zur Startseite IAP Kühlungsborn
zur Startseite der Leibniz-Gemeinschaft

KMCM Publications

  • Avsarkisov, V., B. Strelnikov & E. Becker, 2019: Analysis of the vertical spectra of density fluctuation variance in the strongly stratified turbulence. 11th International Symposium on Turbulence and Shear Flow Phenomena (TSFP11), Southampton, UK, July 30 to August 2, 2019, http://www.tsfp-conference.org/proceedings/2019/96.pdf.
  • Becker, E., 2001: Symmetric stress tensor formulation of horizontal momentum diffusion in global models of atmospheric circulation. J. Atmos. Sci. 58, 3: 269 - 282. doi:10.1175/1520-0469(2001)058<0269:SSTFOH>2.0.CO;2
  • Becker, E., 2003: Frictional heating in global climate models. Mon. Wea. Rev. 131: 508 - 520. doi:10.1175/1520-0493(2003)131<0508:FHIGCM>2.0.CO;2
  • Becker, E., 2009: Sensitivity of the upper mesosphere to the Lorenz energy cycle of the troposphere. J. Atmos. Sci. 66: 647 - 666. doi:10.1175/2008JAS2735.1.
  • Becker, E., 2012: Dynamical control of the middle atmosphere. Space Sci. Rev. 168: 283 - 314. doi:10.1007/s11214-011-9841-5.
  • Becker, E., 2017: Mean-Flow Effects of Thermal Tides in the Mesosphere and Lower Thermosphere. J. Atmos. Sci. 74,  6: 2043-2063, doi:10.1175/jas-d-16-0194.1.
  • Becker, E. & S. Brune, 2014: Reply to comments by M.L. Waite and C. Snyder on "Indications of stratified turbulence in a mechanistic GCM". J. Atmos. Sci. 71: 858 - 862. doi:10.1175/JAS-D-13-0281.1.
  • Becker, E. & U. Burkhardt, 2007: Nonlinear horizontal diffusion for GCMs. Mon. Wea. Rev. 135: 1439 - 1454. doi:10.1175/MWR3348.1.
  • Becker, E., M. Grygalashvyly & G. R. Sonnemann, 2020: Gravity wave mixing effects on the OH*-layer. Adv. Space Res. 65,  1: 175-188, doi:10.1016/j.asr.2019.09.043.
  • Becker, E., R. Knöpfel & F.-J. Lübken, 2015: Dynamically induced hemispheric differences in the seasonal cycle of the summer polar mesopause. J. Atmos. Sol.-Terr. Phys. 129: 128-141. doi:10.1016/j.jastp.2015.04.014.
  • Becker, E., A. Müllemann, F.-J. Lübken, H. Körnich, P. Hoffmann & M. Rapp, 2004: High Rossby-wave activity in austral winter 2002: Modulations of the general circulation of the MLT during the MaCWAVE/MIDAS northern summer program. Geophys. Res. Lett. 31: L24S03. doi:10.1029/2004GL019615.
  • Becker, E. & C. Savigny, 2010: Dynamical heating of the polar summer mesopause induced by solar proton events. J. Geophys. Res. 115: D00I18. doi:10.1029/2009JD012561.   
  • Becker, E. & G. Schmitz, 1999: The role of orographically and thermally forced stationary waves in the causation of the residual circulation. Tellus 51A: 902 - 913. doi:10.1034/j.1600-0870.1999.00024.x.
  • Becker, E. & G. Schmitz, 2001: Interaction between extratropical stationary waves and the zonal mean circulation. J. Atmos. Sci. 58: 462 - 480. doi:10.1175/1520-0469(2001)058<0462:IBESWA>2.0.CO;2.
  • Becker, E. & G. Schmitz, 2003: Climatological effects of orography and land-sea heating contrasts on the gravity wave-driven circulation of the mesosphere. J. Atmos. Sci. 60: 103 - 118. doi:10.1175/1520-0469(2003)060<0103:CEOOAL>2.0.CO;2.
  • Becker, E. & S. L. Vadas, 2018: Secondary Gravity Waves in the Winter Mesosphere: Results From a High-Resolution Global Circulation Model. J. Geophys. Res. Atmos. 123,  5: 2605-2627, doi:10.1002/2017jd027460.
  • Becker, E. & S. L. Vadas, 2020: Explicit Global Simulation of Gravity Waves in the Thermosphere. J. Geophys. Res. Space Physics 125,  10, doi:10.1029/2020ja028034.
  • Becker, E., S. L. Vadas, K. Bossert, V. L. Harvey, C. Zülicke & L. Hoffmann, 2022: A high-resolution whole-atmosphere model with resolved gravity waves and specified large-scale dynamics in the troposphere and lower stratosphere. J. Geophys. Res. Atmos.127,  2: 035018, doi:10.1029/2021JD035018.
  • Brune, S. & E. Becker, 2013: Indications of stratified turbulence in a mechanistic GCM. J. Atmos. Sci. 70: 231 - 247. doi:10.1175/JAS-D-12-025.1.    
  • Greer, K. R., S. L. England, E. Becker, D. Rusch & R. Eastes, 2018: Modeled Gravity Wave-Like Perturbations in the Brightness of Far Ultraviolet Emissions for the GOLD Mission. J. Geophys. Res. Space Physics 123: 5821-5830, doi:10.1029/2018JA025501.
  • Grygalashvyly, M., E. Becker & G. Sonnemann, 2011: Wave mixing effects on minor chemical constituents in the MLT-region: Results from a global CTM driven by high-resolution dynamics. J. Geophys. Res. doi:10.1029/2010JD015518.
  • Grygalashvyly, M., E. Becker & G. Sonnemann, 2012: Gravity wave mixing and effective diffusivity for minor consitutents in the mesosphere / lower thermosphere. Space Sci. Rev. 168: 333 - 362. doi:10.1107/s11214-011-9857-x.
