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Abstract: The present study proposes new parameterizations of momentum diffusion, frictional
heating (dissipation), and gravity wave-mean flow interaction for global modeling of the atmo-
spheric general circulation. Particular emphasis is spent on the direct thermodynamic effects
associated with gravity wave breakdown such as energy deposition and the dissipation of wave
kinetic energy. The new formulations are specified in order to meet the following axiomatic
constraints: the stress tensor is symmetric; the energy conservation law is fulfilled for arbitrary
fluid volumes of the resolved flow; the frictional heating is positive definite; and surface friction
does not affect the energy budget of the atmosphere.

The new friction and dissipation forms are tested against the corresponding conventional
methods, using an idealized but nevertheless considerably realistic general circulation model for
the boreal winter climate. It is found that the neglect of frictional heating, which is common
to climate and weather forecast models, leads to an artificial net thermal forcing of about 2
Wm 2. With the new model definition this shortcoming is reduced by two orders of magnitude.
Moreover, the long-term global mean of the simulated frictional heating yields approximately 1.9
Wm™2. This value is in agreement with the residuum in the conventional case, as well as with

previous estimates of Oort and Lorenz for the net dissipation owing to synoptic and planetary
waves.
The well-known analysis of filtering out turbulent motions is extended for gravity waves. This

leads to a new perspective of the planetary-scale heat budget of the upper mesosphere/lower
thermosphere. It is shown that the dissipation of gravity wave kinetic energy, the local adiabatic
conversion of mean enthalpy into gravity wave kinetic energy, and the wave entropy flux cannot
be neglected. A corresponding gravity wave parameterization based on Lindzen’s saturation
theory is proposed which allows to compute these terms in addition to the conventional terms
like momentum flux, pressure flux, and diffusion coefficient. An upper bound of 2 is derived
for the effective Prandtl number that scales the combined entropy flux owing to turbulence
and gravity waves. Corresponding model simulations predict dissipation rates up to 8 Kd~!
in summer, once the tropospheric gravity wave source is adjusted to drive a realistic summer-
to-winter-pole residual circulation in the upper mesosphere. It is found that the dissipation is
overcompensated by the adiabatic conversion term such that the residuum of both cools the
upper mesosphere/lower thermosphere.
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Chapter 1

Introduction

The dynamics of large-scale atmospheric flow are inevitably linked to small-scale turbulent
motions. The general reason for this linkage is that atmospheric waves transfer kinetic
energy to smaller scales. The downscaling of kinetic energy is maintained by the pressure
gradient force at large scales and turbulent friction at small scales. However, in numerical
models of the atmospheric circulation we cannot simulate all relevant small-scale motions
explicitly by application of elementary hydrodynamics. Rather, depending on the avail-
able numerical resolution, we have to use more or less approximate model equations where
the relevant subscale motions are represented as functions of the resolved flow by some
kind of parameterization.

The idea pursued in the present study is that any parameterization of subscale motions
should satisfy certain hydrodynamic constraints. Among these, the energy conservation
constraint applied to the resolved flow is evidently of particular importance. Strictly
speaking, for any given subscale process the energy constraint ultimately determines the
thermodynamic effects in terms of the momentum flux tensor and the sensible heat flux.
This idea will be applied to two specific problems of dynamic meteorology: first, the
role of turbulent frictional heating in the global energy budget of the general circulation
of the troposphere and, second, the local heat budget of the upper mesosphere/lower
thermosphere (height region between about 70 and 105 km, hereafter MLT). At first sight
both problems appear quite distinct. However, the dynamics of the MLT is controlled
from below, namely by the breakdown of internal gravity waves (hereafter IGWs) which
are generated in the troposphere and lower stratosphere. Furthermore, the breakdown
of IGWs is not conceivable without the action of small-scale turbulence (Lindzen, 1981).
Therefore, a suitable representation of turbulent friction and frictional heating from the
planetary boundary layer up to the mesopause appears worthwhile for global modeling
of the atmospheric circulation. To set the basis for the more complicated problem of

nonconservative gravity wave propagation, we shall first deal with the representation of



turbulent friction and frictional heating.

In the following sections we discuss the importance of small-scale turbulence and inter-
nal gravity waves for the different atmospheric layers. Afterwards, the specific problems
of existing methods to represent these subscale motions in atmospheric circulation models

are considered, and the goals of this study are outlined.

1.1 Role of turbulent dissipation in the general cir-

culation of the troposphere

The energetics of the general circulation of the troposphere is known as the Lorenz energy
cycle (e.g., Oort, 1964; Lorenz, 1967; James, 1994, section 5.3). It can be described as
follows. Available potential energy (Lorenz, 1955) is generated by differential diabatic
heating owing to radiation, latent heating, and surface sensible heat flux. On the cli-
matological time scale, this generation is balanced by adiabatic conversion of available
potential into kinetic energy due to the action of baroclinic waves and Rossby waves. The
horizontal scales of these wave systems reach from 500 km for synoptic baroclinic waves
to more than 10000 km for planetary Rossby waves. In turn, kinetic energy is removed
from the flow by turbulent friction, and it is ultimately converted into heat by frictional
heating (other equivalent terms are dissipation, dissipative heating, or frictional dissipa-
tion). Existing estimates based on observational data yield a value of about 2 Wm™2
for the net generation of large-scale available potential energy (Oort, 1964). In the long-
term average, this generation must be balanced by the subsequent conversion processes.
Therefore, the dissipation owing to synoptic and planetary waves is on average about 2
Wm~2. This value means that an amount of kinetic energy equivalent to that typically
contained in the entire atmosphere (~ 1.6 x 10® Jm~?) is dissipated within about 9 days
(e.g., Pichler, 1986, chapter 9).

Differential diabatic heating decreases the entropy of the atmosphere. This decrease
must be balanced by irreversible processes such as heat conduction and frictional heating.
The latter processes are therefore essential to the entropy budget of the atmosphere. Also
the energy budget depends crucially on the energy conversion processes associated with
turbulent friction. On the climatological global scale, the net thermal forcing — that
is, the sum of diabatic heating owing to radiation, condensation, and surface sensible
heat flux — must be zero. Therefore, the net diabatic heating of the atmosphere is due to
frictional heating, and this heating is positive (Lorenz, 1967, chapter V). Consequently, an
atmospheric circulation model without this heating, but with realistic dynamics otherwise,
requires an artificial net thermal forcing of about 2 Wm ™2 by definition. Such a forcing
is of the same order of magnitude as the net radiative forcing associated with enhanced



greenhouse gas concentrations (IPCC, 1994).

These arguments are simplified by presuming that there is no additional conversion
of available potential energy into kinetic energy at mesoscales (horizontal scale between
about 5 and 500 km). However, it has been noted in several studies that this is not
the case. The dissipation of kinetic energy generated by mesoscale convective circulation
systems may indeed be important in the global energy and entropy budgets (Renno and
Ingersol, 1996; Pauluis and Held, 2002). Moreover, frictional heating may substantially
affect the dynamics of tropical cyclones (Bister and Emanuel, 1998). Direct numerical
simulations of deep convection also reveal the possibility of an inverse cascade of turbulent
kinetic energy in the mesoscales (Vallis et al., 1997). Thus the value of 2 Wm ™ represents
a lower bound only for the net dissipation in the atmosphere.

1.2 Role of gravity waves and turbulent dissipation in

the general circulation of the middle atmosphere

We now consider the heat budget of the middle atmosphere (height region between about
15 and 100 km) with particular emphasis on the energetics associated with the break-
down of internal gravity waves (IGWs). This represents another example for the mutual
dependence of atmospheric waves and small-scale turbulence, and, in particular, for the
subscale generation of kinetic energy by adiabatic conversion.

The transformed Eulerian mean equations (e.g., Andrews et al., 1987, chapter 3) pro-
vide a suitable picture for the zonally averaged circulation of the middle atmosphere.
In this framework, the waves drive a mean meridional circulation, the so-called residual
circulation (see Figs. 8d and 20d). The wave driving is defined by the quasi-geostrophic
balance between the Coriolis force associated with the residual meridional wind and the
mean zonal drag generated by wave-mean flow interactions. The latter is known as the
Eliassen-Palm flux divergence. To a first approximation, the residual circulation is ther-
mally balanced by radiative heating/cooling.! It describes approximately the averaged
trajectories of air parcels, whereas the corresponding Eulerian mean meridional circula-
tion (see Figs. 8¢ and 20c) describes the averaged mass flux. Out of the deep tropics,
no residual circulation can exist without an appropriate zonal wave drag (Holton et al.,
1995; Becker and Schmitz, 1999).

In the stratosphere (height region between about 15 and 50 km) the residual circu-
lation is primarily driven by planetary Rossby waves (e.g., Rosenlof and Holton, 1993).
These waves are generated in the troposphere by the major mountain ranges and land-sea

'In the upper mesosphere, also chemical heating rates become important.



heating contrasts. Since the Rossby wave generation is particularly strong in the boreal
winter hemisphere, there exists a pronounced north-south asymmetry with regard to the
extratropical winter climate of the stratosphere (e.g., Yulaeva et al., 1994). In particu-
lar, the stratospheric polar night jet is much stronger, colder, and more stable in austral
winter than in boreal winter. Also tropical upwelling is considered to be induced by ex-
tratropical planetary waves (Becker and Schmitz, 1999). Almost no residual circulation
exists in the summer stratosphere since prevailing easterlies suppress the propagation of
quasi-stationary Rossby waves.

In the mesosphere, and particularly in the MLT, the wave drag due to planetary waves
diminishes, and IGWs drive a strong summer-to-winter-pole residual circulation. IGWs
are generated in the troposphere, for instance by convection or flow over topography, and
around the tropopause level by shear instability of the jet streams. Propagating upward
into the mesosphere, IGWs become statically unstable mainly as a result of decreasing
density.? In the theory of Lindzen (1981) it is assumed that, above this level, turbulent
diffusion sets in such as to keep the wave at marginal static instability until a critical level is
encountered. By this mechanism, known as gravity wave saturation, the nonconservative
propagation of IGWs is tied up with the accompanying small-scale turbulence.

The adiabatic cooling and heating rates associated with the IGW-driven upper branch
of the residual circulation are strong enough to account for a reversal of the summer-to-
winter-pole temperature gradient. This is the usual explanation for the peculiar thermal
structure of the MLT. Indeed, the high-latitude summer mesopause is the coldest place of
the terrestrial atmosphere with observed temperatures as low as ~ 130 K (e.g., Liibken
et al., 1999), which is about 100 degrees below the radiatively determined state (see for
instance Fig. 20a). However, the dynamics of the MLT is complicated by several other
processes. First, the breakdown of atmospheric tides accounts for wave-mean flow inter-
actions at low latitudes. Second, planetary wave activity in the underlying atmospheric
layers can efficiently modulate the propagation and breakdown of IGWs on both the in-
traseasonal scale, for example during sudden warming events (Holton, 1983), and on the
climatological scale as well (Becker and Schmitz, 2003). Third, the direct heating rates
associated with IGW breakdown — such as energy deposition, turbulent dissipation, and
turbulent diffusion — are believed to give important contributions to the heat budget of
the MLT. While corresponding model estimates appear to be less certain, it is important
to mention state-of-the-art rocket-borne in-situ measurements of Liibken (1992; 1997a,b).
These experiments indicate that in the summer MLT the local frictional heating amounts

on average to 10-20 Kd~=!. Such values are comparable to the radiative heating. If they

2Also the dependence of the vertical wave number on the mean wind controls the static stability of
IGWs.



are in fact representative, our present understanding of the heat budget of the MLT needs
to be revised.

1.3 Problems with existing parameterizations of tur-

bulent friction and gravity wave breaking

Given the aforementioned importance of turbulent friction and dissipation, it appears
necessary that general circulation models of the atmosphere account for these processes
in a physically consistent manner. However, this is not the case yet as outlined below.

In the troposphere, the large-scale adiabatic conversion of the available potential en-
ergy into kinetic energy is concentrated at scales of about 3000-6000 km. Due to the
dynamics of planetary and synoptic waves, kinetic energy is transferred to larger scales
while enstrophy and an additional amount of kinetic energy are transferred to smaller
scales (e.g., Salmon, 1998, chapter 4). Of course, the upscaling of kinetic energy in the
planetary regime is ultimately balanced by downscaling due to the action of turbulent fric-
tion in the boundary layer. On the other hand, the downscaling in the synoptic regime
is balanced by some turbulent friction that is independent from the vertical wind shear
(Pedlosky, 1987, section 4.14). Therefore, a parameterization of turbulent friction in the
free atmosphere must be scale-selective of the horizontal motion. In general circulation
models of the atmosphere (hereafter GCMs), this is achieved by empirically adding some
scale-selective damping terms to the equations of motion. An explicit horizontal momen-
tum diffusion, i.e. an even power of the horizontal Nabla operator applied to the horizontal
wind vector, is most common and works sufficiently well (Smagorinsky, 1963). Order and
magnitude of this scheme are adapted to the spatial resolution of a particular GCM in
order to suppress truncation errors and to achieve a realistic climatology. The effects of
different orders and magnitudes of horizontal momentum diffusion have been analysed
for instance by Barnes and Young (1992), Laursen and Eliassen (1989), or Alekseev et
al. (1996). It is, however, a first principle of fluid mechanics that friction must be for-
mulated as the divergence of a symmetric stress tensor. Otherwise the Eulerian law of
angular momentum conservation for finite fluid volumes is not fulfilled (e.g., Serrin, 1959,
section 7; Szabd, 1977, chapter IB; Lindzen, 1990, section 6.2). Since the Reynolds stress
tensor is symmetric by definition, the symmetry constraint applies to molecular friction
and turbulent friction as well. It has been noted in Becker (2001) that existing hori-
zontal momentum diffusion schemes are generally not derived from a symmetric stress
tensor. Particularly the conventional explicit diffusion corresponds to a nonsymmetric
stress tensor.

Another problem of conventional friction parameterizations is concerned with the laws



of thermodynamics. Friction changes the total energy of a finite fluid volume via the
boundary stress. To satisfy the energy conservation law, one must generally include the
frictional heating in the thermodynamic equation of motion (e.g., Serrin, 1959; Lindzen,
1990). It is furthermore evident that turbulent friction describes an irreversible process.
Hence, in addition to the symmetry of the stress tensor, we have to require that the
frictional heating must not be negative.

In present-day GCMs the frictional heating is usually ignored, presumably because,
in the troposphere, it is very small against other contributions to the heat budget such
as radiative or latent heating. On the other hand, the dissipation never averages out;
it accumulates both in space and time. As noted above, this heating is essential if a
precise energy budget is needed, for example in climate change simulations. Moreover,
the dissipation may become very strong in the mesosphere.

An attempt to include frictional heating in GCMs can be found in Hamilton (1996)
or Kiehl et al. (1996, Sections 3b and 4d). With this method no knowledge of the stress
tensor is required. Rather, one assumes that, locally, the rate of change of kinetic energy
due to friction enters the thermodynamic equation of motion with negative sign. This
assumption may be interpreted as the local counterpart of the fact that, in the global
mean, the frictional loss of kinetic energy balances the frictional heating (e.g., Pichler,
1986, chapter 9; Smagorinsky, 1993; section 4.1). However, assuming local equivalence
implies that there is no turbulent stress at all acting at the resolved scales. Also does the
local frictional heating rate have arbitrary sign. Therefore, the simple ansatz proposed
by Hamilton or Kiehl et al. is not consistent with the hydrodynamic formulation. This
notion contrasts with comments of Fiedler (2000) concerning the model description of the
NCAR community climate model.

As long as IGWs are negligible, the unresolved motion of an atmospheric circulation
model may approximately be parameterized by diffusion of momentum and heat, where
the particular turbulence model is hidden behind the definitions of the diffusion and sur-
face coefficients. This approach is appropriate in the troposphere and to some extent in
the stratosphere only. Indeed, IGWs become important even in the lower stratosphere
(e.g., Sausen et al., 1993), and they control the general circulation of the mesosphere.
These wave disturbances are nondiffusive, and, at present, they cannot be resolved rea-
sonably in GCMs, even not in very high resolution simulations (Koshyk and Hamilton,
2001). Hence, IGWs must be parameterized along with the turbulent diffusion. This rep-
resents a conceptional difficulty with regard to the direct heating rates owing to gravity
wave-mean flow interaction and turbulent diffusion.

Several concepts to parameterize these heating rates can be found in the literature.
For instance, Hines (1997,1999), Fritts and van Zandt (1993), Fritts and Werne (2000),



or Akmaev (2001) propose that the heating of the mean flow owing to wave-mean flow
interaction (hereafter the energy deposition) is ’available for dissipation’. Such an inter-
pretation is questionable since turbulent diffusion and convergence of the vertical wave
fluxes are distinct processes associated with IGWs breaking in the middle atmosphere
(Lindzen, 1981 and 1984). Even though momentum and energy deposition occur as a
consequence of a diabatic process — for example damping of the wave amplitudes by tur-
bulent diffusion as in saturation theory —, they represent wave-mean flow interactions and
must be regarded as dynamic processes.?> The turbulent dissipation owing to gravity wave
breakdown should rather be identified as the frictional heating associated with turbulent
momentum diffusion (Becker and Schmitz, 2002), and its relationship with the energy
deposition should be investigated. Summarizing, a generally accepted theoretical concept
of the direct heating rates associated with gravity wave-mean flow interaction and gravity

wave-induced turbulent diffusion is not yet available.

1.4 QOutline of this study

The present study proposes methods by which the aforementioned problems may be
solved. In chapter 2 we recapitulate some general concepts concerning the action of
subscale motions on the mean flow, and we identify the specific approximations which
apply to small-scale turbulence on the one hand and to internal gravity waves on the
other. An energetically consistent formulation of the primitive equations completed by
turbulent diffusion and gravity wave fluxes is proposed.

The issue of how to formulate momentum diffusion and dissipation for the primitive
equations in a hydrodynamically consistent way is addressed in chapter 3. In particular,
a symmetric stress tensor formulation for horizontal momentum diffusion is given. The
derivation is based on the constraint that, for a mere scale-selective damping of the hori-
zontal motion, the frictional stress acting on horizontally aligned Eulerian sectional planes
must vanish (Becker, 2001). Furthermore, the dissipation associated with vertical momen-
tum diffusion (van Mieghem, 1973, section 9.3; Smagorinsky; 1993) is recapitulated, and
an appropriate finite-difference form is proposed in chapter 4. This new numerical scheme
is derived from the energy conservation constraint. More precisely, the general prerequi-
site that the work done by surface friction vanishes according to the no-slip condition is
utilized (Becker, 2003). The resulting finite-difference form is designed to be implemented
along with the hybrid coordinate system of Simmons and Burridge (1981) which is stan-

3This reasoning is analogous to the action of synoptic and planetary waves which maintain the general
circulation in the troposphere by advecting momentum and enthalpy poleward. Obviously, the associated
dynamic heating in the middle latitudes cannot be interpreted as dissipation.



dard in many present-day GCMs. The proposed scheme applies to both boundary layer
mixing and the direct thermodynamic effects associated with gravity wave breakdown in
the MLT.

Chapter 5 presents numerical experiments in order to test the new friction and dis-
sipation forms against the corresponding conventional methods. First, the adiabatic life
cycle of a baroclinic wave is revisited. Second, we utilize a simplified but nevertheless
realistic troposphere-stratosphere GCM (Becker and Schmitz, 2001) in order to assess the
sensitivity of the simulated general circulation to the neglect of frictional heating and
asymmetry of the stress tensor. It is found that the simulated turbulent dissipation is
mainly due to boundary layer mixing. A global mean frictional heating rate of about
2 Wm~2 is obtained, which is quantitatively consistent with the observational estimate
associated with synoptic and planetary waves.

Chapter 6 starts with the presentation of Lindzen’s gravity wave saturation theory
completed by the analytical forms of the direct heating rates associated with wave-mean
flow interaction and frictional heating. These forms are applied in corresponding numer-
ical experiments. For this purpose the vertical domain of the simple GCM is extended
up to about 100 km. The gravity wave parameterization is implemented in line with the
aforementioned vertical discretization scheme. A special consequence of Lindzen’s theory
is that all direct heating rates owing to gravity wave breakdown can be defined without
the need for additional free parameters other than those specifying the gravity wave mo-
mentum flux launched around the tropopause. The only exception is the vertical diffusion
of mean entropy which is scaled by a Prandtl number. Nevertheless, from Lindzen’s the-
ory we can derive an upper bound of 2 for the effective Prandtl number that scales the
total entropy flux owing to gravity waves and wave-induced turbulence. The so-defined
model predicts reasonable dissipative heating rates in the MLT, once the gravity wave
source is adjusted to drive a realistic residual circulation.

Chapter 7 gives a concluding discussion. The simple GCM employed in the present
study is the Kiihlungsborn Mechanistic general Circulation Model (KMCM). It is de-
scribed in the course of this study. Additional model details can be found in appendix
A.

