zur Startseite IAP Kühlungsborn
zur Startseite der Leibniz-Gemeinschaft


Kühlungsborn Mechanistic Circulation Model


KMCM (Kühlungsborn Mechanistic Circulation Model) is a so called Simple General Circulation Model (SGCM), describing atmospheric flow of dry air under physically idealized conditions. The basic numerical schemes are discretization in vertical direction according to Simmons & Burridge (1981), representation by spherical harmonics in horizontal direction (Machenhauer & Rasmussen, 1972) and semi-implicit time stepping (Asselin, 1972; Hoskins & Simmons, 1975). Realistic large-scale orography can be included due to the reference state reformulation of Simmons & Chen (1991). The thermal forcing of the model consists of temperature relaxation, prescribed tropical heat sources and self-induced heating in the middle latitudes. Orography and heating functions can independently be substituted by their zonal averages. KMCM includes a realistic boundary layer parameterization with the surface temperature being defined consistently with the thermal forcing. Horizontal diffusion is formulated consistently with elementary hydrodynamics (Becker, 2000). In this model version, no parameterization of inertia-gravity waves is used.


Animations from a simulated annual cycle (click on them to make them go).

Recent publications

  • Becker, E., M. Grygalashvyly & G. R. Sonnemann, 2020: Gravity wave mixing effects on the OH*-layer. Adv. Space Res. 65,  1: 175-188, doi:10.1016/j.asr.2019.09.043.
  • Becker, E. & S. L. Vadas, 2018: Secondary Gravity Waves in the Winter Mesosphere: Results From a High-Resolution Global Circulation Model. J. Geophys. Res. Atmos. 123,  5: 2605-2627, doi:10.1002/2017jd027460.
  • Becker, E. & S. L. Vadas, 2020: Explicit Global Simulation of Gravity Waves in the Thermosphere. J. Geophys. Res. Space Physics 125,  10, doi:10.1029/2020ja028034.
  • Greer, K. R., S. L. England, E. Becker, D. Rusch & R. Eastes, 2018: Modeled Gravity Wave-Like Perturbations in the Brightness of Far Ultraviolet Emissions for the GOLD Mission. J. Geophys. Res. Space Physics 123: 5821-5830, doi:10.1029/2018JA025501.
  • Pokhotelov, D., E. Becker, G. Stober & J. L. Chau, 2018: Seasonal variability of atmospheric tides in the mesosphere and lower thermosphere: meteor radar data and simulations. Ann. Geopys. 36,  3: 825-830, doi:10.5194/angeo-36-825-2018.
  • Schaefer-Rolffs, U. & E. Becker, 2018: Scale-Invariant Formulation of Momentum Diffusion for High-Resolution Atmospheric Circulation Models. Mon. Wea. Rev. 146,  4: 1045-1062, doi:10.1175/mwr-d-17-0216.1.
  • Vadas, S. L. & E. Becker, 2018: Numerical Modeling of the Excitation, Propagation, and Dissipation of Primary and Secondary Gravity Waves during Wintertime at McMurdo Station in the Antarctic. J. Geophys. Res. Atmos. 123: 9326-9369, doi:10.1029/2017jd027974.
  • Vadas, S. L. & E. Becker, 2019: Numerical Modeling of the Generation of Tertiary Gravity Waves in the Mesosphere and Thermosphere During StrongMountainWave Events Over the Southern Andes. J. Geophys. Res. Space Physics 124: 7687-7718, doi:10.1029/2019JA026694.
  • Zülicke, C., E. Becker, V. Matthias, D. H. W. Peters, H. Schmidt, H.-L. Liu, L. de la Torre Ramos & D. M. Mitchell, 2018: Coupling of stratospheric warmings with mesospheric coolings in observations and simulations. J. Climate 31: 1107-1133, doi:10.1175/JCLI-D-17-0047.1.

Collected publications

Documentation & Code

A complete technical documentation is here: kmcm1r1u10.pdf. The Fortran source code is available on request from Erich Becker.


  • Erich Becker
  • Urs Schaefer-Rolffs