, RS, 1997)
 - Summe alle Rückstreuquerschnitte σ_i pro Einheitsvolumen
 - berücksichtigt alleSystemparameter!
- Bestimmung weiterer
 physikalischer Parameter aus
 der absoluten Empfangs leistung
 - Energiedissipationsraten
- Kalibrierung erforderlich!

Empfängerkalibrierung mit geeichter Rauschquelle

Empfängerkalibrierung mit Verzögerungsleitung

Kalibrierungsfaktor für kohärente Signale

$$c_s = \frac{P_s[W]}{P_s[tpu]}$$

$$c_s = \frac{c_n}{M \cdot N}$$

M = Anzahl der kohärenten Integrationen

N = Anzahl der Kodeelemente

Polare Mesosphärische Sommer Echos

PMSE-Vergleich zwischen 69°N und 69°S

(Andenes – Davis)

Radar		Davis-VHF-Radar		
Parameter	69°N; 16°E	69°S; 78°E		
Installation / Upgrade	1998	2003	2005	2006
Radarwellenlänge	5.6 m	5.5 m		
Spitzensendeleistung	36 kW	20 kW	36 kW	41 kW
Gewinn der Sendeantenne	28.3 dBi	28.9 dBi		
Breite des Antennenstrahls	6°	6°		
Gewinn der SA- Empfangsantenne	20.6 dBi	21.0 dBi		
Verlustfaktor	0.6	0.5		
Effektive Pulsbreite	300 m	600 m 450 m		
\rightarrow SA-Systemfaktor c_{sys}	2.1e-08	1.9e-08	1.4e-08	1.2e-08
Experimentparameter				
Kohärente Integrationen	32	116	104	
Anzahl der Kodeelemente	16	1	8	
Empfängerverstärkung	101 dB	81 dB	81 dB	
Empfängerbandbreite	500 kHz	368 kHz	280 kHz	
\rightarrow Signalfaktor c_s	3.5e-19	1.5e-21	1.5e-20	

Verteilung der 2004 bzw. 2004/2005 gemessenen Volumenreflektivitäten

Verteilung der gemessenen Volumenreflektivitäten

mittlere jahreszeitliche Variation der PMSE-Häufigkeiten für $\eta > 1.10^{-15}$ m⁻¹

Andenes (69N) – Davis (69°S) Vergleich der PMSE Höhenverteilung

Mittlere Temperaturen und Meridionalwinde in 69°N

aus MF-Radar- und Meteor-Radar-Messungen

Mittlere Temperaturen und Meridionalwinde in 69°N

aus Meteor-Radar-Messungen

Modellierung des NH/SH-Temperaturunterschiedes der polaren Sommermesopause mit LIMA

 3-D globales Zirkulationsmodell zur Beschreibung der Atmosphäre im Bereich von 0 bis 150km

• Beinhaltet physikalische und chemische Prozesse (Dynamik, Transport, Chemie, Strahlung)

- Im Höhenbereich von Eisschichten
 (80 90 km) ist die SH um 1-10K wärmer.
- Im Bereich der Mesopause ist dieser Unterschied am größten.

SH-NH-Temperaturdifferenz steigt mit abnehmender geographischer Breite

Lübken und Berger, JASTP, 2007

LIMA-ICE Modellierung

Saisonale Variation von PMSE als Funktion der geographischen Breite

- PMSE-Häufigkeit steigt mit zunehmenden polaren Breiten in beiden Hemisphären an.
- PMSE sind in beiden Hemisphären
 - vom Pol bis ~75° ständig vorhanden
 - lösen sich in Richtung des Äquators bei etwa 50° N bzw. 60° S auf
- rklärt die geringen PMSE-Beobachtungen in 62°S (Balsley et al., GRL, 1995).

PMSE-Häufigkeiten aus Beobachtungen und LIMA-Modellierung

Andenes (69°N,16°O; 2001) und Davis (69°S,78°O; 2004/2005)

- LIMA gibt die wesentlichen Eigenschaften der saisonalen Verteilung der PMSE-Häufigkeiten und die hemisphärischen Unterschiede, wie sie in den Beobachtungen gefunden wurden, wieder.
- Die PMSE-Saison im Modell beginnt allerdings etwas später als in den Beobachtungen.

Zusammenfassung

- PMSE-Beobachtungen aus Davis (69°S) zeigen im Vergleich zu PMSE-Beobachtungen aus Andenes (69°N)
 - eine schwächere Volumenreflektivität
 - eine ähnliche Höhenverteilung, aber ein etwa 0,7km höher liegendes Maximum der Höhenverteilung
 - eine geringere jahreszeitliche Häufigkeitsrate verbunden mit einer größere jahreszeitliche Variabilität
 - eine um etwa 14 Tage kürzer PMSE-Saison
- Eisschichten treten häufiger in der Nordhemisphäre auf und sind 'stärker'
 - LIMA generiert und reproduziert die Grundzüge der interhemisphärischen Unterschiede von Eisschichten sehr gut
 - Temperatur ist der Hauptgrund für Unterschiede im NH/SH-Vergleich
 - Differenz steigt mit abnehmender geografischer Breite