10



Chapter 2

General remarks on the energetics of

atmospheric flow

In this chapter we shall derive an energetically consistent form of the primitive equations
completed by turbulent diffusion and gravity wave-mean flow interaction. To the best of
my knowledge such an approach cannot be found in textbooks. Becker and Schmitz (2002)
have already given a corresponding formulation of the primitive equations by assuming
that the energy conservation law is satisfied by the mean flow. Here we do not start from
this axiomatic constraint. Instead, we begin with the first principles of hydrodynamics.
Turbulent motions and gravity waves are subsequently filtered out, and the shallow at-
mosphere approximations are applied. In this fashion we recover all approximations that
lead to the conservation laws satisfied by the final model equations. With respect to
gravity waves, a corresponding analysis has been sketched in the appendix of the paper
of Becker and Schmitz (2002). With respect to turbulence, the presentation follows van
Mieghem (1973).

2.1 Filtering out subscale motions

2.1.1 General method

Let us consider the Navier-Stokes equations completed by the Coriolis force and the
thermodynamic equation of motion in geophysical spherical coordinates:

(8t+v3-V3)v3+2Q><v3:—p_1V3p—gez+p_1V3P (2.1)

3tp+V3-(pv3):0 (22)
(8t+V3-Vg)hzpfl(atp—i—v:;-Vgp)+ch—p*1V3-q—|—p71(PV3)-v3. (23)
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Horizontal and vertical velocity components are abbreviated by v and w such that vs =
v + we,, where e, is the unit vector in vertical direction. Similarly we write V3 =
V + e, 0, with the horizontal gradient operator given by
0 0]

Ay b

—. 2.4
T COS ¢ eyr (24)

V=e,0;+e,0,=¢;

Here, e, and e, are the unit vectors in zonal and meridional direction, while A and ¢ are
geographical longitude and latitude. Furthermore we have r = a. + z, where a. is the
earth radius. The molecular stress tensor is written as P, A is the enthalpy per unit mass,
and q is the molecular heat flux. The external diabatic forcing by radiation and latent
heating is represented by (). The other symbols have their usual meanings. The system
(2.1)-(2.3) fulfills the following energy conservation law

ofp(et )1+ Vs {pva(et D)) 25)

= —pgw+pQ+Vs-{(P-pl)vs —q},

where e = h — p/p is the internal energy per unit mass and the symbol | denotes the
idem factor. Equation (2.5) states that, for any fluid volume, friction and pressure can
change the total energy via the boundary stresses only.

Small-scale fluctuations can be filtered out using ordinary and density weighted aver-

ages of any quantity X:

X = X+X', X'=0 (2.6)

X = X+X", X'=0, X:=p 'pX. (2.7)

The average is assumed to extend over the typical spatial and/or temporal scales of the
subscale motion in question. Owing to (2.6) and (2.7), the governing equations (2.1)-(2.3)

are transformed to
(0;+7V3-V3)V3+2QxV3=-p 'V3p—ge,+7 'VsP+75 V3L (2.8)

p+Vs-(pvs) =0 (2.9)

(8t+$3-v3)ﬁ+p_lv3-J = p ' (OP+Vs-V3p+ vy -Vip)+c¢Q
+p '(PV3)-Vs+p ' (PV3)-vi—p"'V3-q. (2.10)

The Reynolds stress tensor is defined as

Y :=—-pviovy, (2.11)

12



where the tensor product is indicated by an open circle. The convention is such that
(aocb)c=a(b-c) and a(boc)=(a-b)c for arbitrary vectors a, b, and c. Note
that X is symmetric by definition.

The symbol J denotes the subscale flux of sensible heat, which in the case of an ideal

gas can be expressed as (van Mieghem, 1973, chapter 7)

=1 =
J:=pvih' = pvi+cpTO O'vy. (212)

Here, © = T (pgo /p )/ is the potential temperature, and pyo = 1013 mb denotes a
reference sea level pressure. Furthermore, ¢, is the heat capacity at constant pressure,
and R is the gas constant. The entropy per unit mass s is a function of © by means
ofds=¢,01d0O.

From (2.8) and (2.9) one obtains the following equation for the kinetic energy of the

mean flow
=2 =2

v _ Vv _ _
8t{p73}+v3 - {pvg?“*} = —pguw+vs - {Vs(P+Z—1p)}. (2.13)
Similarly, (2.9) and (2.10) yield for the internal energy of the mean flow

0, {pe}+Vs-{pVse} = —PpVs-Vs+pQ+ (PVs)-¥s (2.14)
—V3(Q+J)+ Vé"Vg,p + (PV3)'V§’ .

In order to formulate an energy conservation constraint analogous to (2.5), we must also
take the kinetic energy of the subscale motion into account. For this purpose we write
vy = V3 +v4 in the momentum equation (2.1), multiply by pvj , and take the average.
The result may be written as (see van Mieghem, 1973, Egs. (6.8) and (6.9))

phe = 0 {pke}+ Vs {pVske} + Vs-{pvik.} (2.15)
= (XV3)-V3—vi -Vip+vy - (V3P)

with k. := (v4)2/2. The second term on the rhs of the second Eq. (2.15) is the generation
of eddy kinetic energy by adiabatic conversion of mean enthalpy. If (2.15) is applied to
a control volume large enough such that the boundary integral of ¥ ¥3 is negligible, the
volume integral of (X V3)-¥3 represents the transfer of mean kinetic energy into eddy
kinetic energy.
Adding (2.15) to the sum of (2.13) and (2.14) yields the following energy conservation
law for the total energy of the mean and subscale motion:
—2

0P (F+ 2+ )+ Vs {7V (F+
= pQ-PgTW+Vs-{(P+X—1p)¥s} —Vs-(q+J)+Vs-(Pv]).

w2
_l’_
&
p—

+pvike} (2.16)

So far we have not introduced any approximations.
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2.1.2 The Boussinesq approximation

It is suitable to apply the well-known Boussinesq approximation to small-scale turbulence
(e.g., van Mieghem, 1973; Pichler, 1986) and to internal gravity waves as well (Lindzen,
1981). In general, this approximation assumes that sound waves are negligible, and that
the typical vertical scales of the subscale motion are small against the scale height of
the mean flow. As a result, all density weighted averages can be substituted by ordinary
averages, and, except for the adiabatic conversion term, all deviations from mass weighted
averages can be substituted by deviations from ordinary averages. If the mean flow is
approximately in hydrostatic balance, the adiabatic conversion term can be written as
(van Mieghem, 1973, chapter 8)

vy Vap = Vz-pvi+gpuw. (2.17)
The exclusion of sound waves implies
ilp=-90/8, (2.18)
hence
vi-Vsp = Vs-Pvi-gp0 Ouw. (2.19)

It is furthermore appropriate to assume that the averaged dissipation associated with the
subscale motion and the averaged frictional loss of subscale kinetic energy balance each

other, i.e.
5V (VP =5 PV . (2.20)
Then, dropping the averaging operator with respect to mean flow components, the mo-

mentum and thermodynamic equations of motion can be written as

(8t+v3-V3)v3+29><v3 = —p_1V3p—gez+p_1V3(Z+P) (221)
(Or+v3-Vs)h = p H (dp+vs-Vip)+6Q (2.22)

—p'Vs- (J+a)+ p  {(Z+P)V3} vs— ke,

where
Y = —pviovs (2.23)
J = pvik = pvi+ cpTO ' OV] (2.24)
pke = 0y (pke)+Vs-(pvske) +Vs- (pvike) (2.25)

= (¥V3)-v3—V3-vip'+gp0 'O w —(P'V3)-vj
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and k. := (v4)?/2. The continuity equation takes the form (2.2)', and the energy

conservation law yields

0 {p(e+ )} +Va-{p(e+2)vs} (2:26)

= pQ—pgw+ Vs {(X+P—Ip)vs}—V3-(J+a)—pke.

Except for pl%_& the system (2.21),(2.2),(2.22),(2.26) is quite analogous to the original
system (2.1)-(2.3),(2.5). That is, velocity, enthalpy, internal energy, density, and pressure
are substituted by the corresponding mean fields, while the molecular stress tensor P and
the molecular heat flux q are supplemented by the Reynolds stress tensor ¥ and the eddy
heat flux J.

2.2 Approximations in the case of small-scale turbu-

lence

When the formalism of the previous section is used to filter out small-scale turbulent
motions, two additional simplifications apply: the molecular stress and the molecular
heat flux associated with the mean flow can be dropped, and pressure perturbations
are generally negligible. With these idealizations the momentum and thermodynamic

equations of motion, the turbulent heat flux, and the kinetic energy equation can be

written as
(0, +v3-V3)vs+2Qxvs = —p 'Visp—ge,+p ' ViL (2.27)
(O +vs-Vis)h = p ' (dp+vs-Vsp)+¢Q (2.28)
—p I3 T+ p N (EVs) Vs — ke
J = ¢pTO'OV] (2.29)
ke = p T (EV3) - v3+gO0 T O w —e. (2.30)

Here, € is the turbulent dissipation defined as
€= —p tvi-(VsP')=p ' (P'V3) -vi>0. (2.31)

The corresponding energy conservation law yields

6t{p(V?3+e)}+V3-{p(%32+e)v3} (2.32)

= cpr—pgw+V3-{():—Ip)vg}—Vg-J—pk_e,

!The perturbation flow satisfies V3-v} = 0.
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The divergences of the Reynolds stress tensor X and of the turbulent heat flux J are
usually parameterized by diffusion of momentum and potential temperature. These pa-
rameterizations must be completed by appropriate dynamic boundary conditions. The
body of such a turbulence model is hidden behind the definitions of the diffusion and
surface coefficients (e.g., Haltiner and Williams, 1980, section 8.9).

To a first approximation, the temporal evolution and the advection of eddy kinetic
energy can be neglected in the energy budget, i.e. k_e = 0 (e.g., Panchev, 1971, chapter 8).
We will refer to this approximation as quasi-stationary turbulence. In more sophisticated
turbulence models of the planetary boundary layer including the parameterization of
convection, k, is retained as a prognostic variable (e.g., van Mieghem, 1973, section 9.3;
Roeckner et al., 1996, section 3.2). In this case, the advection of k, by the mean flow is
neglected, the advection by the turbulent flow is represented by diffusion of k. , and the
dissipation is assumed to behave like some nonlinear damping of k.. In any event, the
transfer of mean kinetic energy into eddy kinetic energy, p~' (X V3 )-v3, which formally
represents the frictional heating of the mean flow owing to Reynolds stresses, appears as
an indispensable part of the rhs of the thermodynamic equation (2.28).

For the remainder of this study we will assume quasi-stationary turbulence. Accord-
ingly, k. is canceled on the rhs of (2.28) and (2.32) as well as on the lhs of (2.30). We will
furthermore assume that the turbulent motion is maintained by downscaling of kinetic
energy only. Then the frictional heating due to Reynolds stresses is equivalent to the

turbulent dissipation
expt(LV;3)-vs. (2.33)

Note however that, with respect to the spatial scales resolved in a GCM, Eq. (2.33)
represents a lower bound only for the total dissipation. It describes the dissipation of

kinetic energy that is generated at the scales of the mean flow.

2.3 Approximations in the case of internal gravity

waves

In the saturation theory of Lindzen (1981) or in the gravity wave model of Matsuno
(1982), the interaction between internal gravity waves (IGWs) and the planetary-scale
flow results from the damping of the wave amplitudes by turbulent diffusion. This is in
accordance with Eliassen and Palm’s second theorem (e.g., Lindzen, 1990, Eq. (8.24))
or with the generalized Eliassen-Palm theorem of Andrews and McIntyre (1976; see also
Andrews et al., 1987, chapter 3). In this respect the theories of Lindzen or Matsuno
reflect the general fact that the energetics of gravity wave-mean flow interaction must be

16



assessed along with the energetics of the accompanying small-scale turbulent motion. At
first sight, this task appears rather complicated. However, we can simplify the analysis if
we take advantage of the previous sections.

We start by assuming that the resolved flow still includes gravity waves, and that
this flow is described by the governing equations derived in the previous section. In
particular, we assume quasi-stationary turbulence together with (2.33). As a result, the
governing equation system is perfectly analogous to (2.1)-(2.3). That is, in (2.1)-(2.3) we
simply have to substitute P by X and q by J. Then, gravity wave disturbances
are filtered out by application of (2.6),(2.7), with the average extending over the typical
horizontal and temporal scales of the planetary-scale flow, i.e. a few 1000 km and a
few days.? Anticipating that turbulence can be represented by diffusion while gravity
wave flux convergences are nondiffusive, this average implies a strict separation between
the turbulent scale (several ten meters) and the scale of IGWs (typically a few hundred
kilometers in the horizontal and several hundred meters in the vertical direction). As
pointed out by Mclntyre (1989), it is open to question whether such a scale separation
can be justified by available observational data. On the other hand, the assumption is
inherent in every present-day IGW parameterization designed for GCMs. Thus we stick to
the scale separation assumption also in the present study. Furthermore, in analogy to the
quasi-stationary turbulence approximation, we neglect the rate of change of IGW kinetic
energy in the energy budget of the planetary-scale flow. Finally, applying the Boussinesq
approximation to the IGW perturbations, the governing equation system follows directly
from section 2.1.2. The momentum and thermodynamic equations are

(0 +v3-V3)vy = —2Qxv3—p 'Vip—ge,+p ' Vz(—pviovi+X) (2.34)
(8t+V3'V3)h = p_l(atp—i-v?,-vgp)—i-ch (235)
—p T Vs (phvi+ )+ pT H{(—pviovi+X)Vs}-vs,

while the energy conservation law becomes
2 2

0 {p(Z+e)}+ Vs {p(F+e)vs} (2.36)
= pQ—pgw+Vs-{(—pviovi+X—Ip)vs}—Vs-(phvi+J).

Here, pvjovj describes the nondiffusive momentum fluxes owing to internal gravity
waves. The corresponding convergence appearing on the rhs of (2.34) represents the
familiar momentum deposition that drives the summer-to-winter-pole residual circulation

in the mesosphere. The gravity wave sensible heat flux appearing on the rhs of (2.35) and

20f course, to reasonably resolve the planetary flow in a GCM, the spatial and temporal resolution
must be finer than these scales.
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(2.36) has the general form
pViH = pvi+ ¢, pTO 1 OV]. (2.37)

This flux is usually approximated by the pressure flux term. However, as will be shown in
chapter 6, such an assumption is valid in the case of conservative wave propagation only.
In fact, the entropy flux generated by IGWs can by no means be neglected in regions of
wave breaking.

Also the kinetic energy equation for gravity waves?

0=—(vioviVs) - vi—p 'V3-vip +g07 0w —p~' (¥'V3)-vj. (2.38)

invokes both pressure perturbations and entropy perturbations. Note that (2.38) already
provides a balance equation for the turbulent dissipation associated with IGW distur-
bances (last term on the rhs of (2.38)).

2.4 The primitive equations with parameterizations
of small-scale turbulence and internal gravity

waves

Numerical models of the general circulation of the atmosphere (GCMs) are based on the
shallow-atmosphere version of the governing equations, known as the primitive equations.
These invoke the following scale approximations (Phillips, 1973)

ro= a (2.39)
O(v) = U~r30ms! (2.40)
O(V) = L'~ (3000km)™" (2.41)
0(9,) = H'~(10km)! (2.42)
O(w) < Uf (2.43)
O(Vp) < p/L, (2.44)

as well as the traditional approximation for the Coriolis force (Phillips, 1966).

3 According to the gravity wave analogue of (2.20)

(X'V3)-vy=—vy-(V31'),

the averaged dissipation owing to gravity waves is assumed to equal the averaged frictional loss of gravity

wave kinetic energy.
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As concerns the parameterization of internal gravity waves, horizontal transport is of

minor importance such that the single column approximation is quite usual, i.e.

pviovy = p{viw'oe,+e,oviw} (2.45)

phvi = {pPuw+c,pTO 0w }e,. (2.46)

We furthermore make use of the following abbreviations for momentum flux, pressure

flux, and entropy flux:

F = pv'uw (2.47)
F, = pu (2.48)
F, = su = ¢, 070w (2.49)

Then, the momentum equation (2.34) and the continuity equation are transformed to

2

v = v><(f+f)ez—wazv—V%—p_IV]H—p_l(VgZ—BZF) (2.50)
0 = O,p+ygp (2.51)
0 = Op+V-(pv)+0,(pw), (2.52)

while the thermodynamic equation (2.35) yields

(Oi+v3-Vi)h = p 7 (Op+vs-Vip)+Q—p Vs J (2.53)
—p 10, (Fy+pTF,)—p 'F-0,v+p ' (EV3)-v.

Here, the relative vorticity and the Coriolis parameter are denoted by £ = e, - (V X
v) and f. Although we have written the three-dimensional tensor divergence V3 ¥ in Eq.
(2.50), only the horizontal components of this divergence are retained. The specification
of ¥ is the topic of the next chapter.

The turbulent heat flux is specified as usual

K, T
J:—cppThVT—echpKzéaz@, (2.54)

where K; and K, denote the horizontal and vertical diffusion coefficients. The corre-
sponding Prandtl numbers are 2 and 1, respectively. With the aid of (2.44) and the

additional scale assumption

O(VK,) < K,/ L (2.55)
we have K T
—(cpp)_1V3-J:7hV2T+,0_132{pKZ68z@}. (2.56)
::v,uh ::v/J'z
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Disregarding the gravity wave entropy flux Fj, the heating of the mean flow owing to
gravity wave-mean flow interaction is often referred to as the energy deposition which is
defined as

E:=—pl0,F, + Wy, Wyes :=—p 'F-0,v. (2.57)

It consists of the pressure flux convergence plus a residual work that is due to the IGW
momentum flux and the mean wind shear (Hines and Reddy, 1967; Becker and Schmitz,
2002). Simplifying the IGW kinetic energy equation (2.38) with the aid of (2.45)-(2.49),
we get

Wres:p_lasz_gC;IFs+€igwa (2.58)

where

€igw ‘= p_l (ZI V3) ’ Vé (259)

represents the frictional heating owing to the gravity waves themselves, that is, the tur-
bulent dissipation of gravity wave kinetic energy. The sum of the first and second term
on the rhs of (2.58) represents the adiabatic conversion of mean enthalpy into gravity
wave kinetic energy. Hence, W,., is simply the residuum of dissipation and adiabatic
conversion.

In section 1.3 it has been noted that several authors equate the energy deposition
E with the turbulent dissipation €;4,,. Combining (2.57) and (2.58) proves that such an

assumption is not correct because of the wave entropy flux:
E=—gc' Fy+ €igu . (2.60)

Note furthermore that the thermodynamic equation (2.53) supplemented by (2.57)-(2.59)
goes beyond previous forms of the planetary-scale heat budget of the MLT (Chandra,
1989; Liibken et al., 1993). In particular, the present heat budget consistently includes
the dissipation of gravity wave kinetic energy, as well as two other potentially important
processes that are usually ignored, namely the adiabatic conversion of mean enthalpy into
gravity wave kinetic energy and the wave entropy flux convergence. In chapter 6 we will
quantitatively assess these terms.

The dissipation of the mean flow is
em:=p (LV3)- V. (2.61)

Hence, in regions of gravity wave breaking, €, does not represent the total dissipation.
The latter is €, + €4y, and this dissipative heating is implicitly accounted for by means
of F+e¢p, .

Summarizing, the present formulation of the primitive equations includes the effects

of small-scale turbulence and internal gravity waves in an energetically consistent way,
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giving rise to the following energy conservation law (Becker and Schmitz, 2002):

0{p(v’/2+e)}+Vs-{p(v'/2+e)vs} (2.62)
= cpQ—pgw+Vs-{Xv—pv3}—-V3-J—-0,(F,+pTF,+F -v).
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Chapter 3

Momentum diffusion and dissipation

for general circulation models

In any climate model, either global or mesoscale, one cannot calculate the true dissi-
pation directly since this heating is ultimately due to molecular viscosity. Nonetheless,
assuming quasi-stationary turbulence and that turbulent kinetic energy is mainly gener-
ated by the transfer of mean kinetic energy, the dissipative heating per unit mass is to a
good approximation given by (2.33).! Hence, in any atmospheric circulation model that
explicitly accounts for turbulent friction, the Reynolds stress tensor X must be parame-
terized. Then, the friction force per unit mass p~! V3X and the associated dissipation
can be computed. Furthermore, two elementary constraints must be fulfilled. First, ¥
must be symmetric, and second, the dissipation must be positive definite. As noted in
the introduction, these constraints correspond to the Eulerian law of angular momentum
conservation and the second law of thermodynamics.

In order to simulate the large-scale atmospheric flow using the primitive equations,
one must account for both the enstrophy cascade in the free atmosphere and boundary
layer mixing. If the mesosphere is included, also gravity wave-induced turbulent diffusion
should be part of the Reynolds stress tensor. Generally we have to introduce an anisotropic
turbulent viscosity, i.e. the horizontal diffusion coefficient K}, is usually much greater than
the vertical one K, (e.g., Pedlosky, 1987, section 4.2). As a result, the formulation of an
appropriate stress tensor for global circulation models is not a trivial task. It was noted
in Becker (2001) that conventional methods to formulate horizontal momentum diffusion
violate the symmetry property of . Since the friction force rather than the stress tensor is
commonly parameterized, the frictional heating cannot even be defined. In the following
we derive an anisotropic stress tensor that yields friction and dissipation forms suitable

for the primitive equations.

