zur Startseite IAP Kühlungsborn
zur Startseite der Leibniz-Gemeinschaft

Coupling of transport and chemistry

The spatial distribution and temporal variability of the radiation-active trace gases (such like ozone, water vapor and carbon dioxide) determines the global radiation and energy balances. It depends on temperature-dependent photochemical reactions and transports. The study of the vertical coupling of these complex interaction processes is challenging. The link between transport, radiation and chemistry of the middle atmosphere are subjects studied under this topic.

Methods

The studies rely on a hierarchy of models with different complexity: high-resolution circulation models (for example KMCM), medium-resolution general circulation models with coupled chemistry, dedicated chemistry-transport models (for example CTM-IAP) and linear transport process models. For comparison, internationally available observations and assimilations of trace gas distributions are used. This wide spectrum of different observational data and model versions is necessary to understand the complex interaction of transport, radiation and chemistry. It gives solid ground to studies of long-term changes in the middle atmosphere (see also Long-term Dynamics). Further, new methods for the mathematical-numerical description of trace gas transports and chemistry of the mesosphere are developed.

Recent publications

  • Akbas, M., T. Gallouët, A. Gassmann, A. Linke & C. Merdon, 2020: A gradient-robust well-balanced scheme for the compressible isothermal Stokes problem. Comput. Methods Appl. Mech. Engrg. 367: 113069, doi:10.1016/j.cma.2020.113069.
  • Becker, E., M. Grygalashvyly & G. R. Sonnemann, 2020: Gravity wave mixing effects on the OH*-layer. Adv. Space Res. 65,  1: 175-188, doi:10.1016/j.asr.2019.09.043.
  • Belikovich, M. V., M. Y. Kulikov, M. Grygalashvyly, G. R. Sonnemann, T. S. Ermakova, A. A. Nechaev & A. M. Feigin, 2018: Ozone chemical equilibrium in the extended mesopause under the nighttime conditions. Adv. Space Res. 61,  1: 426-432, doi:10.1016/j.asr.2017.10.010.
  • Gassmann, A., 2021: Inherent Dissipation of Upwind-Biased Potential Temperature Advection and its Feedback on Model Dynamics. J. Adv. Model. Earth Syst. 13,  3, doi:10.1029/2020ms002384.
  • Gassmann, A. & R. Blender, 2019: Entropy Production in Turbulence Parameterizations. Energy Transfers in Atmosphere and Ocean, D. Olbers, and A. Iske, Eds., Springer Nature Switzerland: 225-244, doi:10.1007/978-3-030-05704-6_7
  • Grygalashvyly, M., M. Eberhart, J. Hedin, B. Strelnikov, F.-J. Lübken, M. Rapp, S. Löhle, S. Fasoulas, M. Khaplanov, J. Gumbel & E. Vorobeva, 2019: Atmospheric band fitting coefficients derived from a self-consistent rocket-borne experiment. Atmos. Chem. Phys. 19,  2: 1207-1220, doi:10.5194/acp-19-1207-2019.
  • Grygalashvyly, M. & G. R. Sonnemann, 2020: Note on consistency between Kalogerakis–Sharma Mechanism (KSM) and two-step mechanism of atmospheric band emission (762 nm). Earth Planets Space 72,  1, doi:10.1186/s40623-020-01321-z.
  • Grygalashvyly, M., B. Strelnikov, M. Eberhart, J. Hedin, M. Khaplanov, J. Gumbel, M. Rapp, F.-J. Lübken, S. Löhle & S. Fasoulas, 2021: Nighttime O(1D) and corresponding Atmospheric Band emission (762 nm) derived from rocket-borne experiment. J. Atmos. Sol.-Terr. Phys. 213: 105522, doi:10.1016/j.jastp.2020.105522.
  • Grygalashvyly, M., A. I. Pogoreltsev, A. B. Andreyev, S. P. Smyshlyaev & G. R. Sonnemann, 2021: Semi-annual variation of excited hydroxyl emission at mid-latitudes. Ann. Geopys. 39,  1: 255-265, doi:10.5194/angeo-39-255-2021.
  • Kulikov, M. Y., M. V. Belikovich, M. Grygalashvyly, G. R. Sonnemann, T. S. Ermakova, A. A. Nechaev & A. M. Feigin, 2018: Nighttime Ozone Chemical Equilibrium in the Mesopause Region. J. Geophys. Res. Atmos. 123,  6: 3228-3242, doi:10.1002/2017jd026717.
  • Kulikov, M. Y., A. A. Nechaev, M. V. Belikovich, E. Vorobeva, M. Grygalashvyly, G. R. Sonnemann & A. M. Feigin, 2019: Boundary of nighttime ozone chemical equilibrium in the mesopause region from SABER data: Implications for derivation of atomic oxygen and atomic hydrogen. Geophys. Res. Lett. 46: 997-1004, doi:10.1029/2018GL080364.
  • Sonnemann, G. R. & M. Grygalashvyly, 2020: The slow-down effect in the nighttime mesospheric chemistry of hydrogen radicals. Adv. Space Res. 65,  12: 2800-2807, doi:10.1016/j.asr.2020.03.025.
  • Wilms, H., M. Rapp & A. Kirsch, 2019: Reply to Comment on “Nucleation of Mesospheric Cloud Particles: Sensitivities and Limits”. J. Geophys. Res. Atmos. 124: 3167-3172, doi:10.1029/2018JA025876.

Staff

  • Axel Gabriel
  • Erich Becker
  • Mykhaylo Grygalashvyly
  • Dieter H.W. Peters