zur Startseite IAP Kühlungsborn
zur Startseite der Leibniz-Gemeinschaft

Wave Processes

Essential parts of the middle atmosphere circulation are driven by waves – the investigation of related processes is matter of this topic. Prominent examples are planetary and synoptic Rossby waves and mesoscale inertia-gravity waves. We study their life cycle from their generation through their propagation until they break and influence the mean flow. Thermal tides are a closely related subject.

Methods

In order to extract information from observations and analyses and model simulations, distributions of Ertels Potential Vorticity, the three-dimensional wave activity flux, lag-correlations and several methods for the diagnosis of Rossby wave trains are used. For the study of gravity waves analytical models are continuously developed further. Numerical simulations are utilizing a variety of mesoscale and global models (for example KMCM) and linearized versions thereof (LIN-KMCM). For selected case studies, IAP-based observations with radiosondes, radars and lidars are used and compared with numerical simlations.

Recent publications

  • Amiramjadi, M., A. R. Mohebalhojeh, M. Mirzaei, C. Zülicke & R. Plougonven, 2020: The spatio–temporal variability of nonorographic gravity wave energy and relation to its source functions. Mon. Wea. Rev. 148,  12: 4837–4857, doi:10.1175/MWR-D-20-0195.1.
  • Bossert, K., S. L. Vadas, L. Hoffmann, E. Becker, V. L. Harvey & M. Bramberger, 2020: Observations of Stratospheric Gravity Waves Over Europe on 12 January 2016: The Role of the Polar Night Jet. J. Geophys. Res. Atmos. 125,  21, doi:10.1029/2020jd032893.
  • Chu, X., J. Zhao, X. Lu, V. L. Harvey, R. M. Jones, E. Becker, C. Chen, W. Fong, Z. Yu, B. R. Roberts & A. Dörnbrack, 2018: Lidar Observations of Stratospheric Gravity Waves From 2011 to 2015 at McMurdo (77.84°S, 166.69°E), Antarctica: 2. Potential Energy Densities, Lognormal Distributions, and Seasonal Variations. J. Geophys. Res. Atmos. 123: 7910-7934, doi:10.1029/2017jd027386.
  • Geldenhuys, M., P. Preusse, I. Krisch, C. Zülicke, J. Ungermann, M. Ern, F. Friedl-Vallon & M. Riese, 2021: Orographically-Induced Spontaneous Imbalance within the Jet Causing a Large Scale Gravity Wave Event. Atmos. Chem. Phys. 21: 10393-10412, doi:10.5194/acp-21-10393-2021.
  • Greer, K. R., S. L. England, E. Becker, D. Rusch & R. Eastes, 2018: Modeled Gravity Wave-Like Perturbations in the Brightness of Far Ultraviolet Emissions for the GOLD Mission. J. Geophys. Res. Space Physics 123: 5821-5830, doi:10.1029/2018JA025501.
  • Haghighatnasab, M., M. Mirzaei, A. R. Mohebalhojeh, C. Zülicke & R. Plougonven, 2020: Application of the Compressible, Nonhydrostatic, Balanced Omega Equation in Estimating Diabatic Forcing for Parameterization of Inertia–Gravity Waves: Case Study of Moist Baroclinic Waves Using WRF. J. Atmos. Sci. 77,  1: 113-129, doi:10.1175/jas-d-19-0039.1.
  • Hien, S., J. Rolland, S. Borchert, L. Schoon, C. Zülicke & U. Achatz, 2018: Spontaneous inertia–gravity wave emission in the differentially heated rotating annulus experiment. J. Fluid Mech. 838: 5-41, doi:10.1017/jfm.2017.883.
  • Liu, X., J. Xu, J. Yue, S. L. Vadas & E. Becker, 2019: Orographic Primary and Secondary Gravity Waves in the Middle Atmosphere From 16‐Year SABER Observations. Geophys. Res. Lett. 46,  8: 4512-4522, doi:10.1029/2019gl082256.
  • Matthias, V. & M. Ern, 2018: On the origin of the mesospheric quasi-stationary planetary waves in the unusual Arctic winter 2015/2016. Atmos. Chem. Phys. 18,  7: 4803-4815, doi:10.5194/acp-18-4803-2018.
  • Olbers, D., C. Eden, E. Becker, F. Pollmann & J. Jungclaus, 2019: The IDEMIX Model: Parameterization of Internal Gravity Waves for Circulation Models of Ocean and Atmosphere. Energy Transfers in Atmosphere and Ocean, D. Olbers, and A. Iske, Eds., Springer Nature Switzerland: 87-125, doi:10.1007/978-3-030-05704-6_3.
  • Schoon, L. & C. Zülicke, 2018: A novel method for the extraction of local gravity wave parameters from gridded three-dimensional data: description, validation, and application. Atmos. Chem. Phys. 18: 6971-6983, doi:10.5194/acp-18-6971-2018
  • Stephan, C. C., H. Schmidt, C. Zülicke & V. Matthias, 2020: Oblique Gravity Wave Propagation during Sudden Stratospheric Warmings. J. Geophys. Res. Atmos. 125: 031528, doi:10.1029/2019JD031528.
  • Vadas, S. L. & E. Becker, 2018: Numerical Modeling of the Excitation, Propagation, and Dissipation of Primary and Secondary Gravity Waves during Wintertime at McMurdo Station in the Antarctic. J. Geophys. Res. Atmos. 123: 9326-9369, doi:10.1029/2017jd027974.
  • Vadas, S. L. & E. Becker, 2019: Numerical Modeling of the Generation of Tertiary Gravity Waves in the Mesosphere and Thermosphere During Strong Mountain Wave Events Over the Southern Andes. J. Geophys. Res. Space Physics 124: 7687-7718, doi:10.1029/2019JA026694.
  • Vadas, S. L., J. Zhao, X. Chu & E. Becker, 2018: The Excitation of Secondary Gravity Waves From Local Body Forces: Theory and Observation. J. Geophys. Res. Atmos. 123: 9296-9325, doi:10.1029/2017jd027970.
  • Vadas, S. L., S. Xu, J. Yue, K. Bossert, E. Becker & G. Baumgarten, 2019: Characteristics of the Quiet-Time Hot Spot Gravity Waves Observed by GOCE Over the Southern Andes on 5 July 2010. J. Geophys. Res. Space Physics 124,  8: 7034-7061, doi:10.1029/2019ja026693.

Staff

  • Erich Becker
  • Axel Gabriel
  • Dieter H.W. Peters
  • Christoph Zülicke