!The shallow-atmosphere analogue of (2.33) is given by (2.61).
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Assuming zero volume viscosity and disregarding vertical motions, the molecular stress

tensor has the following anisotropic turbulent analogue:
{p(KyV+K,e,0,)ov}+{...} . (3.1)

Here, V is the horizontal gradient operator without the scale approximation (2.39), and

the exponent 7 denotes the transposed. Using the derivatives of the unit vectors

t 2
6ze$=g—¢ey—e—, oe, =0, 0,e,=0
r

r
t 2
Oz€y = 8¢ e, Oye,= _e7 ,  0,e,=0 (3.2)
azez:e_wa ayez:&a azezzoa
T r

the stress tensor (3.1) can be expressed as

pKp{ 2e,0e, (D—0yv)+ e;0e, (§+20,u) — egoe,ufr
+ey0e, (§+20,u)+2e,0e,0,v— e 0e,v/r (3.3)
—e,oe,u/r—e,oe,v/r}

+ pK.{ 2(e;0e, +e,0e;, )0, u+2(e,0e, +e,0e,)0,v}.

As usual, the zonal and meridional velocity components are abbreviated as v and v. D =
V-v denotes the horizontal divergence, and the relative vorticity £ = e,-(V xv) is defined
like in the previous section. The terms proportional to K, are consistent with the familiar
vertical momentum diffusion. The remainder, which is proportional to K}, is meant to
describe a mere scale-selective damping of the horizontal motion in order to balance the
enstrophy cascade (and kinetic energy cascade as well) associated with atmospheric macro-
turbulence. Hence, the stress proportional to K, must vanish on any Eulerian sectional
plane that is aligned horizontally. Stated otherwise, horizontal momentum diffusion must
not drive a barotropic flow away from barotropy. Obviously, this elementary constraint is
not fulfilled by (3.3) because of the geometric terms —p K, (voe,/r+e,/r ov). Hence,

a stress tensor appropriate for the primitive equations may be written as:
Y = ¥Y,+L%, (3.4)
T o= pKy ({(V+e/r)ovi+{...}") (3.5)
= pKp{2e,0e,(D—0,v)+ e;o0e,(£+20,u)
+e,0e,(E+20,u)+2e,0e,0,v}
Y, = pK,({e,0,0v}+{...}"). (3.6)

The derivation of friction and dissipation from (3.5) and (3.6) requires some cumbersome

analytical calculations as sketched in appendix B. The procedure is straightforward if we
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take (3.2) and 0, 0y = 0, 0, — (tg #/r) O into account. We furthermore have to make use
of the scaling assumptions (2.44) and (2.55). The resulting friction and dissipation forms
owing to (3.5) and (3.6) are

H:=p'V3Y, = K,{V*+VD +2v/r’} (3.7)
Z:=p V3L, = p'0,(pK,0,v) (3.8)
and
=07 (EaVs) v = Kn{2(D - 0,0)° +2(0,0)° + (€ + 20,u)°} (3.9)
€. =p (L, V3) v =K,(0,v)>. (3.10)

The vertical momentum diffusion (3.8) is standard. The associated dissipation (3.10)
is well known (e.g., van Mieghem, 1973, section 9.2), though hardly being employed in
present-day boundary layer or gravity wave schemes. The trace of ¥, is zero while it is
2 D for X;,. One may reformulate X, such that its trace vanishes and normal components

of turbulent stress are eliminated. This results in minor changes for the horizontal terms:

ZhO = Zh—D(ezoem—Feyoey) (311)
Hy = K, {V’v+2v/r’} (3.12)
eno = Kp{(D—20,0)"+ (£E+20,u)"}. (3.13)

Equations (3.12) and (3.13) can be used alternatively to (3.7) and (3.9). They may also
be extracted from Smagorinsky (1993).
The horizontal friction forces (3.7) or (3.12) differ from the corresponding conventional

form
H,= K, V?v. (3.14)

In this respect, 2 K,v/r? is the relevant term. This can be understood as follows. Let
us consider the streamfunction and velocity field of an arbitrary superrotation with the

maximum zonal velocity being a function of height z:
Ve = —ug(2)rsing, vy :=1u.(2z)cospe,. (3.15)

(For u,(z) = const, (3.15) describes an ordinary superrotation, u,(z) o r/a. yields a solid
body rotation.) We can as well specify corresponding superrotations with their axes lying

in the equatorial plane and pointing from A = 180° to A = 0,

Yy = —up(z) recosgpcos A, vy = —uy(2) {sinpcos e, —sin e, }, (3.16)
or from A = 270° to A = 90°,

Ve := —uc(z) rcosgsin A, ve:= —u.(z) {singsin e, + cosAe,}. (3.17)
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Any superposition of (3.15)-(3.17) must be unaffected by horizontal diffusion since other-
wise the angular momentum of the flow would change without a balancing surface drag.

Now it is readily shown that
Vv, = —2v,/r*, Vivy=-2v;/r?, and V?v,= —2v./r’. (3.18)

Hence, any superrotation is uniformely damped out by the conventional friction K} VZv
which therefore cannot be derived from a symmetric stress tensor. On the other hand,
the friction forms (3.7) or (3.12) give no contribution as it should be. It is furthermore
evident that the dissipation rates (3.9) or (3.13) vanish as well for any superposition of
Vg, Vi, and v, since we have D =0,v =0 and { = —20,u in each case.

Spectral GCMs usually employ higher orders of horizontal diffusion. This is done
to restrict the damping to the smallest resolved scales while leaving the planetary-scale
flow almost unaffected. As described in Becker (2001, section 3b), the stress tensors
(3.5) or (3.11) can easily be generalized to arbitrary orders. For instance, the biharmonic

momentum diffusion yields

conventional : HY = —r? K, Vv (3.19)
symmetric:  H® = 2 K, {Viv+ V (V- V?v) +2V2v/r?} (3.20)
H(()bi) =K, {Vv+2Viv/r?}.

Both Egs. (3.20) show that the correction to satisfy the Eulerian law of angular momen-
tum conservation must have the form —Kj, 2 V?v in the biharmonic case. This is quite
different from the correction K} 4v/r? which is used in the NCAR community climate
model in order to simply conserve superrotations (see Kiehl et al., 1996, page 25).

Any horizontal momentum diffusion removes kinetic energy from the flow. However,
even if the stress tensor is symmetric and the corresponding frictional heating can be
defined, this does not necessarily ensure thermodynamic irreversibility, i.e. an increase of
entropy due to frictional heating. For instance, in the biharmonic case the stress tensors
corresponding to (3.5) and (3.11) can be written as

T = pKy ({(V+e/r)ov®}+{ . }7) (3.21)
Z%) — ngi) — D (e 0e, + e,0ey, ), (3.22)
where v(®) = y® e, + v e, := —r2V2v and D) := V- v(®) | The corresponding

friction forms are given in (3.20). Using the abbreviation £®) = e, - (V x v(*)), the
frictional heating rates are
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eg)i) = Kp{2(D—-09yv) (D — ayv(bi)) +2(0yv) (ayv(bi) ) (3.23)
+(&+ 261/“) (f(bi) + 2ay“(bi) )}

o = Kn{(D=20,0) (D" ~20,0") (3.24)
+(E+20,u) (€9 +20,u)}.

Similar expressions are obtained for any order of horizontal momentum diffusion higher
than harmonic (Becker, 2001, section 3b). From (3.23) or (3.24) it is evident that in these
cases the frictional heating is not positive definite. Therefore, higher orders are gener-
ally not consistent with the second law of thermodynamics. Accordingly, the numerical
experiments presented in this study employ harmonic horizontal diffusion only.

Finally, in order to achieve consistence with the primitive equations as defined in the
previous section, the scale approximation (2.39) is applied to the final forms for stress
tensor, friction, and dissipation, that is, 7 is substituted by a.. Note furthermore that, in
the case of a divergent horizontal flow, horizontal momentum diffusion has a component

in the vertical direction since

2., _ 2 u 2tg ¢
Vv = e, (V u_azcos%_ o 0yv) (3.25)
9 v 2tg o D
+e,(V U_agc052¢+ o 8$u)—2eza—e.

The corresponding vertical acceleration —K}j, 2e, D/a, is neglected by means of the hy-

drostatic approximation (2.51).
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Chapter 4

Finite-difference representation of
diffusion, dissipation, and gravity

wave-mmean flow interaction

The no-slip condition generally applies at fixed or solid boundaries of viscous fluids. The
normal component of the no-slip condition, also known as the kinematic boundary con-
dition, is trivial and generally accounted for by vertical discretization schemes used in
atmospheric circulation models (see also appendixes A.1 and A.2). The motivation of
this chapter is to translate the tangential component of the no-slip condition into its
finite-difference analogue for application in GCMs or mesoscale atmospheric circulation
models. Note that this boundary condition is usually ignored along with the frictional
heating. We shall however show that, in addition to the flux-boundary conditions, the
tangential component of the no-slip condition must be retained in order to account for the
frictional heating in an energetically consistent way (Becker, 2003). Consequently, also the
discretization of gravity wave effects must be formulated in line with the finite-difference
forms for the boundary layer.

Another problem addressed in this chapter is the representation of horizontal diffusion
and dissipation terms in a terrain-following vertical coordinate system. The point to be
made is that the formulations given in the previous chapter can be applied in a hybrid
coordinate system (Simmons and Burridge, 1981) as well, provided the horizontal diffusion

coefficient is set equal zero in the lowermost model layers.

4.1 Vertical diffusion and gravity waves

Let us consider the sum of kinetic and internal energy of a fluid column. In the contin-

uous case, vertical momentum diffusion and dissipation give rise to the following energy
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generation rate:

/pdz{v-(p’laz(pKzazv))%—Kz(azv)Q}:—v-(pKzazv) . (4.1)

To evaluate the integral, the no-flux condition for z — oo has been employed. The

remaining term on the rhs of (4.1) is the work done by surface friction which vanishes
according to the no-slip condition

v | =0, (4.2)

2=z
where z, denotes the topographic height.! The no-slip condition implies global balance
between the rate of change of kinetic energy owing to friction and frictional heating (e.g.,
Lorenz, 1967; Pichler, 1986, chapter 9). If this constraint did not apply, surface friction
would yield a significant contribution to the global energy budget of the atmosphere,
and this would not be physically meaningful. Hence, for a given vertical discretization
method that applies to the primitive equations, the finite-difference representation of
vertical momentum diffusion and dissipation must be chosen in a way that the finite-
difference form of (4.1) is zero by definition.

The angular momentum and energy conserving finite-difference scheme introduced by
Simmons and Burridge (1981) has become a widely used method in present-day global
circulation models (e.g., DKRZ, 1992; Kiehl at el., 1996). This scheme is also employed
in the present simple GCM (see appendix A). For this type of models the finite-difference
form of (4.1) may be written as

lev A
A = Z%{V[-ZZ—FCZI} (43)
=1
lev Apl g
= 2 e (R, - (pr o) (14)
L (p—pia
2 Ap o 1 Z -1- Kzaz _1
#3 (Bt (g (K0,
Prr1 — D
P P v ) (KL Oy )}
APlPH%( )l+2 ( )l+2

Here, lev is the total number of full model layers, and Ap; := pj11/2 — pi—1/2 is the pres-
sure increment between intermediate half model layer. The discretization of momentum
diffusion Z; is straightforward. The corresponding dissipation rate ¢, on a full model
layer [ is defined as the approximate average of the dissipation rates at adjacent half

! The familiar kinematic boundary condition w = v -V 2, applies in the inviscid case only and is
ruled out at the lower edge of the friction layer. Note also that (4.2) is not exactly valid over the sea
since the atmosphere exerts a significant amount of work on the ocean. However, this work is negligible
in the energy budget of the atmosphere.
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layers. Weighting these contributions with appropriate pressure differences is essential for
further simplification of (4.4). First we make use of the dynamic boundary conditions

(pK.0,v)
(pKZ azv)lev—}—

=0 (4.5)

1
2
1

= Cplevvlev ) (46)

2

where C' is a surface coefficient (see appendix A.3). Then A can be expressed as

lev

1p—pi—
A = Z{vl-(pKzazv)l_%+§w(8zv)l_%-(pKzBZV)l_%}

=2 gpl—%
o ! L pyr—m
+ X2 1—vir(pK.0v )l+% + 2 ao .. (0:v )l+§ (K, azv)l+§ (4.7)
=1 9P+
2 L [ (P11 — 1)
- Cple'u Vle'u+ 5 7(8zv)l+% I : Cpleuvlev-

9Pyl

Defining the half level wind shear as

(5zV),+% = 9041 (Vigr = Vi) (pipa — )™t for I=1...lev—1, (4.8)
Eq. (4.7) reduces to
lev 1 lev—1 1
A = Z é(vl +Vl—1) ) (pKzan)l_% + Z 5(_Vl _VH—I) : (PKzan)H.%
=2 =1
L[ (P41 — 1)
- Cplev V[Qefu + 5 W (8z V)H_% I—lew : Cplev Viev
_ 2 L (Pt — 1)
A= —Cplewvi, + 2 —— (0, V)1 - C Pley Viey - (4.9)
QPH% 2 li=lev

The rhs of Eq. (4.9) is the finite-difference form of the work done by surface friction. It
vanishes by definition if we specify the term in brackets as

(pl+1 - pl) (azv)

o = v, (4.10)
+3

I+3
211=lev

which is the finite-difference analogue of the no-slip condition (4.2). An intuitive inter-
pretation of (4.10) is that a velocity profile, linear in z and formally extrapolated in the

ground, intersects the surface with v = 0.

Summarizing, a model’s energy source owing to vertical momentum diffusion and

dissipation is zero by definition if we let

(pKzazv)H_% =1
Zl:;—g (pKzazv)H%—(pKzazv)l_% l=2...lev—1 (4.11)
P Cplvl—(pKzﬁzv)l_% [ = lev
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((p K, an)H% . (8zv)l+%(pl+1 —pz)/PHé I=1

(pKzan)l—% ; (azv)l—%(pl — P11 )/pl_% l=2...lev—1
1= g +(PK 0V )y (0¥ )iy (pa —21) o1y g (4.12)
YY)

(pK.0.v )z-% (0 )l—%(pl —Pi-1 )/Pl—% = lev
[ +29C v}
and take the definition (4.8) into account.
The no-slip condition (4.10) is required to specify the frictional heating in the low-
ermost full model layer [ = lev (last term on the rhs of the third Eq. (4.12)). It thus
defines the contribution from the Prandtl layer. With the usual definition of the sur-

face coefficient, C' = Cp |vie|, this Prandtl layer frictional heating is proportional to

Ch |View|? - Such a relation also follows from multiplying the Prandtl layer stress with the
corresponding wind shear, assuming that both are constant with height in the Prandtl
layer. A corresponding formulation has been used by Bister and Emanuel (1998, see Eq.
(6) in their paper). On the other hand, the present finite-difference formulation does not
invoke any assumption about the velocity profile in the Prandtl layer (which is typically
logarithmic) nor in the underlying viscous layer.

Specifying the discretization of vertical diffusion of potential temperature (second term
on the rhs of (2.56)) in an energy conserving way is generally an easy task. For the model

calculations presented in the following chapters, the definition

_ 9 r (k. L _
’uzl_Apl{(pKz@az@)“r% (pKz@a,;@)l_%} for I1=1...lev (4.13)

is used along with the dynamic boundary conditions

(pKzgaz@)% =0 (4.14)
T
(pKzéaz@)lev—k% = Cplev(@lev_@s)- (4-15)

Here, O, is a surface potential temperature which is related to the surface temperature
T, via O, = T, (poo/ps)*, and p, is the surface pressure. The net energy input due
to vertical diffusion of momentum and potential temperature results from the surface

sensible heat flux, as it should be:

lev A
Z%{Vl'Zl+€zl+/1'zl}:_Oplev(@lev_gs)- (4.16)

=1

The proposed differencing scheme can easily be generalized to account for gravity

wave effects. To achieve this we have to include the turbulent diffusion coefficient owing
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to gravity wave breakdown, K,;,, (see section 6.2), in the definition of K,. With regard
to vertical diffusion of potential temperature, K,;q, is scaled by an additional Prandtl
number. In this context we anticipate the following result derived in section 6.1 on the
basis of Lindzen’s saturations hypothesis: The gravity wave entropy flux convergence is
formally equal to a wave-induced vertical diffusion of mean potential temperature with
a Prandtl number of 2. Accordingly, we incorporate also the gravity wave entropy flux
in the vertical diffusion term (4.13). As a result, the effective Prandtl number must not
exceed a value of 2. In the control simulation presented in chapter 6, the IGW-associated
effective Prandtl number is set equal 1.

To further account for gravity wave effects, we have to include the tendencies owing
to the nondiffusive gravity wave fluxes of horizontal momentum and pressure (see section
2.4). The discretization of these tendencies is analogous to (4.11)-(4.13) and yields with

regard to the dynamic boundary conditions

Fijo=Fiepr12=0 and Fp12 = Fpiept12 =10 (4.17)
the following expressions for momentum deposition, residual work, and energy deposition:
Pi —-F, 1 [ =lev

( Fl+§ ) (3zv)l+§(pl+1 — D )/Pl+§ =1

—1 F, 1-(0,v), 1(pi—pi- 1 [=2...lev—1
Woe) = { -1 ( ). ;( 1 —Pi-1)/py 1 (4.19)
2Ap, +Fl+§ ) (az")lJr%(PlH — D )/Pl+%
\Fl 1 (azv)l—%(pl_pl—l)/pl_% [ =lev
p Fpl+% =1
El Wresl + A—pl FPH—%_FPI—% l=2...lev—-1 (420)
—lp_1 l=lev .

S = {vi-(—p '0.F )+ E} =0 (4.21)

such that internal wave fluxes do not affect the total energy.

4.2 Constraints on horizontal diffusion terms

In a spectral model, the horizontal diffusion and dissipation terms (3.7) and (3.9) or
(3.12) and (3.13), as well as the first term on the rhs of (2.56) can be computed with
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machine accuracy. Disregarding aliasing errors, their numerical representation deserves
no further analysis. However, these horizontal terms have been defined in the z-coordinate
system, and an exact analytical transformation into the hybrid coordinate system seems
to be impossible. Alternatively, we may apply (3.7) and (3.9) or (3.12) and (3.13), and
the conventional horizontal diffusion of temperature directly on hybrid surfaces, provided

these surfaces are sufficiently flat. That is, for any flow variable X the approximation

0X

L X=V, X — 2=
v Vi 0z

(Vy2)~ V, X (4.22)

or equivalently
|LV,z| << H (4.23)

must be valid. Here, V, or V,, denote the horizontal gradient operator applied on surfaces
of constant height z or constant hybrid coordinate 7. For terrain-following surfaces close
to the lower boundary, the condition (4.23) may be violated. For instance, in the vicinity
of the Himalayas we have |LV,z,| ~ H. Therefore, only if n-surfaces do gradually
change from terrain-following surfaces near the ground to surfaces of constant pressure in
the middle troposphere, can we assume that (4.23) is valid around that level and farther
above. In the global circulation model used in the following chapters, such a behavior
of the hybrid coordinate is achieved using Eqs. (A1)-(A3) (see appendix A.1). Figure 1
shows the corresponding behavior of some representative hybrid surfaces (solid lines) in
presence of a mountain range with a maximum elevation of about 3.5 km. In this figure we
have assumed an atmosphere at rest with 7" = T,.f(p), where the reference temperature
T,er is given by Fig. 32a (see appendix A.2). The thin lines in Fig. 1 indicate the sigma
surfaces that correspond to the hybrid surfaces. It is obvious that in the sigma-coordinate
system the condition (4.23) is generally not valid because every model layer follows the
orographic elevations. The same holds if the log-pressure coordinate is used (not shown).
For the present global circulation model it will be shown that setting K, = 0 below
n = 0.8 and assuming a smooth increase between n = 0.8 and 0.6 (Figs. 5c, 18c) is
sufficient to ensure satisfactory angular momentum and energy budgets. This approach
may furthermore be justified by the fact that the enstrophy cascade is not relevant in the

lower troposphere.
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Figure 1: Surfaces of constant hybrid coordinate (solid lines) and constant sigma coor-
dinate (thin lines) in the presence of a major mountain range (shaded) and for assum-
ing T = T, (p).



Chapter 5

Numerical experiments without

internal gravity waves

This chapter presents some numerical experiments in order to test the diffusion and dis-
sipation forms proposed in the previous chapters against the corresponding conventional
methods. Our specific focus is on the global energy budget of the troposphere. We start
by analysing the life cycle of a baroclinic wave in a thermally and mechanically isolated
atmosphere (section 5.1). Comparatively realistic simulations of the boreal winter climate
are investigated in section 5.2. We utilize the Kiihlungsborn Mechanistic general Cirula-
tion Model (KMCM) developed by the author. The relevant characteristics of this model

are mentioned in the text, while further details can be found in appendix A.

