Response of the upper mesosphere on solar proton events after radar observations at high, middle and low latitudes

Ralph Latteck, Werner Singer, Peter Hoffmann

Leibniz Institute of Atmospheric Physics, Kühlungsborn, Germany
• Mesospheric winds, temperatures, and electron densities from radar observations
 – SKiYMET meteor radars
 – MF radars
• Mesospheric winds, turbulence, temperature and electron density during solar proton events
 – October 2003,
 – January 2005
• Summary
Mesospheric winds, Temperatures, and Electron densities from observations obtained by

METEOR RADARS
MF RADARS
3-MHz Doppler radars and SKiYMET meteor radars (since 1999/2000)
Meteor radars with identical hardware, meteor detection and data analysis

<table>
<thead>
<tr>
<th>Station</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Radar</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andenes</td>
<td>69.3°N</td>
<td>16.0°E</td>
<td>MF 3.17 MHz</td>
<td>u, v, turb, N_e</td>
</tr>
<tr>
<td>Andenes</td>
<td>69.3°N</td>
<td>16.0°E</td>
<td>meteor</td>
<td>T, u, v</td>
</tr>
<tr>
<td>Juliusruh</td>
<td>54.6°N</td>
<td>13.4°E</td>
<td>MF 3.17 MHz</td>
<td>u, v</td>
</tr>
<tr>
<td>Juliusruh</td>
<td>54.6°N</td>
<td>13.4°E</td>
<td>meteor</td>
<td>T, u, v</td>
</tr>
<tr>
<td>Kühlungsborn</td>
<td>54.1°N</td>
<td>11.8°N</td>
<td>meteor</td>
<td>T, u, v</td>
</tr>
<tr>
<td>Koto Tabang</td>
<td>0.2°S</td>
<td>110.3°E</td>
<td>meteor</td>
<td>T, u, v</td>
</tr>
<tr>
<td>Learmonth</td>
<td>22.2°S</td>
<td>114.1°E</td>
<td>meteor</td>
<td>T, u, v</td>
</tr>
<tr>
<td>Cachoeira Paulista</td>
<td>22.7°S</td>
<td>315.0°E</td>
<td>meteor</td>
<td>T, u, v</td>
</tr>
</tbody>
</table>
SKiYMET Meteor Radar
all sky interferometer meteor radar

Basics
• meteor detection: radar beam ⊥ meteor trail
• Underdense meteors:
 plasma frequency of the trail < radar frequency

Parameters
• Frequency 32.55 MHz
• Peak power 12 kW
• Pulse width 13 μs
• Pulse rep. Frequency 2144 Hz
• Range resolution 2 km
• Angular resolution 2°
• Height range 80 – 100 km
• Radio magnitude +8.6

• Transmitting antenna
 3-element crossed Yagi antenna
• Receiving antenna
 5-channel interferometer of 2-element Yagi antennas
 ➢ omni-directional sensitivity
Mean height distribution of meteors at high and low latitudes in winter and summer

32.55 MHz

Andenes 69°N 2005
01-15 January: h_peak=89.6 km, width=12.3 km
01-15 June: h_peak=89.3 km, width=12.5 km

35.24 MHz

Cachoeira Paulista 22°S 2005
01-15 January: h_peak=90.1 km, width=12.8 km
01-15 June: h_peak=89.3 km, width=12.5 km
Seasonal variation of the peak height of the meteor layer

- ~3 km annual height variation,
- maxima around equinoxes

- ~2 km annual height variation
- maximum in December-January
Data analysis

• Mean winds and tides
 – (24-h, 12-h, 8-h periods)
 – from harmonic fits of 4-d / 10-d / 60-d composite days
 – height coverage: 80 - 100 km

• Daily mean temperatures from meteor decay times
 – temperature gradient method (meteors ≥ 1000 per day)
 – temperatures refer to the peak altitude of the meteor layer
 (~90 km, average over the layer width of ~12 km)
Estimation of wind, turbulence and electron density at 3 MHz
The 3-MHz Doppler radar at Saura on Andøya island (69°N)

- narrow beam transmitting/receiving antenna
 - Mills Cross
 - 29 crossed dipoles
 - arm length of 1030m
 - HPFW = 6.6°
- high flexibility in beam forming and pointing
- total peak power of 116 kW
- left/right circular polarisation, changing of polarisation from pulse to pulse
- height range: 55 – 90 km
- best range resolution of 1 km
Mean zonal winds above Andenes after observations by meteor radar (82-98km) and MF radar (70-82km)

The combination of co-located meteor winds and MF radar winds (e.g. Andenes, Juliusruh) extends the height range down to ~70 km
Mesospheric winds, turbulence and temperature during solar proton events in

OCTOBER 2003
Solar proton events in October/November 2003

GOES Space Environment Monitor

- GOES-12 Solar X-Rays (5-Min Avgs)
- GOES-12 Electrons and GOES-11 Protons & α-Particles (5-Min Avgs)
- GOES-12 Magnetic Field (5-Min Avgs, 75.4°W)
- GOES-12 Magnetic Field (5-Min Avgs, 75.3°W)
- McMurdo Neutron Monitor (preliminary, hourly, % of monthly mean)

