zur Startseite IAP Kühlungsborn
zur Startseite der Leibniz-Gemeinschaft

Global Circulation

The global residual circulation extends from the troposphere through the middle atmosphere. In the upper mesosphere / lower thermosphere, it is in exchange with the atmospheric layers above. The interaction between waves and mean flow ad well as inter- and intra-hemispheric differences and similarities are of special interest. They are a key element in the global energy budgets.


For the diagnosis of the spatio-temporally averaged mass circulation the so-called Transformed Eulerian Mean (TEM) equations are applied o observations and to model simulations, for example from KMCM. The resulting "residual" circulation contains the mean wind (Euler wind) and wave-induced transports (eddy flux). For the study of related energy balances energy and mass conserving simulations and assimilations are used.

Recent publications

  • Becker, E. & S. L. Vadas, 2018: Secondary Gravity Waves in the Winter Mesosphere: Results From a High-Resolution Global Circulation Model. J. Geophys. Res. Atmos. 123,  5: 2605-2627, doi:10.1002/2017jd027460.
  • Becker, E. & S. L. Vadas, 2020: Explicit Global Simulation of Gravity Waves in the Thermosphere. J. Geophys. Res. Space Physics 125,  10, doi:10.1029/2020ja028034.
  • Becker, E., S. L. Vadas, K. Bossert, V. L. Harvey, C. Zülicke & L. Hoffmann, 2021: A high-resolution whole-atmosphere model with resolved gravity waves and specified large-scale dynamics in the troposphere and lower stratosphere. J. Geophys. Res. Atmos.: in press, doi:10.1029/2021JD035018.
  • Gassmann, A., 2018: Entropy production due to subgrid-scale thermal fluxes with application to breaking gravity waves. Q. J. R. Meteorol. Soc. 144,  711: 499-510, doi:10.1002/qj.3221.
  • Gassmann, A., 2018: Discretization of generalized Coriolis and friction terms on the deformed hexagonal C-grid. Q. J. R. Meteorol. Soc. 144,  716: 2038-2053, doi:10.1002/qj.3294.
  • Gassmann, A., 2019: Analysis of Large-Scale Dynamics and Gravity Waves under Shedding of Inactive Flow Components. Mon. Wea. Rev. 147,  8: 2861-2876, doi:10.1175/mwr-d-18-0349.1.
  • Gross, M., H. Wan, P. J. Rasch, P. M. Caldwell, D. L. Williamson, D. Klocke, C. Jablonowski, D. R. Thatcher, N. Wood, M. Cullen, B. Beare, M. Willett, F. Lemarié, E. Blayo, S. Malardel, P. Termonia, A. Gassmann, P. H. Lauritzen, H. Johansen, C. M. Zarzycki, K. Sakaguchi & R. Leung, 2018: Physics–Dynamics Coupling in Weather, Climate, and Earth System Models: Challenges and Recent Progress. Mon. Wea. Rev. 146,  11: 3505-3544, doi:10.1175/mwr-d-17-0345.1.
  • Harvey, V. L., C. E. Randall, L. Goncharenko, E. Becker & J. France, 2018: On the Upward Extension of the Polar Vortices Into the Mesosphere. J. Geophys. Res. Atmos. 123,  17: 9171-9191, doi:10.1029/2018jd028815.
  • Harvey, V. L., C. E. Randall, E. Becker, A. K. Smith, C. G. Bardeen, J. A. France & L. Goncharenko, 2019: Evaluation of the Mesospheric Polar Vortices in WACCM. J. Geophys. Res. Atmos. 124: 10,626-610,645, doi:10.129/2019JD030727.


  • Erich Becker
  • Axel Gabriel
  • Dieter H.W. Peters
  • Claudia Stolle