5.1 Adiabatic baroclinic life cycle

Let us reevaluate the life cycle of a baroclinic wave originally investigated by Simmons
and Hoskins (1978). We use KMCM with a T54 spectral resolution and 40 equally spaced
hybrid levels. Orography and all so-called physical parameterizations are switched off,
except for horizontal momentum diffusion. A globally constant horizontal diffusion coef-
ficient of K; = 2.5 x 10° m?s! is used. This corresponds to a damping time constant
of about 0.6 days for wave number 54 of relative vorticity. We consider two simulations.
In the conventional run, horizontal momentum diffusion is accounted for owing to (3.14),
and the dissipation is accordingly ignored. The control run employs (3.7) together with
the associated frictional heating rate (3.9).

The initial condition is a thermally balanced zonal flow superposed with a small per-
turbation of the most unstable normal mode of zonal wave number m = 6. The thermally
balanced zonal flow is shown in Figs. 2a,d. It consists of a temperature field (¢, p) and

a corresponding zonal wind ug(¢,p) such that Tr and ug obey the nonlinear thermal
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Figure 2: (a),(d) Zonal-mean zonal wind and temperature at day 0 of the baroclinic life
cycle experiment. (b),(e) Same as (a),(d) but for day 50 of the control simulation. (c),(f)
Differences at day 50 in the control run from the conventional run. Contour intervals are
(a),(b) 5 ms™, (c) 0.5 ms™!, (d),(e) 10 K, and (f) 0.2 K. Zero contours are not drawn,

and negative values are shaded.

wind relation o ¢ R 9.T
g 2 s 1lE

= — . 5.1
)= o (5.1)

8p{f’LLE+

From (5.1) follows that Tz must be symmetric about the equator near the equator. In the
present, experiment, T and ug are completely symmetric about the equator. Tg is speci-
fied analytically (see Becker et al., 1997, appendix), and up is computed by vertical inte-
gration of (5.1) with respect to the boundary condition ug = 0 for ps; = pgp = 1013 mb.
Even though (7Tg,ug) exhibits baroclinic instability, it is conserved by the model as long
as wave perturbations are absent. In the following we consider the temporal evolution of
a baroclinic wave that is excited by the aforementioned normal mode initialization.

Figure 3 shows available potential energy of the zonal-mean flow and the eddies, AZ
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Figure 3: Available potential energy and kinetic energy of the zonal-mean flow (AZ and
KZ) and of the eddies (AF and KFE) in the baroclinic life cycle experiments (control:
solid lines, conventional: dashed lines).

and AE as defined by Lorenz (1955), along with the corresponding kinetic energies K7
and KE. The prominent growth and decay of a baroclinic wave is evident in both sim-
ulations. Differences are quantitatively negligible when considering AZ, AFE, and KE.
The behavior of KZ is only qualitatively similar in both runs. The difference indicates a
weaker zonal circulation in the conventional run.

The zonally averaged zonal wind and temperature at day 50 look similar in both sim-
ulation. Figures 2b,e show these fields for the control run. The differences in the control
run from the conventional run are shown in Figs. 2¢,f. These signals indicate a stronger
relative angular momentum and a higher internal energy in the control run. The impor-
tance of these differences can be acknowledged by considering the temporal evolutions of
total potential energy 7T'P, total kinetic energy 7K, relative angular momentum L,, and

(2-angular momentum L, per unit area:

TP = (47a2)" [ aVp(aT+gz) = (4nad)" [ aVpoT (52)

atmos atmos
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TK = (4mad?) /de— (5.3)

atmos

L. = (47ma?) / dV puaecoso (5.4)
atmos

Ly == (47ma?) / dV pQa?cos?e. (5.5)
atmos

The integrals extend over the whole model atmosphere. The numerical representation
of (5.2)-(5.5) is straightforward. Total energy TP + TK and total angular momentum
L, + Ly should be conserved quantities in the life cycle experiments. Figure 4 shows (5.2)-
(5.5), as well as total energy and total angular momentum as functions of time for both
simulations. In AT P and A Ly, the total potential energy and the 2-angular momentum
of the initial state are subtracted. Total kinetic energy, as well as relative and Q2-angular
momentum behave qualitatively similar in both simulations. However, total energy and
total angular momentum are conserved in the control run only. There is a continuous
spurious loss of total angular momentum in the conventional case. At day 50, this loss
amounts to about 5-10% of the overall relative angular momentum. A worse shortcoming
is due to a substantial loss of total energy. Within a couple of days around the life cycle
maximum, this loss is of the same magnitude as the overall kinetic energy of the model
atmosphere. This result may be interpreted as follows.

During the phase of baroclinic instability (day 0-17), total kinetic energy grows at the
cost of available potential energy due to adiabatic conversion. To a first approximation this
growth can be considered as a thermodynamically reversible process. Stated otherwise,
during the phase of linear baroclinic instability the enstrophy cascade and horizontal
momentum diffusion are not very effective.! From about day 20 on, kinetic energy is
lost while available potential energy does not increase again. Hence, the decay phase of
a baroclinic life cycle is strongly irreversible due to the downscaling of enstrophy (and
kinetic energy as well) and the action of horizontal diffusion. Bound up with this, there
must be some diabatic heating to balance the frictional loss of kinetic energy. Only a
symmetric stress tensor formulation of horizontal momentum diffusion completed by the
proper dissipation accounts for the corresponding generation of nonavailable potential
energy

— (AZ + AE)

in a physically reasonable way.

In the control run, there is a notably frictional heating even during the grow phase. As a result, the
decline of AZ + AE is stronger than the decline of TP.
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Figure 4: Temporal behavior of global energy and angular momentum quantities in the

life cycle experiments (control: solid lines, conventional: dashed lines).

5.2 Perpetual January simulations

In the previous section we have considered an instructive but nevertheless academic exam-
ple where neither thermal nor mechanical forcing of the model atmosphere was present.
In the following we apply the proposed friction and dissipations forms under more realistic
conditions, namely in perpetual January simulations of the troposphere and stratosphere.
Even though our specifications of radiative and latent heating are quite simple, the ther-

mal and mechanical forcing of the model atmosphere is quantitatively realistic, giving rise
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Figure 5: (a) Relaxation time 7 and (b) standard horizontal diffusion coefficient K, as
functions of 7x1013 mb for the T42/L.24 model configuration. Both profiles are calculated
as continuous functions of 7. The extra panel (c) shows the tropospheric and lower
stratospheric branch of the standard K}, (solid line). The dashed line in panel (c) shows
a Kj-profile that is finite in the lower troposphere and identical to the standard profile

otherwise.

to a comparatively realistic simulation of the boreal winter climate. The spatial resolution
is spectral truncation at total wavenumber 42 and 24 unequally spaced hybrid levels from
990 to 0.3 mb. This resolution is abbreviated as T42/L24.

5.2.1 Model description

Compared to comprehensive GCMs, the key idealization in the present model KMCM is
that we treat only the flow of dry air. Following Lorenz (1967, chapter V), the thermal
forcing of the model atmosphere consists of the bulk heating () which is due to radiation
and condensation, plus the surface sensible heat flux. Radiative and latent heating are
accounted for by simple parameterizations, namely by temperature relaxation towards an
equilibrium temperature 7Tg(®,p) and prescribed cumulus heating Q.(A, ¢,p) in the
deep tropics (Hou, 1993) together with self-induced condensational heating in the middle
latitudes using a heating function Q,(\, ¢,p) (Mak, 1994). Written in terms of sensible
heat divided by c, the bulk heating yields

T-Tg lw| h(—w)

Q= 40 mb d !

+ Qe+ Qm (5.6)
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Figure 6: (a) Equilibrium temperature in the T42/L24 version of KMCM (contour interval
10 K). (b) Zonal means of the heating functions @), and @, (contour interval 0.5 K/d).
(c)-(d) Longitude-dependencies of the heating functions Q. and @, at 900 and 500 mb.
Contours are from 0.5 to 5 K/d in intervals of 0.5 K/d.
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Figure 7: (a) Model topography ®,/g. Contours are from 0.5 to 4 km in intervals of 0.5
km. The Himalayas and the Rockies reach maximum elevations of about 4.4 and 1.8 km,

respectively. (b) Model surface temperature according to Eq. (5.7) (contour interval 10
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Figure 8: Zonal-mean climatology of the T42/124 version of KMCM. (a) Temperature
(contour interval 10 K). (b) Zonal wind (contour interval 10 ms™'). (c) Eulerian mass
streamfunction (contours 0.1,41,42 +4, +10, 450,100,150 x 10° kgs!). (d) Same as
(c), but for the residual mass streamfunction. Zero contours are not drawn, and negative

values are shaded.

where w is the pressure velocity and h denotes the Heaviside-function. The relaxation
time 7 is about 17 days in the lower troposphere and slopes down to 5 days in the upper
stratosphere (Fig. 5a). The surface sensible heat flux is due to the boundary condition
(4.15) using

Ty = [T + 047 (Qc + Qum) lp=p, - (5.7)
The fields Tg, Q., and @Q,, have been adjusted to mimic perpetual January conditions.
Figure 6a shows the equilibrium temperature that is used in the present T42/1.24 model

version with the uppermost model layer at about 0.3 mb. The heating functions are
depicted in Figs. 6b-d. Figure 7 shows the model topography together with the surface
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Figure 9: Zonal-mean climatology of the T42/1.24 version of KMCM. (a) Stationary eddy
momentum flux (contour interval 10 m?s2). (b) Stationary eddy heat flux (contour
interval 10 Kms™!). (c),(d) Same as (a),(b) but for the transient wave fluxes. Zero

contours are not drawn, and negative values are shaded.

temperature (5.7).

The assumed scale-selective damping owing to horizontal momentum diffusion is such
that, in the upper troposphere, wave number 42 of relative vorticity has a damping time
constant of about 2.6 days which corresponds to Kj, ~ 1 x 10° m?s™! (Fig. 5¢). The
diffusion coefficient gradually increases in the upper stratosphere in order to avoid wave

I is assumed

reflection from the model top. A maximum diffusion coefficient of 4 x 10% m?s~
in the lower mesosphere (Fig. 5b). Between 1 = 0.6 and 1 = 0.8 the horizontal diffusion
coefficient approaches zero in order to reduce coordinate transformation errors in regions

of steep orography as discussed in section 4.2.
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KMCM simulates the boreal winter climate and its intraseasonal variability quite
reasonably (Becker and Schmitz, 2001; Kornich et al., 2003). This is illustrated in Figs.
8-10. These results may be compared to observational analyses and other model data
provided for instance by Randel (1992) or Roeckner et al. (1992). In the troposphere
and stratosphere, zonal-mean zonal wind and temperature (Figs. 8a,b) are sufficiently
realistic in view of the simplicity of the model. Also the transient and stationary eddy
momentum and heat fluxes are simulated appropriately (Fig. 9). Furthermore, the main
features of the stationary waves in the troposphere and lower stratosphere as well as the
horizontal distribution of transients are captured (Fig. 10). In the following we discuss
results obtained with this T42/L24 version of KMCM.

5.2.2 Effects of conventional momentum diffusion versus new

diffusion and dissipation forms

As in section 5.1 we inspect two integrations of the model. Here, we consider 10 year per-
petual January integrations preceded by sufficiently long spin-up times. In the control run
(Figs. 8-10), horizontal momentum diffusion is included using (3.7), and the dissipation is
fully accounted for according to (3.9) and (4.12). In the corresponding conventional run,
(3.7) is substituted by

H.= K,{V’*v+VD}, (5.8)

and the frictional heating terms (3.9) and (4.12) are omitted. The model setup of the
conventional run is otherwise identical to that of the control run.

The climatological differences between the conventional run and the control run are
depicted in Fig. 11 for zonal-mean zonal wind and temperature. The 99% statistical
significance range based on Student’s t-test is indicated by shading. The representation
reveals a significant sensitivity of the simulated zonal-mean climate to employing (5.8)
instead of (3.7) and omitting the frictional heating terms. In the conventional run, the
stratospheric polar night jet is clearly stronger and colder. The signal extends down to
the lower troposphere where polar temperatures decrease by about 0.5° C. These high-
latitude anomalies are quite similar when only the frictional heating terms are neglected
(Becker, 2003, Fig. 2). It can be proven that they are due to somewhat reduced planetary
wave activity in the conventional run (see Becker 2003, Fig. 4) and, hence, that they
are an indirect rather than direct consequence of neglecting the frictional heating terms.
The anomalous stratospheric superrotation component visible in Fig. 11a results from
substituting (3.7) by (5.8). This signal is again indirect since the difference between
the diffusion forms (5.8) and (3.7) would suggest an anomalous damping rather than

amplification of the superrotation component.
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Figure 10 (previous page): Model climatology of the T42/1.24 version of KMCM. (a) Zonal
wind at 200 mb (contour interval 10 ms™!). (b) Eddy component of geopotential height at

200 mb (contour interval 50 m). (c),(d) Eddy components of temperature and geopotential
height at 30 mb (contour intervals 2 K and 100 m). (e) Transient eddy momentum flux
at 300 mb (contour interval 20 m?s~?). (f) Transient eddy heat flux at 750 mb (contour

interval 10 Kms™!). Zero contours are not drawn, and negative values are shaded.
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Figure 11: Climatological zonal-mean zonal wind and temperature differences in the con-
ventional run from the control run. The contour intervals are (a) 0.5 ms™! and (b) 0.3 K.
In addition, the 99% confidence range based on Student’s t-test is indicated by shading.

Zero contours are not drawn.

Given that the climatological differences in the conventional run from the control run
are weak compared to the uncertainties of any climate model to adjustments of all kind
of parameterizations, there appears to be no necessity for employing the proposed friction
and dissipation forms in present-day GCMs. More convincing arguments follow from the
global angular momentum and energy budgets.

Similar to estimates given by Lorenz (1967), the Eulerian law of angular momentum
conservation (e.g., Serrin, 1959, section 7; Lindzen, 1990, section 6.2) is applied to a fluid
volume ranging from the ground to the top of the model atmosphere and from the South
Pole to some latitude ¢; farther north. The angular momentum component parallel to
the axis of the earth is considered in the temporal mean. It follows that the northward
flux of relative angular momentum must be balanced by the mountain torque plus the

total friction torque, hence
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Figure 12: Evaluation of the angular momentum budget (5.9) in the control run (solid

lines) and in the conventional run (dashed lines). The unit is 10"® Nm.

2m 00 2 1
< [(aecos¢)2/d)\ / dz pvu] > = <a2/d)\ / cos’pdg z; 0y ps >
0 2=z o= 0 —900
é1
+<a? / cos 2¢ do [(—Zz e,)- ew] > (5.9)
—900 T

2 o0
+<[agcosz¢/d)\ / dz(Zhey)-ez] >
0 - $=¢1

Time averaging is indicated by the symbol < >. The first term on the rhs of (5.9) is the
mountain torque; the second term represents the torque owing to surface friction which
must be calculated according to Eqs. (3.6) and (4.6). The torque owing to horizontal
momentum diffusion, already discussed in Becker (2001), appears as a third term on the
rhs of (5.9). The finite-difference representation of Eq. (5.9) is straightforward.

Figure 12 shows the evaluation of the angular momentum budget for the control run

(solid lines) and the conventional run (dashed lines). (Even though the full 10 year time
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series are taken into account, it should be noted that almost identical results are obtained
if only a few hundred day time series are retained.) The northward angular momentum
flux, the mountain torque, and the friction torque are very similar in both runs. The
residual torque is defined as the rhs minus the lhs of Eq. (5.9). For the conventional run
the third term on the rhs of (5.9) is not defined and must be omitted. This accounts for
the strong residual torque if the northward boundary ¢; of the fluid volume lies in the
region of the tropical Hadley cells. A significant residuum remains in the conventional
simulation also for ¢; — 90°N. In the control run the corresponding deficiency is negligible
for all ¢,. Considering the exact values for ¢; = 90°N, one obtains a residual torque of
8.5 x 10" Nm in the conventional Tun versus —5.5 x 10'® Nm in the control run. In
relation to the relative angular momentum of the atmosphere (typically 1.5 x 1026 Nms),
either value appears to be of minor importance for climate modeling. That is, the time
scales by which the relative angular momentum of the atmosphere is artificially generated
or removed via the residual torques, 2050 days in the conventional run or 315000 days in
the control run, are very long.

The long-term energy budget of the model atmosphere can be analysed analogously to
the angular momentum budget. Using the same fluid volume as in (5.9), it follows from the
energy conservation law (2.62) supplemented by the no-slip condition that the poleward
flux of total enthalpy is balanced by the bulk heating, the surface sensible heat flux, the
horizontal diffusion of heat, and the work owing to horizontal momentum diffusion. Thus

we have
27 9]
<[aecos¢/d)\/ dzpv(cpT+gz+v2/2)] >
0 vz ¢p=¢1
27 ¢1 o0
- < ag/dA / cos ¢ do / dzc, pQ > (5.10)
0 —900 Z=Zs
2w o1 T
—<a§/dA / cosqbdqb{cppKzéGz@] >
0 —900 .
27 [e's) K
+< [aecosqﬁ/d)\ / dchp—ha¢T] >
0 - 2 =61
2 o]
+< aecosqﬁ/d)\ dz(Zhey)-v] >.
0 - $=¢1

The finite-difference representation of (5.10) is again straightforward. Figure 13 shows
the numerical result analogously to Fig. 12. The sum of the second and third term on
the rhs of (5.10) is plotted as the boundary heat flux in panel (c). Here, the horizontal
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Figure 13: Evaluation of the energy budget (5.10) in the control run (solid lines) and in
the conventional run (short-dashed lines). The long-dashed line in panel (c) shows the
work done by horizontal momentum diffusion (last term on the rhs of (5.10)) for the
control run. The unit is 10'% Js~'.

temperature diffusion is negligible. The same holds for the work due to horizontal fric-
tional stress (last term on the rhs of (5.10)) which, for the control run, is indicated by the
long-dashed line in panel (c¢). The residual heat source (panel (d)) is defined as the rhs
minus the lhs of (5.10). For ¢; = 90° this residuum solely consists of the bulk heating and
the surface sensible heat flux and thus represents the net thermal forcing of the model.
The long-term net thermal forcing should be zero. However, with the conventional

! or, equivalently,

model definition a spurious residual heat source of about 1 x 10'® Js~
1.95 Wm 2 remains. This residuum turns out to be quite robust against tuning of model
parameters, and it is obtained as well on the basis of much shorter than 10 year time
series. On the other hand, the residual heat source present in the control run appears
to be negligible for all ¢;. For ¢; = 90° a value of 1.65 x 10'* Js™! (or 0.032 Wm™2) is
obtained.

In the conventional case both the bulk heating and the boundary heat flux are al-
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Figure 14: Simulated long-term zonal-mean dissipation rates owing to (a) vertical
and (b) horizontal momentum diffusion in the control run. Contours are drawn
for 0.01,0.02,0.04,0.08,0.16, and 0.32 Kd~!'. Zonal averaging has been performed on
hybrid surfaces, and the vertical pressure coordinate corresponds to n x 1013 mb. The
global integrals of the respective dissipation rates give rise to (a) 1.31 and (b) 0.6 Wm 2.

ways greater than in the control run. This bias increases with increasing ¢, presumably
because the lack of frictional heating accumulates. Accordingly, a residuum of about 2
Wm 2 should be quantitatively consistent with the global integral of the simulated dis-
sipation in the control run. In fact, a globally averaged frictional heating of 1.91 Wm™2
can be diagnosed from the control simulation. Figure 14 shows the corresponding clima-
tological zonal means of ¢, and ¢,. The dissipation due to vertical momentum diffusion
is most relevant in the boundary layer. Such a behavior has also been found by Bister
and Emanuel (1998) in the simulation of a tropical cyclone. In the present case, typical
boundary layer heating dissipation rates are of the order of 0.3 Kd™!. Disregarding the
model stratosphere, significant dissipative heating rates due to horizontal momentum dif-
fusion show up in the middle and upper winter troposphere. However, the tropospheric
maximum of €, is not much in excess of 0.02 Kd~!. In the global mean, the vertical dissi-
pation term gives the main contribution of about 1.31 Wm~2 while horizontal dissipation
accounts for 0.6 Wm™2.

It is noteworthy that a simulated mean dissipation rate of about 1.9 Wm™2 fits well
within the range of existing estimates based on observational analyses of the general
circulation. QOort (1964) finds a value of 2.3 Wm™2 (see also Lorenz, 1967, chapter V).

Some modern textbooks suggest somewhat lower dissipation rates between 1.8 and 1.9
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Figure 15: Simulated long-term kinetic energy spectra in the upper troposphere, averaged
over the 196, 242, and 296 mb layers. Solid lines correspond to the control run and
short-dashed lines to the conventional run. The scaling of the axes is logarithmic, and
the straight long-dashed line gives the n=2 fit in the range of synoptic wave numbers.

Wm 2 (e.g., James, 1994, section 5.3; Prandtl et al., 1990, chapter 8). Thus, with regard
to the total kinetic energy typically contained in the atmosphere (~ 8 x 102 J or ~ 1.6 x
10% Jm?), a neglect of dissipation in conventional GCMs means that within about 9 days,
an equivalent amount of kinetic energy is removed from the flow without being dissipated
into heat. It follows that, apart from other uncertainties associated with parameterizations
and numerical truncation, conventional GCMs have a systematic imbalance of about 2
Wm~2 between the incoming and outgoing radiation.

