Wave Processes

Essential parts of the middle atmosphere circulation are driven by waves – the investigation of related processes is matter of this topic. Prominent examples are planetary and synoptic Rossby waves and mesoscale inertia-gravity waves. We study their life cycle from their generation through their propagation until they break and influence the mean flow. Thermal tides are a closely related subject.


In order to extract information from observations and analyses and model simulations, distributions of Ertels Potential Vorticity, the three-dimensional wave activity flux, lag-correlations and several methods for the diagnosis of Rossby wave trains are used. For the study of gravity waves analytical models are continuously developed further. Numerical simulations are utilizing a variety of mesoscale and global models (for example ICON and KMCM) and linearized versions thereof (LIN-KMCM). For selected case studies, IAP-based observations with radiosondes, radars and lidars are used and compared with numerical simlations.

Recent publications

  • Becker, E., 2017: Mean-Flow Effects of Thermal Tides in the Mesosphere and Lower Thermosphere. J. Atmos. Sci. 74,  6: 2043-2063, doi:10.1175/jas-d-16-0194.1.
  • Chu, X., J. Zhao, X. Lu, V. L. Harvey, R. M. Jones, E. Becker, C. Chen, W. Fong, Z. Yu, B. R. Roberts & A. Dörnbrack, 2018: Lidar Observations of Stratospheric Gravity Waves From 2011 to 2015 at McMurdo (77.84°S, 166.69°E), Antarctica: 2. Potential Energy Densities, Lognormal Distributions, and Seasonal Variations. J. Geophys. Res. Atmos. 123: 7910-7934, doi:10.1029/2017jd027386.
  • Greer, K. R., S. L. England, E. Becker, D. Rusch & R. Eastes, 2018: Modeled Gravity Wave-Like Perturbations in the Brightness of Far Ultraviolet Emissions for the GOLD Mission. J. Geophys. Res. Space Physics 123: 5821-5830, doi:10.1029/2018JA025501.
  • Hien, S., J. Rolland, S. Borchert, L. Schoon, C. Zülicke & U. Achatz, 2018: Spontaneous inertia–gravity wave emission in the differentially heated rotating annulus experiment. J. Fluid Mech. 838: 5-41, doi:10.1017/jfm.2017.883.
  • Matthias, V. & M. Ern, 2018: On the origin of the mesospheric quasi-stationary planetary waves in the unusual Arctic winter 2015/2016. Atmos. Chem. Phys. 18,  7: 4803-4815, doi:10.5194/acp-18-4803-2018.
  • Mirzaei, M., A. R. Mohebalhojeh, C. Zülicke & R. Plougonven, 2017: On the quantification of imbalance and inertia-gravity waves generated in numerical simulations of moist baroclinic waves using the WRF model. J. Atmos. Sci. 74: 4241-4263, doi:10.1175/jas-d-16-0366.1.
  • Schneidereit, A., D. H. W. Peters, C. M. Grams, J. F. Quinting, J. H. Keller, G. Wolf, F. Teubler, M. Riemer & O. Martius, 2017: Enhanced Tropospheric Wave Forcing of Two Anticyclones in the Prephase of the January 2009 Major Stratospheric Sudden Warming Event. Mon. Wea. Rev. 145,  5: 1797-1815, doi:10.1175/mwr-d-16-0242.1.
  • Schoon, L. & C. Zülicke, 2018: A novel method for the extraction of local gravity wave parameters from gridded three-dimensional data: description, validation, and application. Atmos. Chem. Phys. 18: 6971-6983, doi:10.5194/acp-18-6971-2018
  • Vadas, S. L. & E. Becker, 2018: Numerical Modeling of the Excitation, Propagation, and Dissipation of Primary and Secondary Gravity Waves during Wintertime at McMurdo Station in the Antarctic. J. Geophys. Res. Atmos. 123: 9326-9369, doi:10.1029/2017jd027974.
  • Vadas, S. L., J. Zhao, X. Chu & E. Becker, 2018: The Excitation of Secondary GravityWaves From Local Body Forces: Theory and Observation. J. Geophys. Res. Atmos. 123: 9296-9325, doi:10.1029/2017jd027970.


  • Erich Becker
  • Axel Gabriel
  • Almut Gaßmann
  • Dieter H.W. Peters
  • Andrea Schneidereit
  • Christoph Zülicke