  • Hoffmann, P., E. Becker, W. Singer & M. Placke, 2010: Seasonal variation of mesospheric waves at northern middle and high latitudes. J. Atmos. Sol.-Terr. Phys. 72: 1068 - 1079. doi:10.1016/j.jastp.2010.07.002.
  • Karlsson, B. & E. Becker, 2016: How does Interhemispheric Coupling contribute to cool down the summer polar mesosphere? J. Climate 29, 24: 8807-8821. doi:10.1175/jcli-d-16-0231.1.
  • Körnich, H. & E. Becker, 2010: A simple model for the interhemispheric coupling of the middle atmosphere circulation. Adv. Space Res. 45: 661 - 668. doi:10.1016/j.asr.2009.11.001.
  • Körnich, H., G. Schmitz & E. Becker, 2006: The role of stationary waves in the maintenance of the Northern Annular Mode as deduced from model experiments. J. Atmos. Sci. 63, 11: 2931 - 2947. doi:10.1175/JAS3799.1.
  • Lübken, F. J., J. Höffner, T. P. Viehl, E. Becker, R. Latteck, B. Kaifler, D. J. Murphy & R. J. Morris, 2015: Winter/summer transition in the Antarctic mesopause region. J. Geophys. Res. Atmos. 120, 24: 12394-12409. doi:10.1002/2015jd023928.
  • Lübken, F.-J., R. Latteck, E. Becker, J. Höffner & D. Murphy, 2016: Using polar mesosphere summer echoes and stratospheric/mesospheric winds to explain summer mesopause jumps in Antarctica. J. Atmos. Sol.-Terr. Phys.: in press. doi:10.1016/j.jastp.2016.06.008.
  • Placke, M., P. Hoffmann, E. Becker, C. Jacobi, W. Singer & M. Rapp, 2011: Gravity wave momentum fluxes in the MLT - Part II: Meteor radar investigations at high and midlatitudes in comparison with modelling studies. J. Atmos. Sol.-Terr. Phys. 73: 911 - 902. doi:10.1016/j.jastp.2010.05.007.
  • Placke, M., P. Hoffmann, M. Gerding, E. Becker & M. Rapp, 2013: Testing linear gravity wave theory with simultaneous wind and temperature data from the mesosphere. J. Atmos. Sol.-Terr. Phys. 93: 57 - 69. doi:10.1016/j.jastp.2012.11.012.
  • Pokhotelov, D., E. Becker, G. Stober & J. L. Chau, 2018: Seasonal variability of atmospheric tides in the mesosphere and lower thermosphere: meteor radar data and simulations. Ann. Geopys. 36,  3: 825-830, doi:10.5194/angeo-36-825-2018.
  • Savigny, C., C. Robert, N. Rahpoe, H. Winkler, E. Becker, H. Bovensmann, J. P. Burrows & M. T. DeLand, 2012: Impact of short-term solar variability on the polar summer mesopause and noctilucent clouds. Climate And Wether in the Sun-Earth System (CAWSES): Highlights from a priority program, F.-J. Lübken, Ed., Springer Berlin & New York.     
  • Schaefer-Rolffs, U. & E. Becker, 2013: Horizontal momentum diffusion in GCMs using the Dynamic Smagorinsky Model. Mon. Wea. Rev. 141: 887 - 899. doi:10.1175/MWR-D-12-00101.1.
  • Schaefer-Rolffs, U., R. Knöpfel & E. Becker, 2015: A scale invariance criterion for LES parametrizations. Meteorol. Z. 24, 1: 3-13. doi:10.1127/metz/2014/0623.
  • Schaefer-Rolffs, U. & E. Becker, 2018: Scale-Invariant Formulation of Momentum Diffusion for High-Resolution Atmospheric Circulation Models. Mon. Wea. Rev. 146,  4: 1045-1062, doi:10.1175/mwr-d-17-0216.1.
  • Schlutow, M., E. Becker & H. Körnich, 2014: Positive definite and mass conserving tracer transport in spectral GCMs. J. Geophys. Res. Atmos. 119, 119: 11,562-511,577. doi:10.1002/2014jd021661.
  • Vadas, S. L. & E. Becker, 2018: Numerical Modeling of the Excitation, Propagation, and Dissipation of Primary and Secondary Gravity Waves during Wintertime at McMurdo Station in the Antarctic. J. Geophys. Res. Atmos. 123: 9326-9369, doi:10.1029/2017jd027974.
  • Vadas, S. L. & E. Becker, 2019: Numerical Modeling of the Generation of Tertiary Gravity Waves in the Mesosphere and Thermosphere During StrongMountainWave Events Over the Southern Andes. J. Geophys. Res. Space Physics 124: 7687-7718, doi:10.1029/2019JA026694.
  • Zülicke, C. & E. Becker, 2013: The structure of the mesosphere during sudden stratospheric warmings in a global circulation model. J. Geophys. Res. Atmos. 118: 2255 - 2271. doi:10.1002/jgrd.50219.
  • Zülicke, C. & E. Becker, 2017: Relation between equatorial mesospheric wind anomalies during spring and middle atmosphere variability modes. Sci. Online Lett. Atmos. 13A: 31-35, doi:10.2151/sola.13A-006.
  • Zülicke, C., E. Becker, V. Matthias, D. H. W. Peters, H. Schmidt, H.-L. Liu, L. de la Torre Ramos & D. M. Mitchell, 2018: Coupling of stratospheric warmings with mesospheric coolings in observations and simulations. J. Climate 31: 1107-1133, doi:10.1175/JCLI-D-17-0047.1.

Coworkers

  • Erich Becker
  • and many more