It has been noted in chapter 3 that state-of-the-art GCMs used for climate prediction or
weather forecasting generally utilize higher order than harmonic horizontal diffusion. The
reasoning often is that a higher order scale-selective damping is better suited to simulate
the synoptic n~2 branch of the kinetic energy spectrum in the upper troposphere (e.g.,
Smagorinsky, 1993). Such a spectrum is predicted by quasi two-dimensional turbulence
(e.g., Salmon, 1998, chapter 4), and it is indeed observed for the synoptic scales down
to wavelengths about 500-1000 km (Nastrom and Gage, 1985). On the other hand, we
have concluded in chapter 3 that one must stick to a harmonic diffusion scheme for the
dissipation to be positive definite. The question arises whether the energy spectrum in

the free atmosphere can be simulated properly using the proposed second-order horizontal
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diffusion scheme.

The definition of the kinetic energy in spectral space is given in appendix A.4 by Eq.
(A60). Figure 15 shows corresponding computational results for the control run and the
conventional run, averaged over three model layers located around 250 mb in each case.
Both simulations yield quite similar results. For high wave numbers, the kinetic energy
is slightly higher in the conventional case. In the range of synoptic waves for total wave
numbers from about 7 to 25, both simulated energy spectra clearly exhibit the prominent
n~3 slope. This result demonstrates that harmonic horizontal momentum diffusion is
well suited to simulate the kinetic energy spectrum associated with atmospheric macro
turbulence. Such a conclusion is also evident from the very high resolution experiments of
Koshyk and Hamilton (2001) who have utilized the SKYHI model with the conventional

harmonic momentum diffusion scheme.

5.2.3 Additional perturbation runs

Zero trace of the stress tensor

In Becker (2001) it was noted that using the zero-trace horizontal momentum diffusion and
dissipation forms (3.12) and (3.13) instead of (3.7) and (3.9) leads to essentially identical
results in multiple baroclinic life cycle experiments. This finding does not necessaryly
apply in the present control simulation which is more complicated due to planetary waves
and a higher horizontal resolution. Indeed, significant differences in the model climatology
are obtained if (3.7) and (3.9) are substituted by the corresponding zero-trace forms
(3.12) and (3.13). The zonal wind and temperature differences between the corresponding
perturbation run and the control run are shown in Fig. 16. Regions where the statistical
significance exceeds 99% are shaded. Particularly the zonal wind signal is indicative
of enhanced wave activity in the subtropical troposphere. In contrast, both wind and
temperature anomalies reveal reduced wave activity in the stratosphere.

Evaluation of (5.9) and (5.10) yields a residual torque of —6.1 x 10'® Nm and a residual
heat source of 0.23 Wm™2 in the perturbation run. Both values are about one order of
magnitude weaker than in the conventional case, but they are nevertheless much stronger
than in the control run. A possible explanation is that, when using (3.12), the damping
of resolved gravity wave components is only half as strong than with (3.7). This may
cause stronger aliasing errors since the divergent part of the flow becomes more and more
important at the high wave number end of the kinetic energy spectrum (Koshyk and
Hamilton, 2001). The simulated global dissipation in the perturbation run amounts to
about 1.74 Wm~2. This value together with the residual heating of 0.23 Wm~=? is again
close to the simulated dissipation in the control run.
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Figure 16: Climatological differences between the perturbation run which employs Egs.
(3.12) and (3.13) and the control run. Shown are the anomalies for zonal-mean zonal wind
and temperature (contour intervals 2 ms~! and 1 K). As in Fig. 11, the shading indicates

the 99% confidence range based on a Student’s t-test, and zero contours are not drawn.

Finite horizontal diffusion in the lower troposphere

One further perturbation run has been performed, using the horizontal diffusion coeffi-
cient shown by the dashed line in Fig. 5¢c while otherwise retaining the model setup of
the control run. Figure 17 shows the climatological differences between this second per-
turbation run and the control run for zonal-mean zonal wind and temperature (including
statistical significance levels), as well as for the meridional eddy fluxes of zonal wind and
temperature. All anomalies clearly indicate a considerable reduction of wave activity
throughout the troposphere and stratosphere. Thus, the usual model design of retaining
horizontal diffusion in the lower troposphere can significantly weaken the overall simulated
wave activity. Figure 17 reveals that the effect is particularly crucial to the stratospheric
circulation.

Evaluation of (5.9) yields a residual global torque of 1.2 x 10'" Nm for the present
perturbation run. This value is only a factor 7 weaker than that obtained in the con-
ventional run, and it is about 20 times stronger than the residual torque obtained in the
control run. Hence, employing zero horizontal diffusion in the lower troposphere proves
to be sufficient to avoid coordinate transformation errors.

A strong spurious heat source in the present perturbation run is not expected. Mainly
because the main contribution to the overall dissipation is due to vertical momentum
diffusion and, to some extent, due to horizontal momentum diffusion in the upper tropo-
sphere (Fig. 14). Accordingly, a residual heating of 1.56 x 10** Js~! is obtained which is

52



(a) zonal wind anomaly (b) temperature anomaly
0.51 TREPE FRE T Y N e e ‘ : : : ‘
R R SRR S R e [ ITE e
29 SRR N oV

01 S o ‘ | ‘
204 EEEEEEE Feeeecagecas- v - Nz

p (mb)

504 P Bl /
1004 ---- rREEREL boaoc
2001

500
900

p (mb)

100 1
2004

100 1
2001

5001 ‘ ‘ : X 500 1
900 — R . . e 900

latitude latitude

Figure 17: Climatological differences between the perturbation run with finite horizontal
diffusion in the boundary layer and the control run. Shown are the anomalies for (a)
zonal-mean zonal wind (contour interval 2 ms™!), (b) temperature (contour interval 1 K),
(c) eddy momentum flux (contours +2,+6,—10, —14, ... m?s72), and (d) eddy heat flux
(contours +2, —6, —10, —14,... Kms™'). Zero contours are not drawn. The shading in
(a),
(),

(b) indicates the 99% confidence range based on a Student’s t-test. The shading in
¢),(d) indicates negative values.

close to that of the control run. However, the global mean frictional heating amounts to
1.64 Wm~2 which is 0.27 Wm~2 weaker than in the control run. This effect can be at-
tributed to the weaker wave activity in the present perturbation run (Figs. 17c,d). Since
less kinetic energy is generated by conversion of available potential energy, the overall

dissipation must decrease by the same amount.
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Chapter 6

Numerical experiments including
parameterization of internal gravity

waves

With regard to gravity wave breakdown and turbulent stress, new forms of the planetary-
scale heat and energy budgets have been proposed in section 2.4. In this chapter we
quantitatively assess the local heat budget in the MLT by analysing permanent January
model runs. In particular, computational estimates of the climatological-mean frictional
heating owing to gravity wave wind shear, first presented by Becker and Schmitz (2002),
are derived. In this context we also address the important question to what extent the
dissipation of gravity wave kinetic energy is balanced by adiabatic conversion of mean
enthalpy. Furthermore, the entropy flux generated by the IGWs themselves is assessed.
As the basis of these model estimates we apply the simple GCM KMCM introduced in
the previous chapter. The model is employed with an extended vertical resolution, and it
is supplemented by an appropriate gravity wave parameterization based on the concept
of Lindzen (1981).

In the following section we extend Lindzen’s gravity wave saturation theory by the
derivation of all gravity wave effects mentioned in section 2.4. Then, after a brief descrip-
tion of the modified version of KMCM, we inspect a long-term control simulation with
particular emphasis on the heat budget in the MLT. In addition, we assess the model
sensitivity to the choice of the effective Prandtl number which, according to the analysis
to be proposed, should not exceed a value of 2. Finally, possible north-south asymmetries
in the MLT are estimated by comparing the control simulation against the corresponding

aquaplanet model run.
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6.1 Gravity wave saturation theory

6.1.1 Linear wave analysis with turbulent diffusion

Let us consider the linear propagation of internal gravity waves (IGWSs) in an isother-
mal background atmosphere. To simplify the notation, the horizontal direction of wave
propagation is assumed to be in the z-direction, and the corresponding background hori-
zontal wind component is u(z). D denotes the turbulent diffusion coefficient. Assuming
the Boussinesq approximation and hydrostatic balance for the wave perturbations, the

governing equations are

(0, +udy—D*)u = —p 10,7 (6.1)
(0;+ud, —DI)O = —w'0,0 (6.2)
plo.p = go'e! (6.3)

g + 0.0 = 0. (6.4)

The system (6.1)-(6.4) differs from that given by Holton (1992, section 7.4) by the explicit
inclusion of turbulent diffusion and by the assumption of hydrostatic balance for the IGWs.
Note that the latter assumption is inherent in present-day gravity wave parameterizations
(e.g., Holton, 1983; Hines, 1997). After some standard manipulations and assuming that
the background wind varies very slowly with height, we can derive from (6.1)-(6.4) a single

differential equation for the vertical wind perturbation:
{(0;+udy)*—2(0;+ud,) D} w + N?*3?w' =0, (6.5)

Here, a term nonlinear in D is neglected, and N? = ¢ 9,0 /© is the Brunt-Vaisila fre-

quency squared of the mean state. Equation (6.5) is solved by the wave ansatz
w':ﬁJ(z)exp{%—Hk(m—ct)}, (6.6)

where H = RT/g is the scale height. £ > 0 and ¢ > 0 denote the horizontal wave

number and the phase speed of the wave. w satisfies the differential equation

2D
Ao+ No+i—d* =0 6.7
S W+ Tw—Hk(u—c) LW : (6.7)
where N
Ar:=u_c (6.8)

is the real part of the vertical wave number. Since we wish to consider only gravity waves

with downward phase propagation or, equivalently, with upward energy flux, we must
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require that A, < 0, hence ¢ > u . For weak vertical diffusion, Eq. (6.7) has the WKB
solution

c—u(z)

@ =B exp{i/ AdZ} with Api= A +i N (6.9)
20

C — Ug
Here, zy represents the level of gravity wave excitation and ug := u(zg) such that B is the
wave amplitude at that level. The imaginary part A; of the complex vertical wave number
A describes the damping of the wave amplitude owing to vertical diffusion. Inserting
(6.9) into (6.7), we find (see also Holton, 1982, Eq. (26))
D N3

\i = e (6.10)

With the aid of (6.4) the general form of the vertical flux of horizontal momentum is

pRe (u) Re (0) = — pkA" (Re (w) 2. =

PAr e
- — * 11
5 WY (6.11)

The complex conjugate is indicated by an asterisk. As in section 2.3, the average extends
over the horizontal and temporal scales of the wave. Inserting (6.6) and (6.9) into (6.11),

introducing Holton’s abbreviation
@ =B N’k (c—up)~ "' >0, (6.12)

and defining pgo as the surface density of the background state, the momentum flux

becomes

2N

This expression illustrates that, given the horizontal wave number &k, Holton’s wave pa-

poo k @? z ,
pRe () Re (w') = exp {2 / NdZ'}. (6.13)
20

rameter @ determines the wave momentum flux at the initial level. Furthermore, the

momentum flux (6.13) is constant in the absence of turbulent diffusion, and this is in

accordance with the second theorem of Eliassen and Palm (Lindzen, 1990, chapter 8).
Remembering Eq. (3.10), the frictional heating associated with the wave’s vertical

wind shear can be calculated in the same fashion as the momentum flux:

D DN P
D NY2 — T o —
(0:Re (w))* = —75 2N

exp{i—z/ NdZ'). (6.14)
H 20
In order to assess the vertical flux of entropy we write

© = ((2) v, (6.15)

where the approximate form of the function ¢ follows from (6.2),(6.6),(6.9) for | ;| < ||

¢(2)

— 2
0:0 %9 (¢+7k(7”’ ). (6.16)

:D/\$+ik(u—c)N_k(c—u) c—u)
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Accordingly we get for the entropy flux

S 7 N o s P e
®Re(®)Re(w) 4®(C + ) w'w (6.17)
~3
— _p @W%O L o[\ a
= DQ@(c—u)?’eXp{H QLOAZdz}.

As expected, (6.17) vanishes in the case of conservative wave propagation, that is, for D =
0.

The wave pressure flux follows immediately from the first theorem of Eliassen and
Palm (Lindzen, 1990, Eq. (8.14)):

Re (p') Re (w') = (¢ —u) pRe (u') Re (w') . (6.18)

In Lindzen’s book this theorem is derived for frictionless wave propagation. It is readily
shown that the theorem holds as well in the more general case with vertical diffusion.

6.1.2 Lindzen’s saturation assumption

Between the level of wave excitation and the breaking level z, the wave is assumed to
propagate conservatively, that is, D = 0 for 2y < z < z,. The breaking level itself is
implicitly defined by the condition that the background state plus the wave reach static
instability, hence

N0 |=0,0 for z=z. (6.19)

Inserting ©' from (6.15) and (6.16), retaining only the leading term from (6.16), and
dividing by 0, O, the criterion (6.19) can be written as

B\ | z
exp{=—7}=1 for z=2. (6.20)
k\/(c—u)(c—uo) 2H
Using the definition (6.12) we get
z—3HIn{(c—u)/u}=0 for z=z, (6.21)

which is identical with Eq. (21) in the paper of Holton (1982).! Lindzen’s saturation

assumption states that the turbulent diffusion generated above 2z, keeps the background

!In Holton (1982) as well as in Lindzen (1981), the stability criterion is defined as |\ T"| = g/c, .
This means, the wave pressure perturbation p' is ignored. Then, both authors invoke the enthalpy
equation in the form (8; +u8;)T' = —w'g/c, in order to compute T’ from w' . Here, the pressure
perturbation is ignored once again such that the final stability criterion is correct. Note however that
(6.19) can be expressed in terms of 7' and p' yielding |, (T' — c’;—lp )| = g/cp , and that the correct

enthalpy equation corresponding to (6.2) is (0; + u 9, ) (T' — c’;—'p )=-w'g/c, + TO DO .
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state plus the wave at marginal static instability. Assuming that the wave is finally

'swallowed’ at the critical level z. where u = ¢, Eq. (6.20) can be generalized as
B
k \/(c— u)(e — ug

or, with regard to the definition (6.12), as

exp { z —/z)\idz'}zl for z<z<z (6.22)
) 2H 20

? / (C_ U)3 —z/H
exp {—2/ AidZ' } =———e for 2z, <z<z. (6.23)
20 Uu

The saturation condition (6.23) allows to compute the wave momentum flux, the wave-
induced diffusion coefficient, the dissipation of gravity wave kinetic energy, and the wave
entropy flux from (6.13), (6.10), (6.14), and (6.17). One finds the following expressions
for z, < z < 2. :

pRe (u')Re (w') = 2—(c—u)3 (6.24)

D = k(;&f)g{clguwazu} (6.25)
D @R (W) = %DNQ (6.26)
é’Re(@')Re(w’) = —%D@zQ. (6.27)

Equations (6.24) and (6.25) are well known from Lindzen (1981). The dissipation rate
(6.26) has already been mentioned by Becker and Schmitz (2002), whereas the gravity
wave entropy flux (6.27) has been ignored in previous studies.

Equation (6.27) implies that the entropy flux convergence associated with nonconser-
vative gravity wave propagation formally corresponds to a vertical diffusion of the mean
stratification, involving the wave-induced diffusion coefficient with a Prandtl number of
2. Hence, even if we disregard the action of the wave-induced turbulent diffusion on the
mean stratification, the wave-mean flow interaction implies such a diffusion. Stated other-
wise, if we formally incorporate the wave entropy flux in the vertical diffusion term of Eq.
(2.56), the present analysis imposes an upper bound of 2 for the effective Prandtl num-
ber in the MLT. This result goes beyond previous experimental and theoretical estimates
suggesting a quite wide range for the Prandtl number (for reviews see: Thomas, 1996;
Hocking, 1999). Note also that (6.27) has been derived by assuming that the turbulent
Prandtl number is equal 1 at the scales of the IGWs, which is customary in saturation
theory.

It can be proven that the system (6.13),(6.14),(6.17),(6.18) is fully consistent with
Eq. (2.60). This is, of course, also true for the system (6.24)-(6.27) where the diffusion
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coefficient has been specified. For a single gravity wave, the energy deposition yields with
regard to (6.18),(6.24),(6.25)

cC—Uu

E=-— 0, (pRe (W) Re(w))=DN?>>0 for 2z <z<z. (6.28)
Equation (6.28) reveals that the energy deposition is exactly twice as strong as the dissipa-
tion €4, given by (6.26). Furthermore we have E = 0 for conservative wave propagation,
as it should be. Note that this holds neither for the pressure flux convergence nor for the
residual work W,.s (see Eq. (2.57)). Both terms can be different from zero whether the
momentum flux changes with height or not. This paradox was already noted by Hines and
Reddy (1967) or Lindzen (1973) and has been further discussed by Becker and Schmitz
(2002). With the help of (6.27) and the identity N? = ©71gd, © we can compute the
entropy flux term on the rhs of (2.60), yielding

— -1 —_g ! /_L _1 2
ge, Fy= GRe(@)Re(w)—QGD@@—QDN. (6.29)

It thus follows that the approximations introduced in sections 2.3 and 2.4 for the energetics

of internal gravity waves are perfectly fulfilled by quasi-linear wave theory in association
with Lindzen’s saturation assumption, provided that all wave-mean flow interaction terms

and the frictional heating term are consistently taken into account.

6.2 A simple GCM from the boundary layer up to

the mesopause

In order to simulate the dynamics of the middle atmosphere up to the mesopause, we
utilize KMCM with a reduced horizontal and an increased vertical resolution, i.e. T29
and 60 hybrid layers from 990 to 0.0003 mb. Other modifications of this T29/L.60 model
configuration are as follows.

In the middle atmosphere we employ a more realistic equilibrium temperature (see
white contours in Fig. 20a) which resembles the radiatively determined state proposed by
Shine (1987). Furthermore, vertically extended profiles for the relaxation time and the
horizontal diffusion coefficient are introduced (Fig. 18). The relaxation time 7 is 17 days
in the troposphere, it increases to 45 days around the 100 mb level and slopes down to
7 days in the upper stratosphere and mesosphere. This profile differs from that used in
Becker and Schmitz (2002) by including a considerably long relaxation time in the lower
stratosphere. Such a feature is known from radiation model calculations (e.g., Gille and
Lyjak, 1986) and it has also been accounted for by Dunkerton (1991) within an idealized

model. The modification leads to somewhat enhanced transient planetary wave activity
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Figure 18: (a) Relaxation time 7 and (b) horizontal diffusion coefficient K, as functions
of nx1013 mb for the T29/L60 model configuration. The extra panel (c) shows the
tropospheric and lower stratospheric branch of K.

in the middle atmosphere. The horizontal diffusion coefficient is about 0.55 x 10° m?s~*
in the upper troposphere and amounts to 2 x 107 m?s~! in the MLT.

Gravity wave effects are parameterized according to saturation theory as described in
the previous section. We assume a family of j, = 14 individual gravity waves. For sim-
plicity, wave-wave interactions are neglected. The vertical flux of horizontal momentum
owing to IGWs, the associated pressure flux, and the wave-induced turbulent diffusion
coefficient are written as

Jo
= jo* ZF]- e, Wwith e, :=cosae,+sinae, (6.30)
i—1
= Jo Z ) Fj  with 1 := v - e, (6.31)
K igw = J5* ZD + vhg(7) - (6.32)
j=1

The «; denote the individual azimuths of propagation. The corresponding horizontal
phase speeds are ¢; > 0. Then, jy leeaj and j, 1”Dj are the individual wave contribution
to the momentum flux and the diffusion coefficient. The pressure flux (6.31) follows from
the first theorem of Eliassen and Palm (6.18). For the sake of completeness, the definition
(6.32) also includes an additional background diffusion similar to the profile used by
Becker and Schmitz (1999, their Fig. 3). In the MLT, this additional term is negligible
against the IGW-induced diffusion coefficient.
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Figure 19: Graphical representation of gravity wave parameters: (a) Horizontal wave num-

N

S

bers k;, (b) phase speeds ¢;, and (c) amplitudes @;. The source spectrum consists of 14
individual waves each of which is represented by either a thin black line or a thick white
line. These waves are distributed over 8 equidistant different azimuths. Each one wave
propagates northward and southward while each two waves propagate in the other direc-
tions. The scaling is such that maximum components in (a), (b), and (c) are 1.63 x 107°

m !, 32.8 ms !, and 1.04 ms !, respectively.

Chapter 4 has already provided the general finite-difference scheme to incorporate any
such gravity wave parameterization in a hybrid coordinate model. We emphasize that
the energy deposition must not be computed from (6.28) if a precise energy conservation
is desired. For the present hybrid coordinate model, F and K,;q, are specified on
half model layers. The pressure flux (6.31) is defined on half layers using v,ii/2 :=
(Vigr +vi)/2.

In accordance with the analysis of the previous section we account for the wave entropy
flux by means of the vertical diffusion term p,. We assume an effective Prandtl number
of 1 for the combined entropy flux owing to the gravity waves themselves and the wave-
induced turbulent diffusion of the mean flow. That is, the vertical diffusion coefficient
K, in Egs. (4.11)-(4.13) is the sum of (A38) and (6.32).