X-ray fluxes and energetic particle fluxes:
- **E1** electrons > 2 MeV, **I1** protons > 1 MeV: trapped outer zone particles;
- **I2**...**I7** protons > 5...100 MeV: originated from the sun

DPG Frühjahrstagung, Greifswald, 30. März - 02. April 2009
High energetic solar proton fluxes, neutral temperatures, geomagnetic K-index, and ionization at ~69°N in October/November 2003
Neutral temperatures from meteor decay times

- Decreased T during the October-2003 SPE
- Decrease of peak altitude of the meteor layer too
Peak altitudes of the meteor layer and temperatures during SPE and non-SPE

<table>
<thead>
<tr>
<th>Year</th>
<th>Lat.</th>
<th>SPE Date</th>
<th>h_peak</th>
<th>T</th>
<th>non-SPE Date</th>
<th>h_peak</th>
<th>T</th>
<th>Δh</th>
<th>ΔT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>54N</td>
<td>14-16 July</td>
<td>88.94</td>
<td>165.3</td>
<td>24-25 July</td>
<td>89.00</td>
<td>171.5</td>
<td>-0.06</td>
<td>-6.2</td>
</tr>
<tr>
<td>2001</td>
<td>69N</td>
<td>5-6 Nov</td>
<td>90.95</td>
<td>203.6</td>
<td>14-15 Nov</td>
<td>91.55</td>
<td>205.4</td>
<td>-0.60</td>
<td>-1.8</td>
</tr>
<tr>
<td>2003</td>
<td>69N</td>
<td>28-29 Oct</td>
<td>91.34</td>
<td>195.7</td>
<td>20-21 Oct</td>
<td>91.72</td>
<td>203.9</td>
<td>-0.38</td>
<td>-8.2</td>
</tr>
<tr>
<td>2003</td>
<td>69N</td>
<td>3-7 Nov</td>
<td>91.14</td>
<td>215.6</td>
<td>15-18 Nov</td>
<td>91.74</td>
<td>219.4</td>
<td>-0.60</td>
<td>-3.8</td>
</tr>
<tr>
<td>2005</td>
<td>69N</td>
<td>17-18 Jan</td>
<td>89.02</td>
<td>194.1</td>
<td>9-10 Jan</td>
<td>89.38</td>
<td>200.9</td>
<td>-0.36</td>
<td>-6.8</td>
</tr>
<tr>
<td>2006</td>
<td>54N</td>
<td>7-9 Dec</td>
<td>87.73</td>
<td>193.9</td>
<td>1-3 Dec</td>
<td>88.38</td>
<td>197.7</td>
<td>-0.65</td>
<td>-3.8</td>
</tr>
</tbody>
</table>

SPE: lowering of peak altitude by ~0.4 km, decrease of temperature by ~ 5K
Mean meridional/zonal winds after meteor/MF radar observations between 10-Oct and 10-Nov

- reversal of meridional winds around SPE
- reduced zonal winds above ~80 km
- (also observed with model simulations by Krivolutsky et al., JASR, 2000
- increased zonal winds below ~80 km during SPE
Turbulent energy dissipation rates and variances of horizontal wind disturbances

Mean daily energy dissipation rates are enhanced by a factor of two during the solar proton event

- **SPE**: 28, 29, 30 Oct
- **Non-SPE**: 22 Oct.; 9, 12, 13 Nov.

- changes of the background wind down to 55 km

Variance of horizontal winds (m2/s2) for periods 3 - 9 h from Meteor- and MF radar observations at Andenes.
Variation of D-region electron density with solar activity / solar proton events in

JANUARY 2005
Solar proton events in January 2005
Solar proton fluxes and x-ray fluxes on January 17, 2005 before, at the peak, and after the solar activity event.
Electron densities during SPE on January 17, 2005
before, at the peak, and after the solar radiation storm

enhanced electron densities on January 18 due to enhanced proton fluxes
Electron densities by radar and insitu radio wave propagation measurements before, during, and after a geomagnetic storm on 18 January 2005
Electron densities during solar proton events (SPE) enhanced solar and geomagnetic activity on 18 January 2005
Summary

• Neutral temperatures at ~90 km were modified during strong SPEs especially at high and middle latitudes
 – Oktober 2003 and January 2005
 • relative decrease by about 2 -10 K, lowering of the meteor peak height
 • absolute values are uncertain by about +/- ~5-10 K (T-gradient)

• Background wind / turbulence were changed between 85 and 55 km during strong SPE
 – changes in zonal wind and temperature

• SPEs are accompanied mostly with a severe geomagnetic disturbance
 – causing additional precipitation of energetic particles
 – electron densities are enhanced by one order of magnitude (or more) below 85 km during strong SPE down to altitudes of 55 km