Two decades of long-term observations of polar mesospheric echoes at 69°N

Ralph Latteck, Toralf Renkwitz and Jorge L. Chau

Leibniz Institute of Atmospheric Physics, Schloss-Str. 6, 18225 Kühlungsborn, Germany

Polar Mesosphere Summer Echoes

Polar Mesosphere Summer Echoes

Polar Mesosphere Winter Echoes PMWE after SPE in March 2012

Radar experiments on Andøya island (69°N)

VHF radar site on Andøya Middle Atmosphere Alomar Radar System

VHF radar site on Andøya VHF radars operated at Andøya from 1994 until today

Radar	SOUSY	ALWIN	ALWIN64	MAARSY	MAARSY
Parameters	1994 – 1997	1999 – 2008	2009	2010	2011 – today
Peak power P _t	150 kW	36 kW	36 kW	250 kW	736 kW
Number of transmitting antennas	148	144	6	147	433
Transmitting antenna gain G_t	29.0 dBi	28.3 dBi	15.6 dBi	29.0 dBi	33.5 dBi
Number of receiving antennas	148	24	64	7	7
Receiving antenna gain G _r	29.0 dBi	20.6 dBi	20.1 dBi	15.5 dBi	15.5 dBi
Two way beam width (HPHW)	2.3°	2.12°	4.41°	2.95°	1.79°
System losses <i>e</i>	0.8	0.58	0.58	0.54	0.54
Effective pulse width τ	2 μs	2 µs	2 µs	1.4 μs	1.4 µs
→ system factor c _{sys}	7.6e-10	2.5e-08	2.3e-07	1.3e-08	4.3e-09
Receiving path calibration factor c_s		3.5e-19	1.1e-21	9.9e-21	6.2e-21

$$\eta_{radar}[m^{-1}] = \frac{P_r \cdot 128 \cdot \pi^2 \cdot 2 \cdot \ln(2) \cdot r^2}{P_t \cdot G_t \cdot G_r \cdot \lambda^2 \cdot e \cdot \Theta_{\frac{1}{2}}^2 \cdot c \cdot \tau}$$

Kleinheubacher Tagung 2021, 26. – 28. September 2021, Miltenberg

Volume reflectivity distributions of Polar Mesopheric Echoes observerd at Andøya from 1999 – 2019

Volume reflectivity distributions of Polar Mesopheric Echoes mean monthly values obtained by MAARSY (2011–2019)

Volume reflectivity of Polar Mesopheric Echoes obtained by MAARSY on 19 May 2020

Seasonal mean values of the occurrence of mesospheric echoes obtained by ALWIN (1999-2008) and MAARSY (2011–2019)

Seasonal mean values of the occurrence of mesospheric echoes obtained by ALWIN (1999-2008) and MAARSY (2011–2019)

Seasonal mean values of the occurrence of mesospheric echoes obtained by ALWIN (1999-2008) and MAARSY (2011–2019)

Long-term variation of PMSE occurrence rates Seasonal variation of occurrence rates (1999 – 2020)

Previous studies

- 1994 2001: Bremer et al., 2003
- 1999 2005: Bremer et al., 2006
- 1999 2008: Bremer et al., 2009
- 1994 2012: Latteck and Bremer, 2013
- 1994 2016: Latteck and Bremer, 2017

Kleinheubacher Tagung 2021, 26. – 28. September 2021, Miltenberg

01/09

01/08

Long-term variation of PMSE occurrence rates

first and last detected PMSE in each season and duration τ of the PMSE season

Seasonal mean values of PMSE occurrence from 25 years of observation (1994 – 2020)

Dependence of the PMSE occurrence rates OR'_-15 on the solar Lyman α radiation and on geomagnetic Ap index

- slightly positive correlation
- r=0.16
- small dependency of PMSE occurrence on solar activity

- more pronounced correlation
- r=0.45
- direct influence of precipitating fluxes of high energetic particles to the increase of Ne
- increase of PMSE

Seasonal mean values of PMSE occurrence from 21 years of observation

Long-term variation of PMSE occurrence rates (1994 – 2020) for volume reflectivity $\eta > 1.10^{-15} \text{ m}^{-1}$

Long-term variation of PMSE occurrence rates (1994 – 2020) for volume reflectivity $\eta > 1.10^{-15} \text{ m}^{-1}$

Summary and conclusions

- Polar Mesospheric Echoes from 21 years of continuous VHF radar observations at Andøya (69°N) have been investigated for seasonal and diurnal variation and for signal strength:
 - The maximum signal strengths of PMSE and lower-altitude mesospheric echoes **differ by three orders of magnitude** with PMSE measured with maximum values up to $\eta_{max} = 2 \cdot 10^{-09} \text{m}^{-1}$ and lower-altitude mesospheric echoes with signal strengths up to $\eta_{max} = 4 \cdot 10^{-12} \text{m}^{-1}$
 - Lower-altitude mesospheric echoes occur mostly in an altitude range between 50 and 85 km and with a maximum value of the altitude distribution at 68.7 km during daytime and a peak altitude at 77.1 km during night time.
 - Lower-altitude mesospheric echoes have been observed with MAARSY all year round with a mean seasonal occurrence frequency of about 14%, but with differences in the monthly frequency rates from minimum values of 2% in July/August and maxima of 22% and 26% in the months March/April and October.
 - The mean PMSE season based on 21 years of ALWIN and MAARSY detections with signal strengths η ≥ 10⁻¹⁷m⁻¹ starts on **14 May, lasts 105 days and ends on 26 August** of that year. The average occurrence of PMSE in **June/July is 95%.** The mean diurnal occurrence of PMSE is characterized by an area of high abundance between 83 and 87 km and 22:00 LT and 18:00 LT, with a very pronounced maximum between 11:00 and 15:00 LT, **peaking at about 13:00 LT and 85 km** altitude and a strong minimum between 18:00 and 22:00 LT.
- PMSE occurrence rates from 1994 2020 were investigated for solar and geomagnetic control and for possible long-term changes:
 - PMSE occurrence at Andøya (69°N) is positively correlated with the solar Lyman a radiation (r = 0.16) and the geomagnetic activity (r = 0.45)
 - PMSE-trends based on 27 years of radar observations at Andøya are **positive** of about 0.3%/yr.
 - PMSE trend may be caused by a negative temperature trend and probably not by an increasing water vapour trend.

Thank you