The gravity waves are launched at the initial half level 2y, which is located around 170

mb. Writing the height argument in brackets, we have from (6.13)

= > NTzo] u; =: Fjp > 0. (6.33)
Here, pgo and N are a surface reference density and the Brunt-Vaisala frequency of the
model’s reference state defined in appendix A.2. The velocities %; > 0 and the horizontal
wave numbers k; > 0 are gravity wave parameters.

Critical levels z.; are implicitly defined by u; — ¢; = 0 above which we have F; = 0.
Since the real part of the vertical wave numbers must be negative for upward energy

flux, individual waves with %; — ¢; > 0 are also removed from the spectrum. If the
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condition #; — ¢; > 0 is not fulfilled somewhere above the initial level, z.; is identified
with the half layer between the uppermost two full model layers.

Below the critical levels, the IGWs may reach static instability at the breaking levels
2p; implicitly defined via Eq. (6.21). To solve (6.21) for the breaking levels, we assume a
scale height of H = 6.44 km which corresponds to a background temperature of 220 K
in the middle atmosphere consistent with the model’s reference state (Fig. 32a). If the
lhs of (6.21) does not change sign between zy and z; for an individual wave, we formally
set zpj = 2¢j-

Between z,; and zj, the wave momentum fluxes can be calculated according to (see
Eq. (6.24))

Fyj = pki (2N)™ (¢; —u; ). (6.34)

In a 3D dynamical model, F}; may increase with height even at or above the breaking level
zpj - In this case it is appropriate to keep F; constant with height and to neglect the indi-
vidual wave contributions to the diffusion coefficient (e.g., McFarlane, 1987). Letting Az
be the height increment between adjacent half model layers, the present implementation

of the Lindzen scheme can be summarized as:

(0 for z < 2z
F; for zp <z < 2,
Filz] =< Fy; for zp; < z < z.; and Fy;[z] < Fj[z — Az] (6.35)
Fijlz — Az] for z,; < z < z;; and Fy;[2] > Fj[z — Az]
L 0 for z > 2.
(0 for 2> z;

Fyj x ((e—1u;) / H + 30:1;) / (pN?)
for 2z <z <z, and Fylz] < Fjlz — Az]

Dj[z] =40 for z; <z <z, and Fy[z] > Fj[z — Az] (6.36)

Djlz;] x exp{(z—2;)/3H}
for 2y <2z < 2,

L 0 for z<z.

This implementation differs from that used in Becker and Schmitz (2003) by a sharper
decay of D; below the breaking level (Holton, 1982). Figure 19 summarizes the actual
choices for k;, ¢;, and ;. The 14 individual waves propagate in 8 equidistant azimuths.
In each of the azimuths 0°, 45°, 135°%, 180°, 225° and 315° there are two waves that differ
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Figure 20: Zonal-mean climatology of the T29/L60 version of KMCM (a) Temper-
ature (black contours, interval 10 K) and equilibrium temperature Tp (white con-
tours, interval 10 K, only the 200 and 240 K contours are labeled). (b) Zonal
wind (contour interval 10 ms™').  (c) Eulerian mass streamfunction (contours
0.01,0.1, 41,42, +4, +10, 450, 100, 150 x 10° kgs™'). (d) Same as (c), but for the residual
mass streamfunction. In panels (b)-(d), zero contours are not drawn, and negative values
are shaded.
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Figure 21: Zonal-mean climatology of the T29/L60 version of KMCM. (a) Stationary

eddy momentum flux (contour interval 10 m?s~2). (b) Stationary eddy heat flux (contour

interval 10 Kms™!).

(c),(d) Same as (a),(b) but for the transient wave fluxes.

Zero

contours are not drawn, and negative values are shaded.
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with respect to their phase speeds c; while having the same horizontal wave numbers k;
and initial amplitudes @;. Each of the azimuths 90° and 270° contains one wave. Note that
the scaling factor j;' can as well be avoided by redefining the horizontal wave numbers
as j;'k; . In fact, each gravity wave effect (momentum deposition, energy deposition,
turbulent diffusion coefficient) proves to be proportional to any efficiency factor applied
to the horizontal wave numbers.

At present it is hardly known how the excitation of IGWs depends in detail on the
large-scale atmospheric flow. Therefore, it is suitable to employ a fixed and horizontally
uniform source spectrum.

In the following we inspect a long-term model run (1200 day time series) including full
forcing of planetary waves by orography and the heating functions Q. and @, (Becker
and Schmitz, 2003). As in the previous chapter, this simulation is referred to as control
run. The zonal-mean climatology of the control run is documented in Figs. 20 and 21.
The longitudinal distributions of stationary and transient waves in the troposphere and
stratosphere are similar to those obtained in the T42/L24 model version (Fig. 10) and are
therefore not shown.

6.3 Dynamical aspects of the heat budget in the mid-

dle atmosphere

Let us concentrate on the simulated heat budget of the mesosphere in the climatological
zonal mean. Figure 22 shows a corresponding graphical representation. First of all we
compare the dynamic heating (panel f) with the parameterized heating (panel e). The
former is defined as adiabatic heating plus advection by the resolved flow, while the latter
represents the sum of temperature relaxation, dissipation of the mean flow, energy depo-
sition owing to IGWs, and diffusion. The satisfactory balance between dynamic heating
and parameterized heating indicates that the model’s aliasing errors are small. The dia-
batic heating by temperature relaxation (panel (a)) is quantitatively consistent with other
estimates for the radiative heating in the middle atmosphere during the solstices (Gille
and Lyjak, 1986; Berger and von Zahn, 1999). Figures 22a-d reveal that, in the upper
mesosphere, the parameterized heating is a residual of several contributions. Particularly
in the region of gravity wave breaking, diffusion of heat and energy deposition (Figs.
22¢,d) are of the same order of magnitude as temperature relaxation.

The energy deposition (Fig. 22¢) is reminiscent of the observed asymmetry between the
summer and the winter mesosphere as deduced from rocket-borne measurements (Liibken,
1997a,b); it reflects corresponding summer-winter differences in gravity wave saturation
as anticipated by Lindzen (1981). Note that the energy deposition does not represent
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Figure 22 (previous page): Simulated heat budget of the mesosphere in the climatological

zonal mean. (a) Radiative heating as mimicked by temperature relaxation. (b) Dissipation
due to vertical and horizontal momentum diffusion of the mean flow, i.e. €,+€p,. (c) Energy
deposition (Eq. (2.57)). (d) Heat diffusion (see Eq. (2.56)). (e) Net parameterized heating
defined as the sum of (a)-(d). (f) Adiabatic heating plus advection due to the resolved
planetary-scale flow, abbreviated as dynamic heating. The contour interval is 0.5 Kd*
in panel (b) and 3 Kd~! in all other panels. Zero contours are not drawn, and negative

values are shaded.
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Figure 23: Specific contributions to the heat budget of the mesosphere owing to turbulent
diffusion of the mean flow in the climatological zonal mean. (a),(b) Dissipation owing
to vertical and horizontal momentum diffusion (see Egs. (3.10),(3.9), contour interval
0.5 Kd™'). (c) Vertical diffusion of potential temperature and (d) horizontal diffusion of
temperature (see Eq. (2.56), contour interval 4 Kd=!). Zero contours are not drawn, and
negative values are shaded.
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Figure 24 (previous page): Specific IGW contributions to heat budget of the mesosphere

in the climatological zonal mean. (a) Dissipation of IGW kinetic energy (6.37). (b) IGW-
induced vertical diffusion coefficient (6.32). (c) Adiabatic conversion of mean enthalpy
into IGW kinetic energy. (d) Total dissipation (defined as the sum of Figs. 22b and 24a).
(e) Residual work (second Eq. (2.57)). (f) Pressure flux convergence. Contours are drawn
for £1, 42, £4, £6,... Kd=!, and negative values are shaded.

the turbulent dissipation even though such an interpretation is sometimes suggested as
already mentioned in section 1.3.

The dissipation and the heat diffusion of the mean flow consist of two terms each.
These are due to vertical and horizontal diffusion (section 2.4). Figure 23 depicts these
individual parts of the heat budget (note the different contour intervals in the upper
and lower panels). The vertical and horizontal contributions to the dissipation of the
mean flow have similar magnitudes. According to Fig. 23c, vertical diffusion of potential
temperature pu, cools the MLT. This is expected for a statically stable stratification.
There is also heating due to u, between about 0.1 and 0.01 mb (60 to 80 km) in the
summer MLT. This heating marks a sharp spatial concentration of the breaking levels. In
the northern winter mesosphere, such a diffusive heating is generally not visible because
the breaking levels are distributed over a wider altitude range (Becker and Schmitz, 2003).
For the present choice of an effective Prandtl number 1, i, dominates the direct IGW
heating rates that are explicitly accounted for in the model. We obtain maximum cooling
rates of more than —30 Kd! in summer and about —10 Kd™! in winter (Fig. 23c).
Horizontal diffusion of temperature, p;, (see Eq. (2.56)), gives maximum contributions of
about +10 Kd ! around the summer mesopause (Fig. 23d).

The maximum dissipation associated with momentum diffusion of the mean flow is
about 2 Kd™! (Fig. 22b). This value is consistent for instance with Fritts and Luo (1995,
see also references therein) who noted that typical dissipation values of about 2 Kd™! in
the summer MLT lie well within the wide range of experimental and theoretical estimates.
Nevertheless, the simulated dissipation is too weak by almost one order of magnitude in
comparison with the more recent observational results of Liibken (1997a). This appar-
ent discrepancy has been anticipated in section 2.4, where it has been stressed that the
dissipation of gravity wave kinetic energy e€;4,, is not explicitly accounted for in the thermo-
dynamic equation of the model. Rather, the model includes the residuum of €;4,, and the
wave-generated adiabatic conversion of mean enthalpy into wave kinetic energy. Hence,
we have not proven yet whether the model simulation is consistent with in-situ measure-
ments of Liibken, that is, whether the model can reproduce the observed frictional heating

in the mesosphere.
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An essential element of Lindzen’s saturation theory is that the IGW-induced turbu-
lent diffusion coefficient and the wave-mean flow interactions are unambiguously linked
together. Such a relationship is not provided by other gravity wave theories like that of
Hines (1997) for instance. Moreover, since Lindzen’s theory explicitly describes the dy-
namics of the individual gravity waves, the frictional heating generated by these waves can
be calculated. According to (6.26) and neglecting wave-wave interactions, the dissipation

of gravity wave kinetic energy yields for the present parameterization
1 2
Cigw = §Kzzng . (637)

Figure 24a shows the model estimate of (6.37). The dissipation of gravity wave kinetic
energy reflects the turbulent vertical diffusion coefficient K, ;4, which is shown in Fig.
24b. Figures 24a and 22c are roughly consistent with the theoretical relationship E =
2 €igy derived in section 6.1.2. Comparing Fig. 24a to Figs. 23a,b yields that, in the MLT,
(6.37) gives the dominant contribution to the total dissipation €4, + €5 + €,. The model
estimate of the total dissipation (Fig. 24d) amounts to 7 Kd! in summer. Such a value
is too weak by about a factor of 2 in comparison with results of Liibken (1997a,b) for the
average of observed summer MLT dissipation rates. Nevertheless, both experimental and
model estimate are of same order of magnitude.?

It is worthwhile to emphasize that the computational result of the total dissipation
has been obtained without adjusting the direct heating rates associated with gravity
wave breaking by additional parameters. With the setting of gravity wave parameters we
have specified the individual wave momentum fluxes (or equivalently the energy fluxes)
launched around the tropopause, but nothing else.®> (The only additional parameter of
the present gravity wave parameterization is the effective Prandtl number. The model
sensitivity to the choice of this parameter will be addressed in the next section.) As usual,
the IGW source has been tuned such that the model generates a reasonable IGW-driven
residual circulation in the mesosphere, including the reversal of the zonal-mean zonal wind
in both hemispheres and the generation of a cold summer mesopause (Fig. 20). As soon
as these objectives are achieved, the dissipation of gravity wave kinetic energy is found
to be of the order of magnitude predicted by the aforementioned observational results of
Liibken.

According to the analysis presented in chapter 2, also the adiabatic conversion of mean

enthalpy into gravity wave kinetic energy (see Eq. (2.58)) can be assessed. The convention

2In Becker and Schmitz (2002), stronger dissipative heating rates were predicted by the model. I have
recognized that the former result was due to overestimating the wave-induced diffusion coeflicient K ;4,,

via the vertical discretization method. This part of the code has been improved.
3 Additional ’fudge factors’ are introduced in the scheme of Hines (1997) for instance in order to tune

the energy deposition and the diffusion coefficient independently from the momentum deposition.
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Figure 25: (a) Sum of all direct heating rates owing to gravity waves, E + u, + €,, and
(b) the wave enthalpy flux convergence (contour interval 4 Kd™!, zero contours are not
drawn, negative values are shaded). The latter is equal to the pressure flux convergence
(Fig. 24f) plus the entropy flux convergence (see Eq. (2.37)) which, for the present choice

of an effective Prandtl number 1, is given by %uz.

is such that the conversion is negative if gravity kinetic energy is generated. Figure 24e
shows the residual work, which together with the pressure flux convergence (Fig. 24f) gives
rise to the energy deposition (Fig. 22c). It has been anticipated in Becker and Schmitz
(2002) that the residual work is generally negative in the MLT. This is confirmed by Fig.
24e. Hence, the adiabatic conversion term, Wes — €0 (Fig. 24c), overcompensates the
dissipation. This relationship provides a reasonable explanation to the question raised by
Liibken (1997a), namely what process balances the observed strong dissipative heating in
the summer MLT.

Since the wave entropy flux convergence behaves like a mean flow diffusion, it generates
heating around the breaking levels and cooling farther above, at least in the summer MLT
(see Fig. 23c). Also the total simulated heating rate owing to gravity waves (Fig. 25a) or
the wave enthalpy flux convergence (Fig. 25b, calculated according to Eq. (2.46)) resemble
this structure, with the regions of heating being more pronounced due to the pressure flux
convergence. Hence, the heating/cooling pattern shown in Fig. 25a is dominated by the

vertical entropy flux generated by the waves and by the wave-induced turbulent diffusion.
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Figure 26: Zonal-mean temperature and residual meridional wind in the control run (a,c)
and in the perturbation run with an effective Prandtl number of 2 assumed for vertical
diffusion in the MLT (b,d). The contour intervals are 10 K (a,b) and 3 ms™" (c¢,d). Zero

contours are not drawn, and negative values are shaded.

6.4 Sensitivity experiments

6.4.1 Role of the effective Prandtl number

The Prandtl number for vertical diffusion of potential temperature in the MLT has long
been the most ambiguous parameter of IGW parameterizations. All other parameters
are more constrained in order to achieve a reasonable model climatology with regard
to the zonal-mean zonal wind and the residual circulation. Within the framework of
Lindzen’s saturation theory it has been shown that the effective Prandtl number assumed
for the planetary-scale flow should not exceed a value of 2 (section 6.1). This result comes
about because the entropy flux convergence owing to gravity wave-mean flow interaction
— a term that is usually ignored — is indeed important and formally corresponds to a
vertical diffusion with a Prandtl number of 2. It thus follows that the effective Prandtl
number which scales the combined entropy flux owing to the gravity waves themselves
2

and the wave-induced turbulence must lie between £ and 2. If the lower bound is used,
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both the action of the wave-induced turbulence on the background stratification and the
wave entropy flux are fully included; if the effective Prandtl number is equal 2, only
the wave entropy flux is accounted for. In the control simulation we have assumed an
intermediate effective Prandtl number of 1. It appears however worthwhile to assess the
model sensitivity to the choice of this parameter. Therefore, an additional long-term
integration has been performed, employing an effective Prandtl number of 2 for vertical
diffusion in the MLT. More precisely, the vertical diffusion coefficient in Eq. (4.13) has
been set equal to the sum of (A38) and K, ;4,/2. The model setup of the control run has
been maintained otherwise.

Figure 26 shows the MLT temperatures and residual meridional winds in the control
run (lhs panels) and in the perturbation run with the higher effective Prandtl number (rhs
panels). Figures 26a,b indicate that, due to a doubling of the Prandtl number, the summer
mesopause is heated up by about 30 degrees and shifted to lower altitudes. Furthermore,
its vertical slope with latitude (e.g., Berger and von Zahn, 1999) flattens. Temperatures
also rise throughout the winter mesosphere with an averaged signal of about 20 degrees.
These temperature changes reflect mainly the lower diabatic cooling by vertical diffusion
of potential temperature. However, Figs. 26¢c,d reveal that also the gravity wave-driven
residual circulation in the MLT is significantly reduced, indicating that gravity effects
become generally weaker if we simply increase the Prandtl number. As a result, the
present perturbation run yields a somewhat weaker diffusion coefficient and a somewhat
weaker total dissipation rate with a maximum of 6 Kd™! in the summer MLT (not shown).
For the larger effective Prandtl number we would have to adjust the gravity wave source in
order to maintain the strength of the IGW-driven residual circulation and a cold summer

mesopause. This would in turn reestablish stronger dissipation rates.

6.4.2 Impact of orography and land-sea heating contrasts

It has been mentioned in section 1.2 that the IGW-controlled general circulation of the
mesosphere is highly sensitive to the forcing of planetary-scale waves in the troposphere.
The mechanism behind this at first sight unexpected sensitivity can be investigated on
the basis of the present model in the following way. First we define the corresponding
aquaplanet model by substituting the heating functions Q. and @,, (see section 5.2),
and orography ®, by their zonal averages [Q.], [Qn], and [®,].* Then, the remote effects
of orography and land-sea heating contrasts on the general circulation of the middle at-
mosphere can systematically be assessed by comparing the control run to the aquaplanet

run. We furthermore assume that the control and the aquaplanet simulation approxi-

4The zonal means of ®, and Q,, formally deviate from aquaplanet conditions. However, their effects
are hardly visible in the climatology of the aquaplanet simulation.
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mately represent the middle atmospheric general circulation during boreal and austral
winter, respectively. This will allow for some instructive comparison of present model
results with recent observational data for the northern and southern summer MLT.

Orography and land-sea heating contrasts in the winter troposphere strongly induce
the activity of planetary-scale Rossby waves, particularly in the stratosphere. As a result,
the stratospheric westerly jet becomes weaker, more variable, and warmer. Such features
are well known from the observed north-south asymmetry between boreal and austral win-
ter. Also the differences in the control run from the aquaplanet run reasonably reproduce
this behavior. This is demonstrated in Figs. 27 and 28. Figure 27 shows the zonal-mean
zonal wind and temperature in the aquaplanet run together with the differences between
the control run and the aquaplanet run. Figure 28 shows the standard deviations of the
zonal-mean zonal winds for both model experiments. In the control case, the variability
is quantitatively consistent with boreal winter observations (Randel, 1992).

As a result of the more variable and reduced polar night jet in the control run, grav-
ity wave saturation is distributed over a greater depth and drops on average in altitude.
Hence, gravity wave drag, turbulent diffusion, and energy deposition in the winter meso-
sphere are strongly diminished as a remote effect of stationary wave forcing in the lower
troposphere. This mechanism has been discussed in detail by Becker and Schmitz (2003).
The reduced gravity wave forcing is balanced by a weaker residual circulation in the winter
mesosphere. This accounts for the lower polar night temperatures above and around the
stratopause in the control run, as is visible in Fig. 27c for the altitude range between about
1 and 0.01 mb. The model also reveals that the entire summer-to-winter-pole residual
circulation is reduced (Fig. 29). Thus, stationary wave forcing in the winter troposphere
can remotely affect winds and temperatures around the summer mesopause (see Figs.
27¢c,d).

North-south asymmetries in the summer MLT region have been investigated by Hua-
man and Balsley (1999) and by Dowdy et al. (2001) on the basis of observations. These
authors find meridional wind asymmetries which are fully consistent with Fig. 29 (see
Dowdy et al., 2001, Fig. 2). Furthermore, the zonal wind asymmetries obtained by Hua-
man and Balsley (Fig. 4 in their paper) are consistent with Fig. 27d (see also Becker and
Schmitz, 2003, Fig. 11). Huaman and Balsley also suggested that the austral summer
mesopause is a few degrees warmer than its boreal summer counterpart. Such a hypoth-
esis is supported if we compare Fig. 20a to Fig. 27a. Note, however, that Liibken et al.
(1999) found no significant differences in the temperature profiles observed in the aus-
tral and boreal summer MLT. Therefore, at present there appears to be no observational
evidence for a significant north-south asymmetry in summer MLT temperatures.

Nonetheless we can conclude that the summer mesospheric heat budget in the con-
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Figure 27: (a),(b) Climatological zonal-mean temperature and zonal wind in the aqua-
planet simulation (contour intervals 10 K and 10 ms™!). (c),(d) Corresponding differ-
ences in the control run from the aquaplanet run (contour intervals 5 K and 5 ms™').

Zero contours are not drawn, and negative values are shaded.
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Figure 28: Standard deviation of the zonal-mean zonal wind (contours 1,2,4,6,8, ...

ms~!) in the aquaplanet experiment (a) and in the control run (b)
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Figure 29: Difference of the residual meridional wind in the control run from the aqua-
planet run (contour interval 2 ms™'). The zero contour is not drawn, and negative values

76



(a)

IGW dissipation

(b) diffusion coefficient
0.00031-- - 0.00034 -~
0.0014 - 0.0011 -
0.0034- - 0.0031 -
0014 -
0.03{\.
————— 0.1
0.3 0.3
1 : : : : : 1 : : : : :
60S  30S EQ 30N 60N 60S 308 EQ 30N 6ON
(c) adiabalic conversion (d) total dissipation
0.00034 -, 0.00037 - -~ : ‘
0.001 1 0.0011 -
0.003 1 0.0031 - - -
R /
E 0.014 - 0.014---
S -1
0.031% 0.03-
Q 3
0.1 0.1
0.3 - LR LT R P LR LR RS 0.3
: : . : : 1 : : : : :
60S  30S EQ 30N 60N 60S 308 EQ 30N 6ON
(e) residual work (1) pressure fluxr convergence
0.00034 = -k SEEEEEE SRERER 0.0003 ‘ : : ‘
0.001 | EREEEE TR EEER- S EEEERTE SEEERRE SRS 0.001
0.003 | R = R RS ARt Rt 0.003 1
—~
E 0.014-- -+ 0.014k - -
N i
0.034- - 0.031-
S8
0.1 Y I e R R
034 e o= ¢ REERE 0.31 - ERECEEEEER - - - -
1 - - ; . : 1 : - - ;
60S  30S EQ 30N 60N 60S  30S EQ 30N
latitude

60N
latitude
Figure 30: Same as Fig. 24, but for the model configuration with zonally symmetric orog-

raphy and zonally symmetric heating functions (aquaplanet run). The model setup is
otherwise identical to that of the control run.
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trol run is representative for the austral summer mesosphere and that the corresponding
aquaplanet result is representative for boreal summer. Therefore, since the aforemen-
tioned rocket-borne in-situ measurements of turbulent parameters correspond to boreal
summer conditions, they should be compared to the summer MLT results obtained with
the aquaplanet model configuration. Figure 30 shows corresponding contributions to the
heat budget of the MLT analogously to Fig. 24. Figures 30a,b,d may be compared to
Figs. 24a,b,d. It follows that stationary wave forcing in the winter troposphere weakly
affects turbulent parameters in the summer MLT, resulting in somewhat stronger total
dissipation rates up to ~ 8Kd ! in the aquaplanet run. We therefore expect no significant
north-south asymmetry for the measurement of turbulent parameters in summer. In con-
trast, the model predicts a very strong north-south asymmetry in the winter MLT. Stated
otherwise, the control and aquaplanet simulations qualitatively reproduce the prominent
winter-summer asymmetry in gravity wave effects and turbulent dissipation rates that are
known for the northern MLT (Liibken, 1997a), while a much weaker winter-summer asym-
metry is predicted for the southern MLT. Recall however that the gravity wave source
is prescribed in the present simulations. Therefore, our sensitivity experiment can cap-
ture only those effects that are due to the modulation of gravity wave propagation and
saturation. Competing effects that result from variations in the gravity wave source are
excluded.

Figure 31 summarizes the above discussion by comparing Liibken’s averaged obser-
vational estimates of the turbulent dissipation at Andgya (69°N) against some selected
vertical cuts of Figs. 24d and 30d. The resulting model estimate of the total dissipation for
boreal summer is somewhat in excess of ~ 8 Kd~! around 52°. This value is too weak by
about a factor of 1.7 in comparison with the observation. Conversely, the model predicts
stronger dissipation rates than observed for boreal winter, and the simulated dissipation
is generally concentrated at lower altitudes. Note again that no attempt has been made
to tune the gravity wave parameters, the equilibrium temperature, or the relaxation time

in such a manner that the simulated dissipation is in better agreement with observations.
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Figure 31: Comparison of averaged observed dissipation rates (thick curves, data taken
from Tabs. 3,4 in the paper of Liikben (1997a)) against simulated mean dissipation rates
(thin curves). The thick curves were obtained from several rocket flights at Andgya
(69°N) during the summer (solid) and winter (dashed) seasons. The thin solid curve
is taken from the aquaplanet simulation at 52°S (Fig. 30d) and corresponds to boreal
summer conditions. The thin dashed curve is taken from the control run at 52°N (Fig.
24d) and corresponds to boreal winter conditions. In addition, the thin dotted curve,
taken from the aquaplanet run at 52°N, indicates the model estimate for austral winter

conditions.
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Chapter 7

Summary and concluding remarks

This study has aimed to provide a hydrodynamically consistent view of the planetary-
scale heat and energy budgets in presence of gravity wave breakdown. It has been stressed
that this task requires the simultaneous representation of both internal gravity waves and
small-scale turbulence. In order to set the basis for the treatment of nonconservative
gravity wave propagation, we have given much room to revisit the energetics of turbulent
motion and to formulate corresponding parameterization schemes for global or mesoscale
circulation models in accordance with these basic concepts. Then, as a second step and
as an analogy as well, the same concepts have been applied to assess the action of gravity
wave perturbations on the planetary-scale flow.

In chapter 2 we have recapitulated the well-known formalism of averaging over tur-
bulent motions. It has been shown that, according to the energy conservation law, the
frictional heating owing to Reynolds stresses (rhs of Eq. (2.33)) cannot be omitted in the
thermodynamic equation of motion. Rather, to a first approximation, the rate of change
of turbulent kinetic energy may be neglected.

A comprehensive formulation of anisotropic turbulent momentum diffusion and the
associated dissipation for application in GCMs has been given in chapters 3 and 4. It
has been noted that conventional methods to account for horizontal momentum diffusion
are not consistent with the Eulerian law of angular momentum conservation. Hence, the
associated dissipation cannot even be defined. In order to solve this problem, we have
analysed the anisotropic turbulent analogue of the molecular stress tensor. Then those
terms proportional to the horizontal diffusion coefficient which give rise to stress at hori-
zontally aligned Eulerian sectional planes have been eliminated. By this method we have
arrived at a suitable symmetric stress tensor formulation for harmonic (Nabla square)
horizontal momentum diffusion (Egs. (3.5),(3.7),(3.9)). The analysis can be generalized
to arbitrary orders, revealing that the dissipation is positive definite in the harmonic case

only. Therefore, biharmonic and higher order horizontal momentum diffusion schemes
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are not consistent with the second law of thermodynamics even if the stress tensor is
symmetric. Grid-point models often involve filter algorithms instead of an explicit hor-
izontal diffusion. The compatibilities of such filter algorithms with the constraints of a
symmetric stress tensor, energy conservation, and thermodynamic irreversibility need to
be investigated.

The numerical treatment of subscale vertical momentum fluxes has been addressed in
chapter 4. New finite-difference forms for the frictional heating associated with vertical
momentum diffusion and the residual work owing to gravity wave-mean flow interaction
have been derived. These forms rest on the general constraint that, according to the
no-slip condition, surface friction must not affect the energy budget of the atmosphere.

Utilizing a troposphere-stratosphere version of the Kiihlungsborn Mechanistic general
Circulation Model (KMCM) (see appendix A; model details are also given in Becker et
al. (1997), Becker and Schmitz (2001), and Becker (2003)), the proposed stress tensor for-
mulations of momentum diffusion and dissipation (control case) have been tested against
the corresponding conventional methods. First, we have reinvestigated the dynamics of
a baroclinic life cycle in a thermally and mechanically isolated model atmosphere (Sim-
mons and Hoskins, 1978). Using the conventional horizontal diffusion scheme, significant
losses of total angular momentum and total energy occur around the life cycle maximum.
While the first shortcoming arises from the asymmetry of the stress tensor, the latter is
due to the lack of frictional heating. The loss of total energy during the life cycle is of
the same magnitude as the kinetic energy of the atmosphere. On the other hand, angular
momentum and total energy are precisely conserved in the control case, as it should be.

Analogous shortcomings of the conventional model design have been found in perpetual
January runs where the model setup has been completed by idealized parameterizations
for radiative and condensational heating (section 5.2), as well as by a standard boundary
layer diffusion scheme. In the control case, the boundary layer scheme has been completed
by the dissipation owing to vertical momentum diffusion as proposed in chapter 4. For
the conventional momentum diffusion and with the dissipation being ignored, spurious
sources in the global budgets of angular momentum and energy are found (Figs. 12,13).
These deficiencies are reduced by about two orders of magnitude in the control case. While
the spurious torques appear to be less important in either case, the spurious net thermal
forcing amounts to 2 Wm™2 for the conventional model setup. This value is obtained
as well as the global average of the simulated dissipation in the control case. Hence
we can conclude that, due to the lack of frictional heating, conventional comprehensive
GCMs must have a systematic imbalance of about 2 Wm~2 between the incoming and
outgoing radiation. The spatial distribution of the simulated frictional heating (Fig. 14)
furthermore suggests that this bias is in the main due to the lack in boundary layer
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dissipation.

These conclusions may have important implications for climate change simulations
for the following reasons. The net radiative forcing associated with a doubling of the
pre-industrial carbon dioxide concentration in the atmosphere is about 4 Wm=2 (IPCC,
1994). This value is of the same order of magnitude as the dissipation of the resolved flow.
Furthermore, climate change simulations with higher greenhouse gas concentrations yield
significant reductions in sea ice coverage and increased near-surface temperatures (e.g.,
Mitchell, 1991), hence also stronger boundary layer mixing. Since the tropospheric dissi-
pation is strongest in the boundary layer, it may feed back on the increase of near-surface
temperatures. It is thus obvious that hydrodynamically consistent parameterizations of
turbulent friction and dissipation are necessary to confirm the reliability of climate change
simulations.

The simulated angular momentum budget has shown that the horizontal diffusion co-
efficient should be zero in the lowermost troposphere. This is required to avoid coordinate
transformation errors that result from applying the proposed stress tensor formulation of
horizontal momentum diffusion directly in the hybrid coordinate system. A further side
constraint is that the hybrid surfaces resemble pressure surfaces in the middle troposphere
and farther above. Other terrain-following vertical coordinates, such as sigma or log pres-
sure, follow the topographic elevations in every model layer. These coordinate systems
should generally be avoided to allow for angular momentum conservation of the proposed
horizontal diffusion scheme. The simple idea to neglect horizontal diffusion entirely in
the lower troposphere contrasts with correction terms that are commonly used in order to
apply conventional horizontal diffusion schemes in regions of steep orography (eg. Kiehl
et al., 1996, p. 25). In addition, we have shown that retaining horizontal diffusion in
the lower troposphere efficiently damps the overall wave activity. In particular, the polar
night jet is enhanced by ~10 ms™!
~5 K.

The present harmonic horizontal diffusion scheme can be applied with two different
traces of the stress tensor. If the trace is 2 D (Eq. (3.5)), where D is the horizontal diver-
gence, the damping of the divergent flow is two times stronger than in the alternative case

, and stratospheric polar night temperatures drop by

with zero trace (Eq. (3.11)). In the latter case, larger spurious angular momentum and
heat sources are obtained. These result presumably from larger aliasing errors associated
with the divergent part of the flow. Therefore, the tensor (3.5) may be better suited for
practical use in GCMs.

The representation of atmospheric turbulence by diffusion is generally complicated by
the fact that subscale circulation or wave systems which are not resolved by the model

must be parameterized as well. For the troposphere it is well known that mesoscale
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convection for instance accounts for adiabatic conversion of available potential energy
into kinetic energy. A similar mechanism is likely to exist in the upper mesosphere due to
the breakdown of internal gravity waves (IGWs). Rocket-borne in-situ measurements of
turbulence in the region of the cold summer mesopause (Liibken 1997a,b) have revealed
averaged frictional heating rates of about 10-20 Kd~!. Assuming that such heating rates
are representative, traditional views of the planetary-scale heat budget of the MLT (e.g.,
Chandra, 1980; Liibken et al., 1993) cannot consistently explain the observations. In the
present study, a thermodynamic equation of motion for the general circulation has been
derived by consequently filtering out small-scale turbulent motions and IGWs. A key
assumption has been that the scales of the resolved planetary-scale flow, of the gravity
waves, and of the small-scale turbulent motions are separated. We have shown that
the adiabatic conversion of mean enthalpy into IGW kinetic energy, the dissipation of
IGW kinetic energy, and the wave entropy flux must not be neglected. The residuum of
adiabatic generation and dissipation of IGW kinetic energy, defined as the residual work
W,es, can be eliminated via the proposed approximate kinetic energy equation for IGWs
(Eq. (2.58)). By strictly evaluating Lindzen’s saturation assumption we have furthermore
shown that the wave entropy flux formally corresponds to a diffusion of the background
state with half of the wave-induced turbulent diffusion coefficient. Thus, we have derived
an upper bound of 2 for the effective Prandtl number which scales the entropy flux owing
to the gravity waves themselves and the wave-induced turbulent diffusion of the mean
flow.

These theoretical results have been applied in KMCM using a T29/L60 version ex-
tending up to about 100 km and including a Lindzen-type gravity wave parameterization
completed by the appropriate thermodynamic effects as discussed above. As a particular
benefit of using Lindzen’s saturation theory for individual gravity waves, the frictional
heating generated by the gravity waves can be calculated analytically. The resulting
model estimate of the total dissipation (Figs. 24d, 30d, 31) amounts to ~ 8 Kd~! around
52° in the summer MLT. This value is too weak by about a factor of 1.7 and located
at a lower altitude in comparison with the observational result of Liibken et al. (1997a)
obtained for 69°. Furthermore, the simulated winter mesospheric dissipation rates are
generally somewhat too strong. Even so, the orders of magnitude and seasonal depen-
dencies of both computational and observational estimates are well consistent, given the
various uncertainties of either method.

The present model simulations reveal that the dissipation of gravity wave kinetic
energy is overcompensated by adiabatic conversion of mean enthalpy into gravity wave
kinetic energy. Thus the net effect of both subscale heating rates (the residual work
Wies) is to cool the MLT (Fig. 24e). The total thermal effect owing to the direct heating
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rates associated with gravity wave breakdown is heating around the breaking levels and
cooling farther above (Fig. 25a). This pattern is very similar to the wave enthalpy flux
convergence or the effective vertical diffusion term.

These parameterized gravity wave effects remain to be confirmed by direct numerical
simulation of gravity breakdown in the MLT. Such models are supposed to simulate the
adiabatic conversion term and the wave entropy flux explicitly. Hence, also the turbulent
frictional heating must explicitly be accounted for, since otherwise a highly relevant term
would be missing in the heat and energy budgets. We note, however, that state-of-the-art
direct numerical simulations of gravity wave breaking neglect the frictional heating term
(e.g., Andreasen et al., 1994; Werne and Fritts, 1999; Fritts and Werne, 2000).

The present gravity wave parameters have been chosen such that the simulated cir-
culation of the mesosphere is consistent with other authors (e.g., Holton, 1983; Garcia
and Solomon, 1985; Volodin and Schmitz, 2001). Then, also the maximum dissipation
in the summer MLT is found to be of the order of 5-10 Kd=!. Therefore, the acquired
qualitative consistence of the observed and simulated dissipation rates is not incidental.
Rather, it appears to be an unique strength of Lindzen’s saturation theory that reason-
able mean dissipation rates are predicted in a hydrodynamically consistent way, once the
tropospheric gravity wave source is adjusted to drive a reasonable summer-to-winter-pole
residual circulation in the MLT.

This conclusion is also supported by an additional model run where the effective
Prandtl number has been raised from 1 to 2. As a result, the reduced cooling by vertical
diffusion of entropy leads to higher temperatures, particularly in the summer MLT where
the signal exceeds 30 K (Fig. 26). In addition, also the IGW-driven residual circulation
is reduced, indicating a weaker efficiency of IGW breakdown. Consistent with this model
response, also the maximum dissipation in the summer MLT is reduced.

Even though only perpetual January model simulations have been analysed, the
present simple GCM allows to estimate possible north-south asymmetries in the mid-
dle atmosphere. The procedure simply is to compare the control simulation, where oro-
graphic and thermal forcing of planetary waves is applied, against the corresponding
aquaplanet simulation. With regard to the topic of the present study it has been shown
that north-south asymmetries in the summer MLT can affect turbulent parameters like
the dissipation or the turbulent diffusion coefficient, though the effects are rather weak.
The situation is different in the winter MLT where the model indicates a pronounced
north-south asymmetry. In particular, in the boreal winter MLT, turbulent parameters
are much weaker than in the austral winter MLT (Fig. 31). Of course, these findings rely
on the usual assumption of a horizontally uniform and time-independent gravity wave

source.
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Finally, the chief limitations of the present simple GCM should be recalled. First, we
have utilized crude representations of radiative and latent heating, namely temperature
relaxation, prescribed tropical heat sources, and self-induced condensational heating in
the middle latitudes. Second, the present gravity wave parameterization has various
shortcomings. For instance, the wave breaking process is entirely based on linear theory.
No nonlinear interactions between the individual gravity waves have been considered like
in the study of Holton and Zu (1984) for instance. It is furthermore questionable to assume
that turbulent diffusion is independent of the phase of the breaking gravity wave (Hodges,
1967; Chao and Schoeberl, 1984). As noted by Weinstock (1988), supersaturation may
have important effects as well but has been neglected here. Another oversimplification
may be due to using a family of individual gravity waves rather than a broad spectrum
like in the theory of Hines (1997) for instance. Of course, like in any GCM with gravity
wave parameterization, we have invoked the single column approximation, as well as
the assumption of an instantaneous response of the wave field to changes of the mean
flow. Despite these idealizations it is believed that Lindzen (1981) presented the simplest
physical model that captures the essential dynamics of gravity wave saturation. In this
study we have tried to stay as close as possible to this concept in order to assess the direct
thermodynamic effects in the framework of a global circulation model. The proposed
definitions of energy deposition, entropy flux, and turbulent dissipation may also be useful

in combination with other gravity wave parameterization schemes.
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Appendix A

Description of KM CM

A.1 Governing equations

The present simplified GCM is the Kiihlungsborn Mechanistic general Circulation Model
(KMCM) coded by the author. It is based on the primitive equations defined in section
2.4. These governing equations are transformed using a terrain-following vertical hybrid
coordinate 7 as follows. Pressure p is represented as a function of n and surface pressure
Ds:

p(n;ps) = a(n) + b(n) ps - (A1)

The coefficients a and b must guarantee monotonic growth of p with 7, as well as
p(n=0;p;) =0 and p(n=1;p;) =ps. (A2)

The flexibility of (A1) is used to let surfaces of constant 7 correspond to o-levels near the

ground and to pressure levels at high altitudes. To achieve such a behavior we define

a(n)/poo :==n(1—n) and b(n) :=n>. (A3)

Here, pgo := 1013 mb corresponds to the mass of the atmosphere in case of zero orography.
With the specific definitions introduced in section 2.4, chapters 3 and 4, and sections 5.2
and 6.2, the prognostic equations for horizontal vorticity &, horizontal divergence D,

temperature 7', and surface pressure p, may be written as

06 = (Vxf)-e, (A4)
2
oD = V-f—VQ(%—i-CI)) (A5)
T
f = v><(f+£)ez—7'78”v—R—Vp+H+Z—i6nF (A6)
p Oy p
RT E .
AT = —(V-V4id) T+ ——w+Q+ =+t p+ 2% (A7)
Cp P Cp Cp
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1

om, = ~ [V-(d,pv)dn. (A8)

0

The prognostic equations (A4)-(A8) are completed by (Al) and (A3), and expressions for

geopotential ®, vertical velocity 7, and pressure velocity w:

FRTdp
d = &, + n/ o7 0 (A9)
; L (v [V (apv) din A10
i = anp(tpﬁo/ (Opv) dif ) (A10)
n
w = b(v-V)ps—/V-(aﬁpv)dﬁ. (A11)
0

Equation (A9) follows from vertical integration of the hydrostatic approximation

T
0,0 =~ La,p (A12)

with @, denoting the orography (Fig. 7a). Vertical velocity, pressure velocity, and surface
pressure tendency follow from integrations of the continuity equation

0: (Ogp)+V - (Oypv)+09,(0,1)=0 (A13)
with respect to the kinematic boundary conditions

n=0 for =0 and n=1. (A14)

A.2 Vertical discretization

The model equations are prepared for numerical computation using an energy and angu-

lar momentum conserving finite-difference scheme introduced by Simmons and Burridge

(1981) and modified by a reference state reformulation (Simmons and Chen, 1991).
First of all, the intermediate hybrid levels

0=mp <m3pe < ... <Nev-1/2 < Mev+1/2 = 1
must be fixed. The corresponding intermediate pressure levels
0=p12 <p3j2 < ... <Prev-1/2 < Plev+1/2 = Ps
are known from (A1). Full pressure levels and centered pressure differences are defined as
pri= (P12 + piy1y2)/2 and  Apy i=pip —pi—iye for I=1...lev. (A15)
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In KMCM, lev is arbitrary, and the distribution of levels can be adjusted by a few pa-
rameters.

The discretization method yields partial differential equations for the hybrid level rep-
resentations of the prognostic variables & (A, ¢,t), Dy (A, ¢,t), T; (A, ¢,t), and ps (A, @, 1),
where [ = 1,2,...,lev. The corresponding tendencies are computed by evaluating the
right hand sides of (A4)-(A8) at full model levels. The hybrid level representations of
diffusion, dissipation, and gravity wave tendencies are given in chapters 3,4 and in section
6.2. Evaluation of the bulk heating (5.6) at full hybrid levels is also straightforward.

A finite-difference representation of the dynamical core in an angular-momentum and

energy conserving way is as follows (Simmons and Burridge, 1981):

RT Ry
My ) - VA Al6
(55vp), = 5,0V an (A16)
RT RT,
(—Vp) = l(lnpl+1/2 Vpl,1/2 —{—alVApl) y [=2...lev (A17)
p l Ap Pi-1/2
lev P
® = ®,+I2RT,+RS T, In—2 (A18)
n—2 Pn—1/2
lev
& = &+ RTL+R Y T, 22 =2 ey (A19)
n=I0+1 Pn-1/2
o = l—pl_l/anle/Q, l=2...lev (A20)
Ap, Pi—1/2
RT RT, 1 RT
(—w) = — ! ln2{Ap1D1—|—v1-VAp1}—i——vl-(—Vp)l (A21)
CpD 1 cp Apy Cp P
T T, -1
(R—w> _ B (mpl“/2 Z{Aann+vl-VApn}
pp /i pAp N\ pioije 1T
+ o {Apl D+ v, -V Ap, } ) (A22)
+lvl-(£Vp), l=2...lev
Cp P l
) 1 .
(70, fw0.T}) = 5 ((nanp>l+1/2 (0,0, Ths = {0, Th) (A23)
I 2Ap
+(70y P )i yo ({u,v,T}l—{u,v,T}ll>>, I=1...lev
(ﬁanp)l/Z = (ﬁanp)leu+1/2 =0 (A24)
!
(7'78,717)l+1/2 = —bl+1/28tps—Z{Aann—i—vn-VApn},lzl...lev—l

n=1
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lev

8tps=—Z{Aann+vn-VApn}. (A25)
n=1

This scheme has a specific problem. Let us assume a reference atmosphere at rest
with T' = T,.s(p) and horizontally varying surface pressure p; = p,, due to orography
®,. In this trivial example all tendencies must vanish. And this is, of course, the case for
the continuous equations. However, in finite-difference form, the pressure gradient term
and the geopotential gradient give rise to physically inconsistent tendencies, known as the

geostrophic wind error. This error is defined as

RT
f(vlew—uley):(TVp)l—kV(Dl (A26)

RT.ey (psg)

psg

in the case of T =T, .f(p) and V&, =— V psg -
Owing to (A16)-(A20) the residuum (A26) is generally different from zero and produces
significant errors above the tropopause, as already mentioned by Simmons and Burridge
(1981). This problem can be avoided by expanding (A16)-(A19) with respect to a reference
state. One way to perform such a modification has been proposed by Simmons and Chen
(1991) and is incorporated for instance in the climate model ECHAM (DKRZ, 1992).
A similar method is applied in KMCM. Differences to previous methods arise from the
choice of the reference temperature and from using p, instead of Inp, as a prognostic
variable.
Let us define
T :=T — Tyt(p) (A27)

and rewrite the continuous formulations of the pressure gradient term and the gradient
of the geopotential

~ 1 ~
T T . T

R—Vp+V<I> = R—Vp+V<<I>s+/R— ,,,pdn'> (A28)
p P 2 P

Ps

x T”'e
b, = ®,+ / RTf(p)dp. (A29)

Poo

The mass of the atmosphere is defined by the mean surface pressure p,.; which, in the
present model, is constant by definition. For zero orography we have p,.; = poo = 1013
mb. When orography is included, we can implicitly define a reference surface pressure
distribution ps4(A, ¢) corresponding to T' = T,.¢(p) by the root of the rhs of (A29):

psg (/\:¢)

0= a0+ [ a®

dp . A30
) p (A30)

Poo
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In KMCM, Eq. (A30) is solved for p,4, and p,¢s is defined as the horizontal average of psg.
Obviously, both (A28) and (A29) vanish for the reference state. This suggests to use
the rhs of (A28) as a basis for finite differencing since the geostrophic wind error is zero

by definition. Accordingly, (A16)-(A19) are reformulated in the following way:

RT RT,
iy ) _ VA A31
( b P 1 Ap, b ( )
RT RT,
(_vp) _ l(1npl+1/2 Vpl_l/g—i—alVApl), I=2.. lev (A32)
p l Ap, Pi—1/2
N N lev N p
® = &, +Wm2RT+RS T, In—2 (A33)
n—=2 Pn-1/2
lev
& = &+ RT+R Y T,m2H2 =2 e, (A34)
n=Il+1 Pn—-1/2

The reference temperature T;.¢(p) used in KMCM is defined as

Tref(p; DPbos Piry Ptos Tboa ﬂr; Tto) = Tbo C(pa .. ) (A35)

. — G G2
C(p,...) = Co+w+p+(w+p)2.

This profile can be adjusted with respect to 6 parameters, fixing 7,.; at the pressure levels
Pros Pir, and p;,. These levels are assumed to correspond to bottom, tropopause, and some

middle atmospheric pressure level. Then, ( must satisfy

C(Poo;---) = 1

Cpwrs--) = T[T (A36)
OC(Pri---) = 0

C(pros---) = Tio/Tho-

The conditions (A36) allow to eliminate the coefficients (o, (i, (2, and @w. The procedure
is described in Becker et al. (1997, appendix) for the vertical profile of the equilibrium
temperature. The default parameter setup for T,.; is py, = 1013 mb, p, = 110 mb,
Pto = 0.1 mb, T3, = 280 K, T}, = 210 K and 7}, = 220K . The corresponding temperature
profile is shown in Fig. 32a. It may be compared to the reference profile used in ECHAM
(DKRZ, 1992, Eq. (2.4.2.14)). Throughout the troposphere both reference states are
quite similar. Above the tropopause, (A35) yields reasonable temperatures. The ECHAM
profile (Fig. 32b) has no tropopause and tends to zero for p — 0. Hence, the geostrophic
error above the tropopause can hardly be eliminated. Therefore KMCM utilizes the more

realistic profile.
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Owing to (A35), Eq. (A29) becomes

ps (@ + poo )

$, = q>s+RTbo<<01n&+(<—l+3)1n (A37)

Poo w  w? Poo (@ + ps)
+9< 11 ) |
w \ W+ Ps W™ + Poo

and the reference surface pressure py,(A, ¢) is found by numerically determining the root
of the rhs of (A37).

(a) T, (K) in KMCM (b) T., (K) in ECHAM
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Figure 32: (a) Default reference temperature profile of KMCM. (b) Reference temperature
used in ECHAM. The latter is calculated according to T, := Ty (p/poo)® with Ty =
288 Kand f=1/5.256.

In section 5.2, KMCM is used with a T42/1.24 resolution. For p; = pyg, pressure levels
in mb are from ground to top: 987, 903, 789, 684, 589, 503, 426, 357, 296, 242, 196, 155,
121, 92.3, 68.5, 49.3, 33.9, 22.1, 13.5, 7.43, 3.71, 1.86, 0.93, 0.31. In this model version,
gravity wave effects are switched off. For the model runs presented in chapter 6, the
vertical resolution consists of 60 hybrid layers. The corresponding pressure levels in mb
are: 987, 915, 825, 743, 667, 598, 535, 478, 426, 379, 336, 297, 262, 231, 203, 177, 155, 135,
117, 93.7, 68.4, 49.9, 36.5, 26.6, 19.4, 14.2, 10.4, 7.56, 5.52, 4.03, 2.94, 2.15, 1.57, 1.14,
0.835, 0.609, 0.445, 0.325, 0 .237, 0.173, 0.126, 0.0922, 0.0673, 0.0491, 0.0359, 0.0262,
0.0191, 0.0140, 0.0102, 0.00744, 0.00543, 0.00396, 0.00289, 0.00211, 0.00154, 0.00113,
0.00082, 0.00060, 0.00047, 0.00022.
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A.3 Boundary layer mixing

The parameterization of boundary layer mixing coefficients follows the local vertical dif-
fusion scheme of Holtslag and Boville (1993). In KMCM, a slight modification has been

introduced to the Richardson criteria in order to ensure that their derivatives are con-

tinuous. For [ = 1,...,lev — 1, the diffusion coefficient is defined on half model layers
as
by = L >2|(8v) | F(Ri,..) (A38)
ZH—% - ka ZH_% 30 m z l+% H’%
29(0,0),,1
Ry = (8Os (A39)

(O1+Ou41) (0:viy1)?
F(Ri) = {\/1—18Ri Ri<0
(1+9Ri +50Ri*)™* Ri>0.

The diffusion tendencies are defined in section 4.1, and k&, = 0.4 is the van Karman

(A40)

constant. The surface coefficient yields

k 2
= ) = a A41
C = en Fo(Rio) [Vieo |, en (m ((ztew + 20)/20) ) (Ad1)
. g Zlev (Gleu - 65 )
_ A42
RZO (_)lev Vl%v ( )
Fo(Rig) = {1 —9Riy /(1 + 720N VIRiol(ziew + 2) /2 ) Rig <0 (A43)
(14 9Riy + 50Rig?) " Rip > 0.

Here, 2, is the roughness length which has a constant value of 1072 m in the present model

experiments.

A.4 Spectral representation

In KMCM the spherical harmonics are defined as
\/%Pno(sin ®) for m =0
Yom(A, @) := \/anm(sin @) cosmA  form >0 (A44)
\/anw(sin ¢) sin|m|A form <0

, . Cn+1)(n—m) 1 9\ m/2 dntm
with  Pamle) 1= J (n+m)! n! 2n+l (L —a7%) d zn+m

The total number of spherical harmonics in the case of triangular truncation at total wave
number N is (N +1)? . The normalization is such that

(x?2 —1)". (A45)

2T 1
/do Y, Vi = /d)\/dsinqb Yoo Yoot = Sy S (A46)
0 —1
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Vorticity, divergence, temperature, and surface pressure are expanded in series of spherical

harmonics as

&G\, 1) = %flnm(t)ynm()‘a(ﬁ) (A47)
Di(A, ¢,t) = ZDznm(t)Ynm()\aGﬁ) (A48)
T\ 1) = ZTnm Yom(X, 6) (A49)
ps(A\ ¢, 1) = pref'i'%psnm ) Yam(X, 9) - (A50)

The amplitudes &0, Djoo, and ps oo are zero by definition. Eq. (A50) differs from other

spectral models where Inp, instead of p, is used as a prognostic variable (e.g., DKRZ,

1992) and hence the mass of the model atmosphere is treated as a prognostic variable.
Horizontal velocities are represented by

U = _Z :_ {Dlnmazynm_glnmayynm} (A51)

CL2

_Z n(n+1)

v =

with 0, and 0, defined in Eq. (2.4). All horizontal derivatives are computed by using the
analytical derivations of the spectral representations (A49)-(A52).

A set of ordinary differential equations for the spectral amplitudes is obtained by
application of Galerkin’s method at each full model layer. In order to simplify the resulting

integrals we take advantage of the identities

~ 0\Y

/d acos¢ N _/dJX a cos ¢ (453)
Op(cosp X) 0pY

/d vy = —/daX - (A54)

/ do YV V2X = / do X VY, (A55)

which are valid for arbitrary spherical functions X and Y. Our final model equations can

be written as:

Ernm = /da(fleYnm>-ez,l=1...lev (A56)

Dinm = —/do(fl-VYnm+(%2+<I>l)V2Ynm),lzl...lev (A57)

T = [ do (=50 9T = 0,70+ () (A58)
+Qz+f—p’+uzz+uhl+%ﬁ>nm,z:1...zev

psnm = /dO' 8tps Ynm . (A59)
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The integrals on the rhs of (A56)-(A59) are computed by standard methods, i.e. by Gaus-
sian quadrature with respect to sin ¢ and discrete Fourier transform in longitudinal direc-
tion. Traditionally, the distribution of grid points is adapted such that the integrals are
exact if the integrants are polynomials of third order in Y,,,,. This assumption is equiv-
alent to the condition that the tendency equations are of second order in the prognostic
variables.

In each model layer [/, the horizontally averaged kinetic energy per unit mass can be
written as

an) [doivi=tey L (e s np,.).
2 81 = n(n+1)  >*m" mn
Accordingly, the kinetic energy per unit mass for total wave number n and for a particular
model layer [ yields
2 n

K0 = g7y 2 (et Din) (A60)

A.5 Time integration
For each spectral mode nm the final model equations can formally be written as

yzm = (é-lnm:---aé-levnm: Dlnma---:Dlevnma Tlnma---:ﬂevnma psnm)- (A62)

For n > 0 the tendency vector T,,, can be expanded as

0 0 0
with A, = [0 0 nn+1)a |. (A64)
0 do 0

Here, T, represents all spectral tendencies owing to Coriolis force, nonlinearities, dif-
fusion, gravity waves, and diabatic heating. The Matrix A,, describes the buoyancy
oscillations of a horizontally uniform reference state, i.e. the internal gravity waves in a
corresponding linearized model version without Coriolis force and without all so-called
physical parameterizations. These gravity modes separate in spectral space and degen-
erate with respect to the zonal wave number m. A, is zero up to the coupling between
(Dinms -+ Diewnm) and (Tinm,---; Dlevnm, Psnm ) - The matrixes a; and a, depend
on the reference state T;.s(p) and on the distribution of model layers only (see Simmons
and Burridge, 1981, appendix). In KMCM, we use the reference state shown in Fig. 32a.
In ECHAM, an isothermal reference state is employed.
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Following Hoskins and Simmons (1975), time stepping is performed using the semi-
implicit leapfrog scheme. This scheme must be completed by a time filter (Asselin 1972)
in order to damp the computational modes. This so-called semi-implicit method gains its
efficiency from ’stretching’ the oscillatory terms. This is achieved by application of the
implicit leapfrog scheme to the linear terms and the explicit scheme to the remainder.
Dropping the wave number indices nm, introducing the time index %, and denoting the
time step by At, we get

Yit1 — Yi-1 — A Yit1 + ¥i-1

T A
9 At 5 Thi (AG5)

Solving (A65) for y;;; and introducing the time filter yields
Vi1 = (E—AtA) ' (E+ AtA) ¥, +2At(E— AtA) ' T, (A66)

Yi=Yi+0(¥i1—2Y¥i+¥i+1)- (A67)

Here, the unit matrix is abbreviated as E , and 0 is a filter parameter which is usually set
equal to 0.1. The leapfrog scheme requires two foregoing time steps to perform the next.
In KMCM, the first time step is computed from the initial condition y, by performing
one Eulerian time step followed by five semi-implicit time steps using At/5.

Application of the explicit leapfrog scheme to diffusion tendencies can cause numerical
instabilities that require short time steps in order to be controlled by the time filter. On
the other hand, numerical stability of diffusion tendencies would be guaranteed by using
an implicit leapfrog time step for these terms. KMCM compromises between numerical
efficiency and a comprehensible source code by applying an Eulerian step for time integra-
tion of all tendencies owing to diffusion, dissipation, and the IGW parameterization. In
other words, in (A66), T} contains diffusion, dissipation, and IGW tendencies from time
i — 1. The particular time steps used in the T42/L.24 and T29/L60 model versions are 15
and 7.30 minutes. Alternatively to semi-implicit time stepping, the model can be inte-
grated by explicit standard schemes like the Runge-Kutta or the Bulirsch-Stoer method

for instance. However, these schemes require shorter time steps and are less efficient.
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Appendix B

Derivation of friction and dissipation

forms

This appendix provides some mathematical guidance to derive the friction and dissipation
forms (3.7)-(3.10). Using the notation introduced in chapters 2 and 3, it is readily shown
that

Vov = (e;0,+e,0,)0(ue,+vey)
= eo0e, (D—0yw)+ e,o0e, (E+0yu)— e oe, u/r (B1)
+e,0e,0,u+ e, 0e,0v— e 0e,v/r.
The transposed tensor yields
{Vov}T = e,oe,(D—0,v)+ e,oe,d,u
+ey0e; (E+ Oyu) + ey 0e, Oy (B2)

—e,oe u/r — e, oe,v/r.

Combination of (B1) and (B2) gives rise to the components of the symmetric tensor (3.3).
The divergence of (B1) is:

V3{Vov}=(V+e,0,){Vov}=(V-V+e, 0, -V)v =Vv. (B3)
We write the divergence of (B2) as

V3{Vovl}l = (€;0; +e,0, +€,0,) { e;0e, (D — 0yv) + e, 0e,dyu
+ey0e, (§+0yu)+ e, 0e, 0v— e, oe,u/r—e,oe,v/r}.

To further evaluate this expression, we have to take the derivatives (3.2) as well as 0,0, =

0yOp — t%“’ax into account. After several steps we arrive at

Vg{Vov}T:VD—%(azv—kDez). (B4)
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Adding (B3) and (B4) gives
1
Vg({VOV}+{VOV}T):v2V+VD—;(aZV+Dez) (B5)

It is easyly shown that

D :
Vg{ez/rov+voez/r}:212+—e2+av. (B6)
r r
Then, combination of (B3)-(B6) yields
Vi{(V+e,/r)ov} + Vs{(V+e,/r)ov} = VZv+VD+2v/r?. (B7)

Since the tensor (3.5) contains no e, oe, or e, oe, components, the friction force (3.7)
follows immediately from (B7) with regard to the scale approximations (2.44),(2.55).

The dissipation associated with vertical diffusion is

1
€, = —

(X, Vs3)-v=K,{e,(0,v-V) +9,v0, } v (B8)
p
which yields (3.10) according to (2.41),(2.42). The dissipation associated with the hori-

zontal diffusion tensor (3.5) is

1
€p, = ;(ZhV;J,)'V

= Kp{2(D—-0yv)e,0, + (§+20,u)e, 0, (B9)
+(§+20yu)e, 0, + 20,ve,0, } - V.

Using the derivatives (3.2), the final formula (3.9) is obtained after a few steps.
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Partial list of symbols

Qe

AE

€z, €y, €,

>y — T m>e 3.0 MH< I

5
@

earth radius (= 6378.2 km)

available potential energy associated with deviations from the
zonal-mean flow

available potential energy of the zonal-mean flow

horizontal phase speed of an internal gravity wave (IGW)
specific heat capacity at constant pressure (= 1004 m?s—2K™!)
surface coefficient

horizontal divergence

vertical diffusion coefficient corresponding to an individual IGW
internal energy per unit mass

unit vectors in zonal, meridional, and vertical direction
energy deposition by gravity wave-mean flow interaction
Coriolis parameter

vertical flux of horizontal momentum generated by IGWs
vertical flux of pressure generated by IGWs

vertical flux of entropy generated by IGWs

gravity acceleration (= 9.81 ms~?)

enthalpy per unit mass

scale height

horizontal momentum diffusion

idem factor

sensible heat flux owing to turbulent motions

horizontal wave number of an individual IGW

kinetic energy per unit mass of the subscale motion

kinetic energy associated with deviations from the zonal-mean flow
kinetic energy of the zonal-mean flow

horizontally averaged kinetic energy per unit mass for total
wavenumber n

horizontal and vertical diffusion coefficients
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K, igw vertical diffusion coefficient generated by a family of IGWs

L, relative angular momentum of the atmosphere

Ly Q-angular momentum of the atmosphere

N Brunt-Viisila frequency

P pressure

Doo sea level reference pressure (= 1013 mb)
Dref global mean surface pressure (= model constant for given orography)

P molecular stress tensor

q molecular heat flux

Q diabatic heating due to radiation and condensation

Q. prescribed cumulus heating

Qm heating function used for self-induced condensational heating

u, v, w zonal, meridional, and vertical velocity components

r=a.+ 2 distance from the center of the earth

R gas constant (= 287.04 m?s—?K!)
S entropy per unit mass
T temperature
T, surface temperature
Ty equilibrium temperature
Trey reference temperature
TP total potential energy of the atmosphere
TK total kinetic energy of the atmosphere
U parameter that specifies the initial amplitude of an individual IGW
V3 three-dimensional velocity field
v horizontal velocity field
Wies residual work associated with gravity wave-mean flow interaction
z height above sea level
20 level of gravity wave initialization
2y, Ze breaking level and critical level of an individual IGW
Zs topographic height above sea level
Z vertical momentum diffusion
€ frictional heating (dissipation)
Eiguw frictional heating owing to IGWs

€m = €, + €, frictional heating owing to horizontal and vertical
momentum diffusion of the planetary-scale flow

n hybrid coordinate
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9y
O, Oy, O,

As ¢
A=A+

~ o

partial time derivative

partial derivatives in zonal, meridional, and vertical direction
longitude and latitude

complex vertical wavenumber of an individual IGW
horizontal diffusion of temperature

vertical diffusion of potential temperature

three-dimensional gradient operator

horizontal gradient operator

pressure velocity

angular velocity vector of the earth

geopotential

orography

density

sea level reference density

Reynolds stress tensor

stress tensor associated with horizontal momentum diffusion
stress tensor associated with vertical momentum diffusion
relaxation time

potential temperature

surface potential temperature

relative horizontal vorticity
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